• Tidak ada hasil yang ditemukan

Continuous distributions

Dalam dokumen Essays on Social Learning and Networks (Halaman 100-110)

Chapter IV: Weak and Strong Ties in Social Network

B.2 Continuous distributions

From the proof of Proposition 16 we know that when๐‘žis fixed๐‘behaves as๐‘‚(ln๐›พ). Now, let us transform the first term into a more clear form

๐‘ข(๐‘) โˆ’๐‘ž =

๐‘ž๐‘

๐‘ž๐‘ + (1โˆ’๐‘ž)๐‘ โˆ’๐‘ž

โˆ’

๐‘ž๐‘โˆ’(1โˆ’๐‘ž)๐‘ ๐‘ž๐‘+(1โˆ’๐‘ž)๐‘

1โˆ’๐‘ž ๐‘ž

๐‘ 1โˆ’๐‘ž

๐‘ž

๐‘ +1

โˆ’๐‘‚(๐›พ ๐‘)

As๐‘ โ†’ โˆžand๐‘ž > 1

2, ( (1โˆ’๐‘ž)/๐‘ž)๐‘ โ†’0. Suppose( (1โˆ’๐‘ž)/๐‘ž)๐‘ =๐œˆthen ๐‘ž๐‘

๐‘ž๐‘ + (1โˆ’๐‘ž)๐‘ โ‰ฅ 1โˆ’๐œˆ

and

๐‘ž๐‘โˆ’(1โˆ’๐‘ž)๐‘ ๐‘ž๐‘+(1โˆ’๐‘ž)๐‘

1โˆ’๐‘ž ๐‘ž

๐‘ 1โˆ’๐‘ž

๐‘ž

๐‘ +1

โ‰ค ๐œˆ

๐œˆ+1

โ‰ค ๐œˆ . From the proof of Theorem 16๐œˆ =๐‘‚(๐›พ). Hence,

๐‘ข(๐‘) โˆ’๐‘ž โ‰ฅ 1โˆ’๐‘žโˆ’2๐œˆโˆ’๐‘‚(๐›พ ๐‘) =1โˆ’๐‘žโˆ’๐‘‚(๐›พln๐›พ).

It means that as๐‘ โ†’ โˆž,๐‘ข(๐‘)goes to its maximal value as๐ถ( (1โˆ’๐‘ž)/๐‘ž)๐‘ยท๐‘ โ†’ 0, which is quicker than ( (1โˆ’๐‘ž)/๐‘ž)๐‘ ๐‘˜, for any๐‘˜ < 1. Also, as optimal๐‘โˆ—increases then absorbing beliefs are further away from 1/2.

the world is never fully revealed if signals have bounded strength. To prove this, we look at what are the expected loss and gain, when the social planner chooses a price ๐‘˜๐‘ก โ‰  1. As we do not know the exact formula for the expected utility function, we first bound the expected gain in the public belief and then translate it to the expected utility gain. The latter one uses the fact that๐‘ข(๐‘) is convex and the absolute value of its derivative is less than 1.

Bounded private signals

Suppose without loss of generality that the modified LR satisfies ๐‘ž/(1โˆ’ ๐‘ž) โ‰ฅ

๐‘๐‘ก

(1โˆ’๐‘๐‘ก)๐‘˜๐‘ก

โ‰ฅ 1/2, so the ๐ป๐‘–๐‘” โ„Ž state is more likely and we are still in the learning period (less than๐‘ž/(1โˆ’๐‘ž)). Given this, the total modified belief of agent๐‘ก will be in the interval

๐‘๐‘ก (1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก

ยท 1โˆ’๐‘ž ๐‘ž ;

๐‘๐‘ก (1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก

ยท ๐‘ž 1โˆ’๐‘ž

.

In order to get the final modified likelihood-ratio equal to๐‘ฆin the interval above we need

๐‘”๐ป(๐‘ฅ)

๐‘”๐ฟ(๐‘ฅ) =๐‘ฆยท (1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก ๐‘๐‘ก

ยท

Before we calculate the expected loss and the expected gain from the price ๐‘˜๐‘ก we need a few more facts.

Note 40. The public belief and the corresponding likelihood ratio satisfy the follow- ing relation

๐‘๐‘ก = ๐‘™๐‘ก 1+๐‘™๐‘ก

ยท

Furthermore, if the total belief ๐œ‡๐‘ก > 1/2 and agent๐‘ก takes the action 0, then the expected loss is ๐œ‡๐‘กโˆ’ (1โˆ’๐œ‡๐‘ก) =2๐œ‡๐‘กโˆ’1.

The following lemma helps us understand how the change in the LR translates to the change in the public belief.

Lemma 41. If๐‘™๐‘ก+

1=๐‘™๐‘ก(1+๐›ฟ) then ๐‘๐‘ก+

1โˆ’ ๐‘๐‘ก =๐›ฟ ๐‘๐‘ก(1โˆ’ ๐‘๐‘ก) +๐‘œ(๐›ฟ(1โˆ’๐‘๐‘ก)).

Proof of Lemma 41. By the definition of the likelihood ratio ๐‘๐‘ก

1โˆ’ ๐‘๐‘ก

=๐‘ฅ ๐‘๐‘ก+

1

1โˆ’ ๐‘๐‘ก+

1

=๐‘ฅ(1+๐›ฟ), then

๐‘๐‘ก+

1โˆ’ ๐‘๐‘ก = ๐‘ฅ+๐‘ฅ ๐›ฟ 1+๐‘ฅ+๐‘ฅ ๐›ฟ

โˆ’ ๐‘ฅ

1+๐‘ฅ

= ๐‘ฅ ๐›ฟ

(1+๐‘ฅ) (1+๐‘ฅ+๐‘ฅ ๐›ฟ)

= ๐›ฟ ๐‘๐‘ก(1โˆ’๐‘๐‘ก)

(1โˆ’ ๐‘๐‘ก+๐‘๐‘ก) (1โˆ’ ๐‘๐‘ก+๐‘๐‘ก(1+๐›ฟ))

=๐›ฟ ๐‘๐‘ก(1โˆ’๐‘๐‘ก) +๐‘œ(๐›ฟ(1โˆ’ ๐‘๐‘ก)).

Furthermore, the following relation is satisfied between the PDFs of the likelihood ratio (L. Smith and Sรธrensen, 2000)

๐‘“๐ป(๐‘ฅ) =๐‘ฅ ๐‘“๐ฟ(๐‘ฅ). Therefore,

๐น๐ป(๐‘ฅ) =

โˆซ ๐‘ฅ

1โˆ’๐‘ž ๐‘ž

๐‘“๐ป(๐‘ฆ)๐‘‘๐‘ฆ

=

โˆซ ๐‘ฅ

1โˆ’๐‘ž ๐‘ž

๐‘ฆ ๐‘“๐ฟ(๐‘ฆ)๐‘‘๐‘ฆ

โ‰ค ๐‘ฅ ๐น๐ฟ(๐‘ฅ)

(B.1)

These facts help us prove one of the main results, that if private signals are bounded then the full revelation of the underlying state is not possible, unless๐›ฟ =1.

Proof of Theorem 18. Let us start with the expected loss which is equal to

โˆซ ๐‘ ๐‘Ž

2 ๐‘ฅ

๐‘๐‘ก 1โˆ’๐‘๐‘ก

1+๐‘ฅ ๐‘๐‘ก

1โˆ’๐‘๐‘ก

โˆ’1

!

(๐‘๐‘ก๐‘“๐ป (๐‘ฅ) + (1โˆ’ ๐‘๐‘ก)๐‘“๐ฟ(๐‘ฅ))๐‘‘๐‘ฅ

โ‰ฅ ๐‘

1๐‘๐‘ก

๐น๐ป

1โˆ’๐‘๐‘ก ๐‘๐‘ก

๐‘˜๐‘ก

โˆ’๐น๐ป

1โˆ’๐‘ž ๐‘ž

+ (1โˆ’ ๐‘๐‘ก)

๐น๐ฟ

1โˆ’ ๐‘๐‘ก ๐‘๐‘ก

๐‘˜๐‘ก

โˆ’๐น๐ฟ

1โˆ’๐‘ž ๐‘ž

=๐‘

1

๐‘๐‘ก๐น๐ป

1โˆ’ ๐‘๐‘ก ๐‘๐‘ก

๐‘˜๐‘ก

+ (1โˆ’ ๐‘๐‘ก)๐น๐ฟ

1โˆ’๐‘๐‘ก ๐‘๐‘ก

๐‘˜๐‘ก ,

where๐‘Ž = (1โˆ’๐‘ž)/๐‘ž, ๐‘ = (1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก/๐‘๐‘ก and๐‘

1gets arbitrary close to 1 as ๐‘๐‘ก goes to 1. Notice that we can make(1โˆ’๐‘๐‘ก)๐‘˜๐‘ก/๐‘๐‘กas close to(1โˆ’๐‘ž)/๐‘žas we want, which is the lowest value for the likelihood ratio.

Now let us find the expected gain. Remember that the modified public belief is ๐‘๐‘ก/( (1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก). Hence we get the following expressions for ๐‘๐‘ก+

1/(1โˆ’ ๐‘๐‘ก+

1) ๐‘๐‘ก+

1

1โˆ’ ๐‘๐‘ก+

1

= ๐‘๐‘ก 1โˆ’ ๐‘๐‘ก

ยท

1โˆ’๐น๐ป (

1โˆ’๐‘๐‘ก)๐‘˜๐‘ก

๐‘๐‘ก

1โˆ’๐น๐ฟ (

1โˆ’๐‘๐‘ก)๐‘˜๐‘ก

๐‘๐‘ก

if player๐‘ก buys the new product (random walk goes up) and

๐‘๐‘ก+

1

1โˆ’๐‘๐‘ก+

1

= ๐‘๐‘ก 1โˆ’๐‘๐‘ก

ยท ๐น๐ป

(

1โˆ’๐‘๐‘ก)๐‘˜๐‘ก

๐‘๐‘ก

๐น๐ฟ (

1โˆ’๐‘๐‘ก)๐‘˜๐‘ก ๐‘๐‘ก

if she does not (random walk goes down). Here, underline and overline represent possible LRs that can result from the current public belief๐‘๐‘กand price๐‘˜๐‘กdepending on the action of player๐‘ก.

As utility function on [0.5,1] is convex and symmetric around 0.5 we know that expected gain is less than๐‘ข(๐‘๐‘ก+

1) โˆ’๐‘ข(๐‘๐‘ก)(as if we go up with probability 1). Which in its turn is less than๐‘๐‘ก+

1โˆ’๐‘๐‘กas๐‘ขis also above 45 degree line and at 1 is equal to 1. In order to calculate the latter we should find(๐‘๐‘ก+

1/(1โˆ’ ๐‘๐‘ก+

1)). We are thinking about(1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก/๐‘๐‘ก as a point close to the left end of the domain of๐น๐ป and๐น๐ฟ, so in the following calculation we are using notation๐œ€= (1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก/๐‘๐‘ก.

๐‘๐‘ก+

1

1โˆ’ ๐‘๐‘ก+

1

= ๐‘๐‘ก 1โˆ’ ๐‘๐‘ก

ยฉ

ยญ

ยญ

ยซ 1โˆ’๐น๐ป

(

1โˆ’๐‘๐‘ก)๐‘˜๐‘ก ๐‘๐‘ก

1โˆ’๐น๐ฟ (

1โˆ’๐‘๐‘ก)๐‘˜๐‘ก

๐‘๐‘ก

ยช

ยฎ

ยฎ

ยฌ

โ‰ค ๐‘๐‘ก 1โˆ’๐‘๐‘ก

1โˆ’๐‘

2๐น๐ฟ(๐œ€)) (1+๐น๐ฟ(๐œ€) +๐‘‚(๐นโˆ’2(๐œ€))

= ๐‘๐‘ก 1โˆ’ ๐‘๐‘ก

(1+๐น๐ฟ(๐œ€) (1โˆ’๐‘

2) +๐‘‚(๐น2

๐ฟ(๐œ€))) where๐‘

2 > 0 is a constant comes from (B.1). And hence, ๐›ฟ(๐‘๐‘ก+

1โˆ’ ๐‘๐‘ก) โ‰ค๐›ฟ

๐น๐ฟ(๐œ€) (1โˆ’๐‘

2) (1โˆ’ ๐‘๐‘ก) ๐‘๐‘ก

+๐‘‚(๐น2

๐ฟ(๐œ€))

= ๐น๐ฟ(๐œ€) (๐›ฟ(1โˆ’ ๐‘๐‘ก+๐‘๐‘ก๐‘

2โˆ’๐‘

2)) ๐‘๐‘ก

+๐‘‚(๐น2

๐ฟ(๐œ€)). Comparing it to๐น๐ฟ(๐œ€) ( (1โˆ’๐›ฟ) (1โˆ’๐‘๐‘ก+๐‘๐‘ก๐‘

2))๐‘

1tells us that for ๐‘๐‘ก โ†’1 coefficient ๐›ฟ(1โˆ’๐‘๐‘ก+ ๐‘๐‘ก๐‘

2โˆ’๐‘

2)/(๐‘๐‘ก)goes to 0 whereas the other one goes to(1โˆ’๐›ฟ)๐‘

2 > 0.

Unbounded private signals

Now we are going to consider an example of unbounded private signals. This is the only situation, when it is appropriate to talk about the asymptotic speed of learning, as in other cases the public belief does not converge to 0 or 1. The second main result is Theorem 19, which says that the optimal prices,๐‘˜๐‘ก, are bounded away from 0 and

โˆž and that it is optimal to choose a positive price, ๐‘˜๐‘ก > 1, when the public belief is high enough. We need to assume that ๐‘๐‘ก is high due to the lack of information about๐‘ข and its derivative. As we mentioned above, if we use the results from the numerical calculation, it can be generalized for ๐‘๐‘ก โ‰ฅ 1/2.

One of the corollaries is that we indeed have the asymptotic learning and the asymptotic speed of learning is also significantly increased, due to taxation of the good that is more likely to be better. The situation when ๐‘๐‘ก < 1/2 is symmetric.

Recall that the CDFs of the likelihood ratios are ๐น๐ป(๐‘ฆ)=P

๐‘”๐ป(๐‘ ) ๐‘”๐ฟ(๐‘ ) โ‰ค ๐‘ฆ

๐œƒ =๐ป๐‘–๐‘” โ„Ž

= ๐‘ฆ2 (1+๐‘ฆ)2 ๐น๐ฟ(๐‘ฆ) =P

๐‘”๐ป(๐‘ ) ๐‘”๐ฟ(๐‘ ) โ‰ค ๐‘ฆ

๐œƒ =๐ฟ ๐‘œ๐‘ค

= ๐‘ฆ2+2๐‘ฆ (1+๐‘ฆ)2, for๐‘ฆ โˆˆ [0,โˆž].

Proof of Theorem 19. Recall that if we apply non zero price ๐‘˜๐‘ก then we have the expected loss due to non optimal actions and the expected gain from bigger expected increase in public belief ๐‘๐‘ก+

1. We start with the former one.

Suppose we have a public belief ๐‘๐‘กand a price at this period is ๐‘˜๐‘ก. As was stated in the Section 3.1, agent๐‘กis going to buy the new productiff

๐‘๐‘ก (1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก

ยท ๐‘”๐ป(๐‘ฅ) ๐‘”๐ฟ(๐‘ฅ) โ‰ฅ 1.

Notice, that a player ๐‘ก will take a non optimal action only if her likelihood belief with price ๐‘˜๐‘ก is less than 1 and her likelihood belief without the price is above 1.

More formally private likelihood ratio can take the following values (1โˆ’ ๐‘๐‘ก)๐‘˜๐‘ก

๐‘๐‘ก

โ‰ฅ ๐‘”๐ป(๐‘ฅ)

๐‘”๐ฟ(๐‘ฅ) โ‰ฅ 1โˆ’๐‘๐‘ก ๐‘๐‘ก

If a person๐‘ก gets a private likelihood belief in this interval and her total likelihood (without accounting for the price) is equal to ๐‘ฆ then the loss, due to taking a non

optimal action, is equal to

2๐‘ฆ 1+๐‘ฆ

โˆ’1.

Therefore, expected loss๐‘™(๐‘๐‘ก, ๐‘˜๐‘ก) has the following form ๐‘™(๐‘๐‘ก, ๐‘˜๐‘ก) =

โˆซ ๐‘

๐‘Ž

ยฉ

ยญ

ยซ

2๐‘ฅ(1โˆ’๐‘๐‘ก)

๐‘๐‘ก

๐‘ฅ(1โˆ’๐‘๐‘ก)

๐‘๐‘ก

+1

โˆ’1ยช

ยฎ

ยฌ

(๐‘๐‘ก๐‘“๐ป(๐‘ฅ) + (1โˆ’๐‘๐‘ก)๐‘“๐ฟ(๐‘ฅ))๐‘‘๐‘ฅ

โ‰ค 2๐‘˜๐‘ก

๐‘˜๐‘ก+1

โˆ’1 โˆซ ๐‘

๐‘Ž

(๐‘๐‘ก๐‘“๐ป (๐‘ฅ) + (1โˆ’ ๐‘๐‘ก)๐‘“๐ฟ (๐‘ฅ))๐‘‘๐‘ฅ

=

๐‘˜๐‘กโˆ’1 ๐‘˜๐‘ก+1

๐‘๐‘ก

๐น๐ป

(1โˆ’๐‘๐‘ก)๐‘˜๐‘ก ๐‘๐‘ก

โˆ’๐น๐ป

1โˆ’๐‘๐‘ก ๐‘๐‘ก

+ + (1โˆ’ ๐‘๐‘ก)

๐น๐ฟ

(1โˆ’๐‘๐‘ก)๐‘˜๐‘ก ๐‘๐‘ก

โˆ’๐น๐ฟ

1โˆ’๐‘๐‘ก ๐‘๐‘ก

! ,

where๐‘Ž= (1โˆ’๐‘๐‘ก)

๐‘๐‘ก and๐‘ = (1โˆ’๐‘๐‘ก)๐‘˜๐‘ก

๐‘๐‘ก . After pluging in the expressions for๐น๐‘– we get ๐‘™(๐‘๐‘ก, ๐‘˜๐‘ก) = ( (โˆ’1+๐‘˜๐‘ก)2๐‘2

๐‘ก(1โˆ’ ๐‘๐‘ก)2) (๐‘˜๐‘ก+ ๐‘๐‘ก โˆ’๐‘˜๐‘ก๐‘๐‘ก)2 ยท

Now let us go to the expected gain term. Suppose that in period๐‘ก the public belief ๐‘๐‘ก > 1/2 is high enough. If there is no price, ๐‘˜๐‘ก = 1, then the public belief in the next period goes to either๐‘Žor๐‘depending on the action of player๐‘ก(buying the new and the old products correspondingly). And if we apply a price ๐‘˜๐‘ก then the public belief in the next period goes to๐‘Ž0and๐‘0correspondingly

๐‘Ž= 2โˆ’ ๐‘๐‘ก 3โˆ’2๐‘๐‘ก

, ๐‘= ๐‘๐‘ก (1+2๐‘๐‘ก), ๐‘Ž0= (2๐‘˜๐‘ก(1โˆ’๐‘๐‘ก) +๐‘๐‘ก)

(2๐‘˜๐‘ก(1โˆ’๐‘) +1) , ๐‘0= ๐‘˜๐‘ก๐‘๐‘ก (๐‘˜๐‘ก +2๐‘๐‘ก)

As the public belief is a martingale then in expectation it does not move. This means, that the expected gain is equal to the distance between two chords that connect๐‘ข(๐‘Ž), ๐‘ข(๐‘) and๐‘ข(๐‘Ž0), ๐‘ข(๐‘0) at point ๐‘๐‘ก. This is depicted in Figure B.1. In other words, the expected gain is equal to the distance between ๐‘‘ and ๐‘‘0, where๐‘‘ belongs to the chord๐‘ข(๐‘Ž), ๐‘ข(๐‘)and๐‘‘0to the chord๐‘ข(๐‘Ž0)๐‘ข(๐‘0)and their๐‘-coordinate is ๐‘๐‘ก. So the distance between๐‘‘0and๐‘‘ is alongside the๐‘ฆ-coordinate.

Let us calculate this distance. Denote by๐‘ฆ๐‘Žand๐‘ฆ๐‘-๐‘ฆ-coordinates of๐‘Žand๐‘. Notice, that the๐‘ฆ-coordinate of๐‘Ž0and๐‘0are equal to ๐‘ฆ๐‘Ž+๐‘Ž

1(๐‘Ž0โˆ’๐‘Ž) and๐‘ฆ๐‘โˆ’๐‘

1(๐‘0โˆ’ ๐‘) where๐‘Ž

1, ๐‘

1are some constants that are in [๐‘ข0(๐‘Ž), ๐‘ข0(๐‘Ž0)]and [โˆ’๐‘ข0(๐‘0),โˆ’๐‘ข0(๐‘)].

Where๐‘‘and๐‘‘0are the๐‘ฆ-coordinates of point๐‘๐‘กon the cords๐‘ข(๐‘Ž)๐‘ข(๐‘)and๐‘ข(๐‘Ž0)๐‘ข(๐‘0)correspondingly.

Figure B.1: The expected gain induced by the cost.

๐‘‘ =๐‘ฆ๐‘+ ๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘ ๐‘Žโˆ’๐‘

(๐‘๐‘กโˆ’๐‘) ๐‘‘0=๐‘ฆ๐‘โˆ’๐‘

1(๐‘0โˆ’๐‘) + ๐‘ฆ๐‘Žโˆ’ ๐‘ฆ๐‘+๐‘Ž

1(๐‘Ž0โˆ’๐‘Ž) +๐‘

1(๐‘0โˆ’๐‘) ๐‘Ž0โˆ’๐‘0

(๐‘โˆ’๐‘0). Pluging in the expressions for๐‘Ž, ๐‘, ๐‘Ž0, ๐‘0gives us the following formula

expected gain(๐‘๐‘ก, ๐‘˜๐‘ก) =๐‘‘0โˆ’๐‘‘ = ( (2๐‘Ž

1(โˆ’1+๐‘˜๐‘ก) (โˆ’1+ ๐‘๐‘ก)2๐‘2

๐‘ก) ( (3โˆ’2๐‘๐‘ก) (๐‘˜๐‘ก+๐‘๐‘กโˆ’๐‘˜๐‘ก๐‘๐‘ก)2))โˆ’

โˆ’ (2๐‘

1(โˆ’1+๐‘˜๐‘ก)๐‘˜๐‘ก(โˆ’1+๐‘๐‘ก)2๐‘2 ๐‘ก) ( (1+2๐‘๐‘ก) (๐‘˜๐‘ก+๐‘๐‘กโˆ’๐‘˜๐‘ก๐‘๐‘ก)2) + + ( (โˆ’1+๐‘˜๐‘ก) (โˆ’1+ ๐‘๐‘ก)2๐‘2

๐‘ก(โˆ’1โˆ’3๐‘˜๐‘ก+2(โˆ’1+๐‘˜๐‘ก)๐‘๐‘ก) (๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘)) (๐‘˜๐‘ก+ ๐‘๐‘กโˆ’๐‘˜๐‘ก๐‘๐‘ก)2 =

= (โˆ’1+๐‘˜๐‘ก) (1โˆ’๐‘๐‘ก)2๐‘2 ๐‘ก

(๐‘˜๐‘ก+ ๐‘๐‘ก โˆ’๐‘˜๐‘ก๐‘๐‘ก)2

2๐‘Ž

1

3โˆ’2๐‘๐‘ก

โˆ’ 2๐‘

1๐‘˜๐‘ก 1+2๐‘๐‘ก

โˆ’ (1+3๐‘˜๐‘กโˆ’2(โˆ’1+๐‘˜๐‘ก)๐‘๐‘ก) (๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘))

.

Denote by๐‘ƒthe terms in the parenthesis ๐‘ƒ(๐‘๐‘ก, ๐‘˜๐‘ก)=

2๐‘Ž

1

3โˆ’2๐‘๐‘ก

โˆ’ 2๐‘

1๐‘˜๐‘ก 1+2๐‘๐‘ก

โˆ’ (1+3๐‘˜๐‘กโˆ’2(โˆ’1+๐‘˜๐‘ก)๐‘๐‘ก) (๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘))

.

Notice, that ๐‘ฆ๐‘Ž โ‰ฅ ๐‘ฆ๐‘ as๐‘Žis closer to 1 than๐‘is to 0 for๐‘๐‘ก โ‰ฅ1/2 2โˆ’ ๐‘๐‘ก

3โˆ’2๐‘๐‘ก

โˆ’

1โˆ’ ๐‘๐‘ก 1+2๐‘๐‘ก

= 2๐‘๐‘กโˆ’1

(3โˆ’2๐‘๐‘ก) (1+2๐‘๐‘ก) โ‰ฅ 0.

Let us now compare the expected gain and the expected loss due to the price๐‘˜๐‘ก.We do this by subtracting the former one by the latter and taking the discount factor into account

๐›ฟ

1โˆ’๐›ฟexpected gainโˆ’expected loss= (โˆ’1+๐‘˜๐‘ก) (1โˆ’ ๐‘๐‘ก)2๐‘2

๐‘ก

( (๐‘˜๐‘ก +๐‘๐‘กโˆ’๐‘˜๐‘ก๐‘๐‘ก)2 ยท ๐›ฟ

1โˆ’๐›ฟ 2๐‘Ž

1

3โˆ’2๐‘๐‘ก

โˆ’ 2๐‘

1๐‘˜๐‘ก 1+2๐‘๐‘ก

โˆ’ (1+3๐‘˜๐‘กโˆ’2(โˆ’1+๐‘˜๐‘ก)๐‘๐‘ก) (๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘)

โˆ’ (๐‘˜๐‘กโˆ’1)

=

= ๐›ฟ

1โˆ’๐›ฟ

๐‘ƒ(๐‘๐‘ก, ๐‘˜๐‘ก) โˆ’๐‘˜๐‘ก+1

ยท (โˆ’1+๐‘˜๐‘ก) (1โˆ’ ๐‘๐‘ก)2๐‘2 ๐‘ก

( (๐‘˜๐‘ก+๐‘๐‘กโˆ’๐‘˜๐‘ก๐‘๐‘ก)2

We can see that the sign of this expression is defined by the parenthesis and ๐‘˜๐‘กโˆ’1 terms.

Suppose that the expression in the parenthesis is positive for some ๐‘˜๐‘ก > 1 (and ๐‘๐‘ก โˆ‰{0,1})

๐›ฟ 1โˆ’๐›ฟ

2๐‘Ž

1

3โˆ’2๐‘๐‘ก

โˆ’ 2๐‘

1๐‘˜๐‘ก 1+2๐‘๐‘ก

โˆ’ (1+3๐‘˜๐‘กโˆ’2(โˆ’1+๐‘˜๐‘ก)๐‘๐‘ก) (๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘)

โˆ’ (๐‘˜๐‘กโˆ’1) > 0 (B.2) Then๐‘‘0โˆ’๐‘‘is positive as the sign here is defined by this parenthesis and (๐‘˜๐‘กโˆ’1). If we now make๐‘˜less then 1, the expression above will increase and๐‘˜๐‘กโˆ’1 will become negative, which will make the expected gain also negative. Therefore, if (B.2) holds for some๐‘˜๐‘ก > 1 then the optimal๐‘˜โˆ—

๐‘ก is not less than 1.

Now let see whether there exists ๐‘˜๐‘ก > 1 which gives higher utility than ๐‘˜๐‘ก =1 for high enough ๐‘๐‘ก. As we said before, it is enough to show that (B.2) holds for some ๐‘˜๐‘ก > 1. The main challenge here is that we do not the utility function๐‘ข and how convex it is.

Still, we can say the following: ๐‘ฆ๐‘Žโˆ’ ๐‘ฆ๐‘ < ๐‘Ž

1(๐‘Ž โˆ’๐‘) < ๐‘Ž

1/3 and ๐‘

1 < ๐‘Ž

1. This means that for ๐‘๐‘ก close enough to 1

๐‘ƒ(๐‘๐‘ก, ๐‘˜๐‘ก) >

2๐‘Ž

1

3โˆ’2๐‘๐‘ก

โˆ’ 2๐‘Ž

1๐‘˜๐‘ก 1+2๐‘๐‘ก

โˆ’ (1+3๐‘˜๐‘กโˆ’2(โˆ’1+๐‘˜๐‘ก)๐‘๐‘ก)๐‘Ž

1

3 )

.

For๐‘˜๐‘ก =1 this function is increasing in ๐‘๐‘ก and at๐‘๐‘ก =1 it is 0. The expected loss is also 0 for๐‘˜๐‘ก =1. But as the bounds for๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘and๐‘

1are not tight,๐‘ƒ >0 at 1. As ๐‘ƒandโˆ’(๐‘˜๐‘กโˆ’1) are also continuous functions of๐‘˜๐‘ก there exists a threshold ๐‘such that for any ๐‘๐‘ก > ๐‘the expected gain is positive for some๐‘˜๐‘ก =1+๐œ€. In other words, there exists ๐‘˜๐‘ก > 1 such that it is better to choose than ๐‘˜๐‘ก = 1 for ๐‘๐‘ก high enough.

Moreover, if we use tighter constraints that we get from section 3.4 we can see that it holds for ๐‘๐‘ก > 1/2.

Furthermore, there exists neighborhoods of 0 andโˆž such that the optimal ๐‘˜โˆ—

๐‘ก does not lie in them for any๐‘๐‘ก.

Let us start with 0

๐‘ƒ(๐‘๐‘ก,0) = 2๐‘Ž

1

3โˆ’2๐‘๐‘ก

โˆ’ (1+2๐‘๐‘ก) (๐‘ฆ๐‘Žโˆ’ ๐‘ฆ๐‘)

โ‰ฅ 2๐‘Ž

1

3โˆ’2๐‘๐‘ก

โˆ’ (1+2๐‘๐‘ก)๐‘Ž

1

3 , where the inequality comes from the fact that (๐‘ฆ๐‘Ž โˆ’ ๐‘ฆ๐‘) โ‰ค ๐‘Ž

1(๐‘Ž โˆ’ ๐‘) โ‰ค ๐‘Ž

1/3. Furthermore,

2 3โˆ’2๐‘๐‘ก

> 1+2๐‘๐‘ก 3

,

as(3โˆ’2๐‘๐‘ก) (1+2๐‘๐‘ก) โ‰ค4.Thus, for๐‘˜ in some neighborhood of 0๐‘ƒ(๐‘๐‘ก, ๐‘˜) > 0 and ๐‘˜โˆ’1< 0. Hence, there exists๐‘˜ >0 such that ๐‘˜โˆ— > ๐‘˜.

Also, it is obvious that for high enough ๐‘˜๐‘ก, ๐‘ƒ(๐‘๐‘ก, ๐‘˜๐‘ก) is negative. There is another case when ๐‘0 jumps to the right side of 1/2 such that ๐‘ฆ0

๐‘ becomes higher than ๐‘ฆ๐‘. Then we have a bit different expression for๐‘‘0

๐‘‘0=๐‘ฆ๐‘+๐‘

1(๐‘0โˆ’ (1โˆ’๐‘)) + ๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘+๐‘Ž

1(๐‘Ž0โˆ’๐‘Ž) โˆ’๐‘

1(๐‘0โˆ’ (1โˆ’๐‘)) ๐‘Ž0โˆ’๐‘0

(๐‘โˆ’๐‘0). And hence,

๐‘‘0โˆ’๐‘‘โˆ’expected loss(๐‘๐‘ก, ๐‘˜๐‘ก) = (โˆ’1+ ๐‘๐‘ก)2 (๐‘˜๐‘ก +๐‘๐‘กโˆ’๐‘˜๐‘ก๐‘๐‘ก)2

2๐‘Ž

1(โˆ’1+๐‘˜๐‘ก)๐‘2 ๐‘ก

(3โˆ’2๐‘๐‘ก) + + ๐‘1๐‘˜๐‘ก(โˆ’2๐‘๐‘ก(1+ ๐‘๐‘ก) +๐‘˜๐‘ก(โˆ’1+2๐‘2

๐‘ก)) 1+2๐‘๐‘ก

+ (โˆ’1+๐‘˜๐‘ก)๐‘2

๐‘ก(โˆ’1โˆ’3๐‘˜๐‘ก+2(โˆ’1+๐‘˜๐‘ก)๐‘๐‘ก)ร—

ร— (๐‘ฆ๐‘Žโˆ’๐‘ฆ๐‘)) โˆ’ (๐‘˜๐‘กโˆ’1)2๐‘2

๐‘ก

! .

Define the term in the big parenthesis by๐‘ƒ0(๐‘๐‘ก, ๐‘˜๐‘ก)and notice that ๐‘ƒ0(๐‘๐‘ก, ๐‘˜๐‘ก) โ‰ค 2๐‘Ž

1(๐‘˜๐‘กโˆ’1)๐‘2

๐‘ก + ๐‘

1๐‘˜๐‘ก ยท๐‘˜๐‘ก(2๐‘2

๐‘ก โˆ’1) 2

โˆ’ (๐‘˜๐‘กโˆ’1)2๐‘2

๐‘ก

! .

If we look at this as a function of๐‘˜๐‘ก then it is a downward looking parabola, which implies that for ๐‘˜๐‘ก high enough ๐‘ƒ0is negative and, as a consequence, the expected gain is smaller than the expected loss. Thus, ๐‘˜๐‘กdoes not go toโˆžas๐‘๐‘ก increases.

Therefore there exist๐‘˜ > 1 such that๐‘˜โˆ— < ๐‘˜. This concludes the proof.

Proof of Corollary 20. This is an implication of two facts. The first one is that prices are bounded, so it is impossible to stop aggregating information. And second, public belief is a martingale and hence, converges. For more details see (L. Smith and Sรธrensen, 2000).

Proof of Corollary 21. Suppose at time ๐‘ก the likelihood ratio is ๐‘™๐‘ก and ๐œƒ = ๐ป๐‘–๐‘” โ„Ž. Let us calculate๐‘™๐‘ก+

1when agent๐‘ก buys the new product with price๐‘˜ ๐‘™๐‘ก+

1=๐‘™๐‘กยท

1โˆ’๐น๐ป

๐‘˜ ๐‘™๐‘ก

1โˆ’๐น๐ฟ

๐‘˜ ๐‘™๐‘ก

=๐‘™๐‘ก

2 ๐‘˜ ๐‘™๐‘ก

+1)

=2๐‘˜+๐‘™๐‘ก.

This means that when everybody start taking the same correct action instead of adding 2 to the๐ฟ ๐‘…we going to add 2๐‘˜. Therefore, the convergence speed increases in๐‘˜ times.

A p p e n d i x C

APPENDIX TO CHAPTER 4

Dalam dokumen Essays on Social Learning and Networks (Halaman 100-110)