• Tidak ada hasil yang ditemukan

Equilibrium and comparative statics

Dalam dokumen Essays on Social Learning and Networks (Halaman 117-125)

Chapter IV: Weak and Strong Ties in Social Network

C.2 Equilibrium and comparative statics

function ouside of those neighborhoods of the equilibria of๐‘ˆโˆž. This concludes one direction.

Now let us show the other direction. There are three equilibria of๐‘ˆโˆž: two trivial and one non trivial. Also, ๐‘ˆ๐‘ has the same two trivial equilibria. Let us prove that there is a non trivial equilibrium of ๐‘ˆ๐‘ in some negihborhood of ๐‘โˆ—. Let ๐‘1= ๐‘โˆ—โˆ’๐œ€and๐‘2= ๐‘โˆ—+๐œ€. For both ๐‘1and๐‘2let us find๐‘

1and๐‘

2such that the maximums of๐‘ˆโˆž(๐‘๐‘–, ๐‘ž๐‘–(๐‘๐‘–), ๐‘1, ๐‘ž(๐‘1))and๐‘ˆโˆž(๐‘๐‘–, ๐‘ž๐‘–(๐‘๐‘–), ๐‘2, ๐‘ž(๐‘2))with respect to ๐‘๐‘– are within the๐›ฟ-neighborhood of the maximums of๐‘ˆ๐‘(๐‘๐‘–, ๐‘ž๐‘–(๐‘๐‘–), ๐‘1, ๐‘ž(๐‘1)) and๐‘ˆ๐‘(๐‘๐‘–, ๐‘ž๐‘–(๐‘๐‘–), ๐‘2, ๐‘ž(๐‘2))correspondingly. Notice, that๐‘ˆ๐‘(๐‘๐‘–, ๐‘ž๐‘–(๐‘), ๐‘, ๐‘ž(๐‘)) can not have maximums outside of these neighborhoods as๐‘ˆโˆž(๐‘๐‘–, ๐‘ž๐‘–(๐‘), ๐‘, ๐‘ž(๐‘))is single-peaked for a fixed๐‘with respect to๐‘๐‘–. Pick๐›ฟto be equal to min(โ„Ž(๐‘1), โ„Ž(๐‘2)). We can do this because๐‘ˆ๐‘uniformly converges๐‘ˆโˆž. Let us pick๐‘

0=max(๐‘

1, ๐‘

2). Then we know that at ๐‘ = ๐‘1 the maximum of๐‘ˆ๐‘(๐‘๐‘–, ๐‘ž๐‘–(๐‘๐‘–), ๐‘1, ๐‘ž(๐‘1)) is to the right of๐‘๐‘– = ๐‘12and at ๐‘ = ๐‘2the maximum of๐‘ˆ๐‘(๐‘๐‘–, ๐‘ž๐‘–(๐‘๐‘–), ๐‘2, ๐‘ž(๐‘2))is to the left of๐‘๐‘– = ๐‘2for all๐‘ > ๐‘

0. Hence, at some point๐‘1 โ‰ค ๐‘๐‘ โ‰ค ๐‘2the maximum of ๐‘ˆ๐‘(๐‘๐‘–, ๐‘ž๐‘–(๐‘๐‘–), ๐‘, ๐‘ž(๐‘)) crosses the line of ๐‘๐‘– = ๐‘. This is a symmetric non trivial equilibrium of๐‘ˆ๐‘ in๐‘โˆ—โ€™s the neighborhood.

Therefore, there are equilibria of๐‘ˆ๐‘ within the๐œ€-neighborhood of (trivial and non trivial) equilibria of ๐‘ˆโˆž. Moreover, there are no equilibria of the initial utility function outside of those neighborhoods.

๐œ•๐‘ˆโˆž

๐œ• ๐‘๐‘– ๐‘๐‘–=๐‘

=๐‘ ๐œ‹๐‘ค2๐พ2๐‘2๐ฟ2

๐‘2โˆ’ (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” โˆ’ ๐‘2) + +๐‘ ๐œ‹๐‘ค(๐พโˆ’1)๐พ ๐‘ ๐ฟ

(๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’ ๐‘2) โˆ’ ๐‘2

โˆ’

โˆ’๐œ‹๐‘ค(๐พ โˆ’1)๐พ ๐‘ ๐‘3๐ฟโˆ’๐‘ ๐œ‹๐‘ค๐พ ๐‘ ๐ฟ+๐‘(๐พโˆ’1) 1โˆ’ ๐‘4

๐พโˆ’2 + + (๐พโˆ’2) (๐พโˆ’1)๐‘3

1โˆ’ ๐‘2 1โˆ’ ๐‘4 ๐พโˆ’3

=(๐พโˆ’2) (๐พโˆ’1)๐‘3

1โˆ’ ๐‘2 1โˆ’ ๐‘4 ๐พโˆ’3

+ ๐‘(๐พ โˆ’1) 1โˆ’ ๐‘4

๐พโˆ’2

+

โˆ’๐œ‹๐‘ค๐พ ๐‘ ๐ฟ ๐‘

1โˆ’ (๐พ โˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’2๐‘2) +๐œ‹๐‘ค๐พ ๐‘ ๐ฟ(๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” โˆ’๐‘2)

=(๐พโˆ’2) (๐พโˆ’1)๐‘3

1โˆ’ ๐‘2 1โˆ’ ๐‘4 ๐พโˆ’3

+ ๐‘(๐พ โˆ’1) 1โˆ’ ๐‘4

๐พโˆ’2 +

โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(๐พโˆ’1)๐‘

1โˆ’ (๐พโˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” โˆ’2๐‘2)+

+ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(๐พโˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’ ๐‘2)

.

Notice, that we can do this if๐‘ž๐‘–๐‘ž > 0, otherwise, all terms that include a weak tie become 0 and we do not differentiate them. When๐‘ž๐‘–๐‘ž=0,๐‘ˆโˆžit is a trivial equilib- rium of๐‘ˆโˆž, as well as of๐‘ˆ๐‘, to choose๐‘๐‘– =p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ€๐‘–. Denote(๐œ•๐‘ˆโˆž/๐œ• ๐‘๐‘–) ๐‘๐‘–=๐‘

by๐น.

๐น =(๐พโˆ’2) (๐พ โˆ’1)๐‘3

1โˆ’ ๐‘2 1โˆ’ ๐‘4 ๐พโˆ’3

+๐‘(๐พโˆ’1)

1โˆ’๐‘4 ๐พโˆ’2

+

โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(๐พ โˆ’1)๐‘

1โˆ’ (๐พ โˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’2๐‘2) + ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(๐พ โˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’ ๐‘2)

=๐‘‡

1(๐‘) +๐‘‡

2(๐‘). where๐‘‡

1 is the term on the 1st line and๐‘‡

2โ€“ on the 2nd one. We will prove that ๐น has a unique non trivial root.

Under the assumptions of the theorem, ๐น has the following form: it is 0 at ๐‘ = 0, has a positive derivative there (when๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ > ๐œ‹๐‘ค), it is negative atp

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” (when ๐‘’

โˆ’๐ต2

๐พโˆ’1(1โˆ’ ๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”) < ๐œ‹๐‘ค/๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜) and crosses 0 only once on (0,p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”). Let us show this. It is clear that๐น(0) =0, so we will skip it.

๐น0(0) =(๐พโˆ’1)

๐œ‹๐‘ค ๐œ‹๐‘ค(๐พ โˆ’1) 3๐‘2โˆ’ ๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” ๐‘2

๐‘ค ๐‘’ ๐‘Ž ๐‘˜

+ + โˆ’๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ 6(๐พ โˆ’1)๐‘2โˆ’๐พ ๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” +๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”

๐‘2 ๐‘ค ๐‘’ ๐‘Ž ๐‘˜

+ 1

๐‘2 ๐‘ค ๐‘’ ๐‘Ž ๐‘˜

โˆ’ 1โˆ’ ๐‘2

๐พโˆ’3 ๐‘2+1

๐พโˆ’4

(๐พ โˆ’1) (4๐พโˆ’7)๐‘6+ (6๐พโˆ’11)๐‘4+ + (5โˆ’3๐พ)๐‘2โˆ’1

! ๐‘=0

=(๐พโˆ’1)

๐œ‹๐‘ค (๐พโˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”(๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค) โˆ’๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ ๐‘2

๐‘ค ๐‘’ ๐‘Ž ๐‘˜

+1

!

=(๐พโˆ’1)ยฉ

ยญ

ยญ

ยซ ๐œ‹๐‘ค

(๐พโˆ’1)๐‘€(๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค) +๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐œ‹๐‘ค โˆ’1 ๐‘2

๐‘ค ๐‘’ ๐‘Ž ๐‘˜

ยช

ยฎ

ยฎ

ยฌ

=(๐พโˆ’1)ยฉ

ยญ

ยญ

ยซ ๐œ‹๐‘ค

(๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค)

(๐พ โˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”+ ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐œ‹๐‘ค

๐‘2 ๐‘ค ๐‘’ ๐‘Ž ๐‘˜

ยช

ยฎ

ยฎ

ยฌ

>0, as๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ > ๐œ‹๐‘ค.

This implies that within some๐œ€-neighborhood of ๐‘ =0, ๐น is positive. Now we are going to show that at the other end, at ๐‘=p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”, it is negative.

๐น(p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”) =(๐พ โˆ’1)

๐‘€

1 2

๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”(1โˆ’ ๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)๐พโˆ’2(๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” +1)๐พโˆ’3ร—

ร— ( (๐พ โˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”+1) โˆ’ ๐œ‹๐‘ค๐‘€

1 2

๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(1+ (๐พโˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)

=โˆ’ (๐พโˆ’1) (1+ (๐พโˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)๐‘€

1 2

๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”

๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

โˆ’ (1โˆ’๐‘€2

๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)๐พโˆ’3ร—

ร— (1โˆ’ ๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)

!

=โˆ’ (๐พโˆ’1) (1+ (๐พโˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)๐‘€

1 2

๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”

๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

โˆ’

โˆ’

1โˆ’ ๐ต2

(๐พโˆ’1)2 ๐พโˆ’3

1โˆ’ ๐ต ๐พโˆ’1

!

โ‰ค โˆ’ (๐พโˆ’1) (1+ (๐พโˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)๐‘€

1 2

๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”

๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

โˆ’๐‘’

โˆ’๐ต2(๐พโˆ’3)

(๐พโˆ’1)2 ร—

ร—

1โˆ’ ๐ต ๐พโˆ’1

<0, as ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜๐œ‹๐‘ค > ๐‘’

โˆ’๐ต2(๐พโˆ’3)

(๐พโˆ’1)2

1โˆ’ ๐ต

๐พโˆ’1

. The fact that๐น(p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”) < 0,๐น(๐œ€) > 0 for some small๐œ€ > 0 and it is a continuous function implies thatโˆƒ๐‘โˆ— โˆˆ (0,p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)such that ๐น(๐‘โˆ—) =0. Now we just need to make sure that such non trivial equilibrium ๐‘โˆ—is unique.

Because our function is positive and increasing near the 0 and is negative near p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”then, at some point, ๐‘โ˜…, its derivative has to become negative,๐น0(๐‘โ˜…) < 0, before๐น(๐‘)becomes negative.

๐น0(๐‘) =(๐พโˆ’1) (1โˆ’๐‘4)๐พโˆ’4(1โˆ’ ๐‘2) 1+ (3๐พโˆ’5)๐‘2โˆ’ (6๐พโˆ’11)๐‘4โˆ’ (๐พโˆ’1)ร—

ร— (4๐พโˆ’7)๐‘6โˆ’

3(๐พโˆ’1)๐‘2

2โˆ’ ๐œ‹๐‘ค

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(1โˆ’ ๐‘4)๐พโˆ’4(1โˆ’ ๐‘2)

! + + (๐พโˆ’1) ๐œ‹๐‘ค

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”(๐พโˆ’1)

1โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

โˆ’1

We would like ๐น0(๐‘) to stay negative after the first time it becomes less than 0.

Then it can not cross 0 more than once. Assume that the constant term above is

positive3. It is a part of the derivative of the second summand of ๐น(๐‘), ๐‘‡

2(๐‘). Notice, that๐‘‡

2(๐‘)has to be negative at the non trivial equilibrium, because๐‘‡

1(๐‘)is always positive and their sum is 0. Also,๐‘‡

2(๐‘)is concave,๐‘‡

2(0) =0 and๐‘‡0

2(0) โ‰ฅ 0, therefore, before ๐‘‡

2 becomes negative, its derivative has to become less than 0.

Denote by๐‘

1a point at which๐‘‡0

2(๐‘

1) =0. Then we can rewrite ๐น0(๐‘)as ๐น0(๐‘) =(๐พโˆ’1) (1โˆ’ ๐‘4)๐พโˆ’4(1โˆ’ ๐‘2)๐ด(๐‘),

where

๐ด(๐‘) =๐‘Ž ๐‘2โˆ’2๐‘2โˆ’๐‘ ๐‘4โˆ’๐‘ ๐‘6โˆ’

๐‘Ž ๐‘‘(๐‘2โˆ’ ๐‘2 1) 1โˆ’๐‘2

1โˆ’ ๐‘4๐พโˆ’4 +1,

and๐‘Ž =3(๐พโˆ’1),๐‘ =(6๐พโˆ’11),๐‘ =(๐พโˆ’1) (4๐พโˆ’7),๐‘‘ =(2โˆ’๐œ‹๐‘ค/๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜)๐œ‹๐‘ค/๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜. It will be sufficient to show that once ๐ด becomes negative it stays negative as (1โˆ’๐‘4)๐พโˆ’4(1โˆ’๐‘2)is always positive for๐‘ โˆˆ [0,p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”]. Notice that ๐ด(0) > 0, so before it gets negative its derivative has to become negative.

๐ด0(๐‘) =2๐‘

โˆ’๐‘Ž ๐‘‘

๐‘2+1 3โˆ’๐พ

1โˆ’๐‘2 2โˆ’๐พ

2(๐พ โˆ’4)๐‘4+ ๐‘2

(โˆ’2๐พ+7)๐‘

12+1

โˆ’

โˆ’ ๐‘

12+1

+๐‘Žโˆ’2๐‘ ๐‘2โˆ’3๐‘ ๐‘4โˆ’2

Now, call the term in parentheses๐ต(๐‘), then๐ต0is negative for๐‘ > 0.

๐ต0(๐‘) =โˆ’4๐‘

1โˆ’ ๐‘4 โˆ’๐พ

1โˆ’๐‘4 ๐พ

๐‘+3๐‘ ๐‘2

+๐‘Ž ๐‘‘

๐‘2โˆ’1 ๐‘2+1 2

ร—

ร—

โˆ’ (๐พ โˆ’4) (2๐พโˆ’7)๐‘6+ (2๐พโˆ’7)๐‘4

(๐พ โˆ’3)๐‘

12โˆ’1

+ + ๐‘2

2(๐พโˆ’3)๐‘

12โˆ’3๐พ+10

+ (๐พโˆ’3)๐‘

12โˆ’1 !

=โˆ’4๐‘

1โˆ’ ๐‘4 โˆ’๐พ

1โˆ’๐‘4 ๐พ

๐‘+3๐‘ ๐‘2

+๐‘Ž ๐‘‘

๐‘2โˆ’1 ๐‘2+1 2

ร—

ร—

โˆ’1โˆ’ (2๐พโˆ’7)๐‘4

(๐พโˆ’4)๐‘2+1โˆ’ (๐พโˆ’3)๐‘

12

โˆ’

โˆ’ ๐‘2

โˆ’2(๐พ โˆ’3)๐‘

12+2๐พ+7

โˆ’ (๐พโˆ’3) (๐‘2โˆ’ ๐‘

12) !

<0.

3If it is negative then instead of having๐‘2โˆ’๐‘2

1below we are going to have๐‘2+๐‘2

1 which will only help with the analogous proof.

Thus, ๐ต0(๐‘)is negative. This implies the following. When ๐ด0becomes negative it stays negative. As ๐ด(0) > 0, before ๐ด becomes negative its derivative, ๐ด0, has to become negative. Therefore, once ๐ดstarts decreasing it continues decreasing from that point on. So when ๐ด becomes negative it stays negative and this is what we wanted. Hence, ๐น(๐‘) crosses 0 only once on (0,p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”). Let us call this point ๐‘โˆ—. This is a unique non trivial equilibrium of๐‘ˆโˆž.

Now, assume that๐œ‹๐‘ค โ‰ฅ ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ then๐œ‹๐‘ค/๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โ‰ฅ 1> (1โˆ’๐‘€2

๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)๐พโˆ’3(1โˆ’๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”). Furthermore, it means that ๐น(0) = 0 and ๐น0 is negative on (0,p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”). Thus, there is only one equilibrium of๐‘ˆโˆž: โˆ€๐‘– ๐‘๐‘– =0 and๐‘ž๐‘– =๐‘€๐‘ค ๐‘’ ๐‘Ž ๐‘˜. When๐œ‹๐‘ค > ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ weak links are more beneficial at both distance 1 and 2 and so no one wants to invest in friends.

On the other hand, if๐œ‹๐‘ค/๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ < (1โˆ’ ๐‘€2

๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)๐พโˆ’3(1โˆ’๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”)then๐œ‹๐‘ค < ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜. It means that ๐น(p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”) > 0. Hence, ๐น(๐‘) =0 does not have a solution and is positive on (0,p

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”]. So without the two conditions of the theorem we have only trivial symmetric equilibria.

To finish the proof we will show that we found the maximum and not the minimum.

๐œ•2๐‘ˆโˆž

๐œ• ๐‘2

๐‘–

๐‘๐‘–=๐‘

=โˆ’ (๐พโˆ’2) (๐พโˆ’1)๐‘4

1โˆ’ ๐‘2 ๐พโˆ’3

๐‘2+1 ๐พโˆ’4

(๐พโˆ’1)๐‘2+2

<0.

Thus, the extremum we found is indeed the maximum. This concludes the proof.

Proof of Proposition 24. To prove this proposition, let us calculate derivatives of ๐น(๐‘) with respect to ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜, ๐œ‹๐‘ค and ๐พ. We know from Theorem 23 the derivative of ๐น at ๐‘โˆ— is negative. Hence, if we know the derivatives of ๐น and their signs with respect to those parameters we will be able to calculate the corresponding comparative statics. Notice, that only the second summand of๐น depends on these 3 parameters, which simplifies calculations.

1) ๐œ• ๐น(๐‘โˆ—)

๐œ• ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

=๐œ• โˆ’ ๐œ‹๐‘ค(๐พโˆ’1) ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐‘โˆ—

1โˆ’ (๐พ โˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’2๐‘โˆ—

2) + + ๐œ‹๐‘ค

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(๐พ โˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’ ๐‘โˆ—

2)

!

/๐œ• ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

=

๐œ‹๐‘ค๐‘โˆ—๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

1โˆ’ (๐พโˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” โˆ’2๐‘โˆ—2) ๐‘3

๐‘ค ๐‘’ ๐‘Ž ๐‘˜

+

+๐œ‹๐‘ค๐‘โˆ—

2๐œ‹๐‘ค(๐พ โˆ’1)

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’ ๐‘โˆ—2 ๐‘3

๐‘ค ๐‘’ ๐‘Ž ๐‘˜

ยท

Remember, that the second summand of๐นis negative at the equilibrium,๐‘‡

2(๐‘โˆ—) < 0 from Theorem 23, therefore

๐œ• ๐น(๐‘โˆ—)

๐œ• ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

=

โˆ’๐‘‡

2(๐‘โˆ—) + ๐œ‹2๐‘ค๐‘

โˆ—(๐พโˆ’1) (๐‘€๐‘ ๐‘ก ๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’๐‘โˆ—2) ๐‘2

๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

>0.

Therefore, as we increase๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜, ๐‘โˆ—also increases.

2) ๐œ• ๐น(๐‘โˆ—)

๐œ• ๐ป

=โˆ’ ๐‘โˆ—

1โˆ’ (๐พโˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” โˆ’2๐‘โˆ—2) +2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜๐œ‹๐‘ค

(๐พโˆ’1)

๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’ ๐‘โˆ—2 ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

<0.

We get the last inequality in the same way we argued in 1) that๐‘‡

2(๐‘โˆ—)/๐œ‹๐‘ค minus something negative is negative at ๐‘โˆ—.

3) ๐œ• ๐น0(๐‘)

๐œ• ๐พ

=๐‘

1โˆ’ ๐‘2 1โˆ’ ๐‘4 ๐พโˆ’3

(๐พโˆ’1)๐‘2+1

log

1โˆ’ ๐‘4

+๐‘2

โˆ’

โˆ’ ๐‘2

2โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

!

Notice, that log(1โˆ’๐‘4) < 0. Furthermore, at the approximate equilibrium ๐‘โˆ— we have

๐น(๐‘โˆ—) =0

0=(๐พ โˆ’1)๐‘โˆ—

1โˆ’ ๐‘โˆ—

2๐พโˆ’2 ๐‘โˆ—

2 +1 ๐พโˆ’3

(๐พโˆ’1)๐‘โˆ—

2 +1

โˆ’

โˆ’ ๐œ‹๐‘ค(๐พโˆ’1) ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐‘โˆ—

1โˆ’ (๐พโˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” โˆ’2๐‘โˆ—

2) + ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(๐พโˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘” โˆ’ ๐‘โˆ—

2)

. Hence,

1โˆ’ ๐‘โˆ—

2

1โˆ’ ๐‘โˆ—

4๐พโˆ’3

= ๐œ‹๐‘ค

1โˆ’ (๐พ โˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’2๐‘โˆ—2) ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ (๐พโˆ’1)๐‘โˆ—2+1 + +

๐œ‹2 ๐‘ค

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(๐พโˆ’1) (๐‘€โˆ’ ๐‘โˆ—2) ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ (๐พโˆ’1)๐‘โˆ—2+1

Let us substitute this into๐œ• ๐น0(๐‘)/๐œ• ๐พ, but skip the term with the logarithm and the ๐‘term outside the parentheses.

๐œ‹๐‘ค

1โˆ’ (๐พโˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’2๐‘โˆ—2) + ๐œ‹๐‘ค

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜(๐พ โˆ’1) (๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”โˆ’ ๐‘โˆ—2)

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ (๐พ โˆ’1)๐‘โˆ—2 +1 ๐‘โˆ—

2โˆ’

โˆ’ ๐‘โˆ—

2

2โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

= ๐œ‹๐‘ค๐‘โˆ—2

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜( (๐พ โˆ’1)๐‘โˆ—2 +1) 1โˆ’ (๐พโˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”

1โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

+ ๐‘โˆ—

2(๐พโˆ’1)

2โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

โˆ’

โˆ’

2โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

( (๐พโˆ’1)๐‘โˆ—2+1)

!

= ๐œ‹๐‘ค๐‘2

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜( (๐พ โˆ’1)๐‘2+1) โˆ’1+ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

โˆ’ (๐พโˆ’1)๐‘€๐‘ ๐‘ก๐‘Ÿ ๐‘œ๐‘›๐‘”

1โˆ’ ๐œ‹๐‘ค ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

!

< 0.

Thus, the whole๐œ• ๐น0(๐‘)/๐œ• ๐พ is also negative at๐‘ = ๐‘โˆ—. So the probability of having a strong friend is decreasing as we increase๐พ. This concludes our proof.

Proof of Lemma 25. First we are going to show that ๐‘โˆ—2 > ๐‘žโˆ—2 in equilibrium.

Remember that from the proof of Theorem 23 ๐‘โˆ—

2

> ๐‘€

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค 2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค

โˆ’ ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

(๐พ โˆ’1) (2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค) = (๐ตโˆ’1)๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐ต๐œ‹๐‘ค (๐พ โˆ’1) (2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค)

as the๐‘‡

2(๐‘) term has to be negative. Hence, ๐‘žโˆ—

2 = ๐ฟ(๐‘€โˆ’ ๐‘โˆ—

2) <

(๐พโˆ’1) ๐พ ๐‘ ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜

๐ต(2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค) โˆ’ (๐ตโˆ’1)๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ +๐ต๐œ‹๐‘ค (๐พ โˆ’1) (2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค) โˆ’

= (๐ต+1) ๐พ ๐‘(2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค)ยท Let us look at their difference

๐‘โˆ—

2 โˆ’๐‘žโˆ—

2

>

(๐ตโˆ’1)๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐ต๐œ‹๐‘ค

(๐พโˆ’1) (2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค) โˆ’ (๐ต+1) ๐พ ๐‘(2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค)

= (๐ตโˆ’1)๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜๐พ ๐‘โˆ’๐ต๐œ‹๐‘ค๐พ ๐‘โˆ’ (๐ต+1) (๐พโˆ’1) (๐พโˆ’1)๐พ ๐‘(2๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ โˆ’๐œ‹๐‘ค) ยท For this difference to be greater than 0 we need to have

๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ >

๐ต

(๐ตโˆ’1)๐œ‹๐‘ค+ (๐ต+1) (๐พโˆ’1) (๐ตโˆ’1)๐พ ๐‘

ยท

Now let us remember a well-known fact about Erdล‘s - Rรฉnyi random graphs: the golbal clustering coefficient for friendsโ€™ network is equal to ๐‘โˆ—2+๐‘‚ (๐พ ๐‘)โˆ’0.5

and the global๐ถ ๐ถ for acquanintancesโ€™ network is ๐‘žโˆ—2 +๐‘‚ (๐พ ๐‘)โˆ’0.5

. Using this fact and the inequality that we got above we can conclude that when ๐‘๐‘ค ๐‘’ ๐‘Ž ๐‘˜ is not too close to ๐œ‹๐‘ค or when ๐‘ is big enough (so ๐‘โˆ— > 0 and๐‘žโˆ— < ๐‘โˆ— for big enough ๐‘) the๐ถ ๐ถ of the friendsโ€™ network is bigger than the๐ถ ๐ถ of the acquaintancesโ€™. This concludes the proof.

Dalam dokumen Essays on Social Learning and Networks (Halaman 117-125)