Chapter IV: Weak and Strong Ties in Social Network
C.2 Equilibrium and comparative statics
function ouside of those neighborhoods of the equilibria of๐โ. This concludes one direction.
Now let us show the other direction. There are three equilibria of๐โ: two trivial and one non trivial. Also, ๐๐ has the same two trivial equilibria. Let us prove that there is a non trivial equilibrium of ๐๐ in some negihborhood of ๐โ. Let ๐1= ๐โโ๐and๐2= ๐โ+๐. For both ๐1and๐2let us find๐
1and๐
2such that the maximums of๐โ(๐๐, ๐๐(๐๐), ๐1, ๐(๐1))and๐โ(๐๐, ๐๐(๐๐), ๐2, ๐(๐2))with respect to ๐๐ are within the๐ฟ-neighborhood of the maximums of๐๐(๐๐, ๐๐(๐๐), ๐1, ๐(๐1)) and๐๐(๐๐, ๐๐(๐๐), ๐2, ๐(๐2))correspondingly. Notice, that๐๐(๐๐, ๐๐(๐), ๐, ๐(๐)) can not have maximums outside of these neighborhoods as๐โ(๐๐, ๐๐(๐), ๐, ๐(๐))is single-peaked for a fixed๐with respect to๐๐. Pick๐ฟto be equal to min(โ(๐1), โ(๐2)). We can do this because๐๐uniformly converges๐โ. Let us pick๐
0=max(๐
1, ๐
2). Then we know that at ๐ = ๐1 the maximum of๐๐(๐๐, ๐๐(๐๐), ๐1, ๐(๐1)) is to the right of๐๐ = ๐12and at ๐ = ๐2the maximum of๐๐(๐๐, ๐๐(๐๐), ๐2, ๐(๐2))is to the left of๐๐ = ๐2for all๐ > ๐
0. Hence, at some point๐1 โค ๐๐ โค ๐2the maximum of ๐๐(๐๐, ๐๐(๐๐), ๐, ๐(๐)) crosses the line of ๐๐ = ๐. This is a symmetric non trivial equilibrium of๐๐ in๐โโs the neighborhood.
Therefore, there are equilibria of๐๐ within the๐-neighborhood of (trivial and non trivial) equilibria of ๐โ. Moreover, there are no equilibria of the initial utility function outside of those neighborhoods.
๐๐โ
๐ ๐๐ ๐๐=๐
=๐ ๐๐ค2๐พ2๐2๐ฟ2
๐2โ (๐๐ ๐ก๐ ๐๐๐ โ ๐2) + +๐ ๐๐ค(๐พโ1)๐พ ๐ ๐ฟ
(๐๐ ๐ก๐ ๐๐๐โ ๐2) โ ๐2
โ
โ๐๐ค(๐พ โ1)๐พ ๐ ๐3๐ฟโ๐ ๐๐ค๐พ ๐ ๐ฟ+๐(๐พโ1) 1โ ๐4
๐พโ2 + + (๐พโ2) (๐พโ1)๐3
1โ ๐2 1โ ๐4 ๐พโ3
=(๐พโ2) (๐พโ1)๐3
1โ ๐2 1โ ๐4 ๐พโ3
+ ๐(๐พ โ1) 1โ ๐4
๐พโ2
+
โ๐๐ค๐พ ๐ ๐ฟ ๐
1โ (๐พ โ1) (๐๐ ๐ก๐ ๐๐๐โ2๐2) +๐๐ค๐พ ๐ ๐ฟ(๐๐ ๐ก๐ ๐๐๐ โ๐2)
=(๐พโ2) (๐พโ1)๐3
1โ ๐2 1โ ๐4 ๐พโ3
+ ๐(๐พ โ1) 1โ ๐4
๐พโ2 +
โ ๐๐ค ๐๐ค ๐ ๐ ๐
(๐พโ1)๐
1โ (๐พโ1) (๐๐ ๐ก๐ ๐๐๐ โ2๐2)+
+ ๐๐ค ๐๐ค ๐ ๐ ๐
(๐พโ1) (๐๐ ๐ก๐ ๐๐๐โ ๐2)
.
Notice, that we can do this if๐๐๐ > 0, otherwise, all terms that include a weak tie become 0 and we do not differentiate them. When๐๐๐=0,๐โit is a trivial equilib- rium of๐โ, as well as of๐๐, to choose๐๐ =p
๐๐ ๐ก๐ ๐๐๐โ๐. Denote(๐๐โ/๐ ๐๐) ๐๐=๐
by๐น.
๐น =(๐พโ2) (๐พ โ1)๐3
1โ ๐2 1โ ๐4 ๐พโ3
+๐(๐พโ1)
1โ๐4 ๐พโ2
+
โ ๐๐ค ๐๐ค ๐ ๐ ๐
(๐พ โ1)๐
1โ (๐พ โ1) (๐๐ ๐ก๐ ๐๐๐โ2๐2) + ๐๐ค ๐๐ค ๐ ๐ ๐
(๐พ โ1) (๐๐ ๐ก๐ ๐๐๐โ ๐2)
=๐
1(๐) +๐
2(๐). where๐
1 is the term on the 1st line and๐
2โ on the 2nd one. We will prove that ๐น has a unique non trivial root.
Under the assumptions of the theorem, ๐น has the following form: it is 0 at ๐ = 0, has a positive derivative there (when๐๐ค ๐ ๐ ๐ > ๐๐ค), it is negative atp
๐๐ ๐ก๐ ๐๐๐ (when ๐
โ๐ต2
๐พโ1(1โ ๐๐ ๐ก๐ ๐๐๐) < ๐๐ค/๐๐ค ๐ ๐ ๐) and crosses 0 only once on (0,p
๐๐ ๐ก๐ ๐๐๐). Let us show this. It is clear that๐น(0) =0, so we will skip it.
๐น0(0) =(๐พโ1)
๐๐ค ๐๐ค(๐พ โ1) 3๐2โ ๐๐ ๐ก๐ ๐๐๐ ๐2
๐ค ๐ ๐ ๐
+ + โ๐๐ค ๐ ๐ ๐ 6(๐พ โ1)๐2โ๐พ ๐๐ ๐ก๐ ๐๐๐ +๐๐ ๐ก๐ ๐๐๐
๐2 ๐ค ๐ ๐ ๐
+ 1
๐2 ๐ค ๐ ๐ ๐
โ 1โ ๐2
๐พโ3 ๐2+1
๐พโ4
(๐พ โ1) (4๐พโ7)๐6+ (6๐พโ11)๐4+ + (5โ3๐พ)๐2โ1
! ๐=0
=(๐พโ1)
๐๐ค (๐พโ1)๐๐ ๐ก๐ ๐๐๐(๐๐ค ๐ ๐ ๐ โ๐๐ค) โ๐๐ค ๐ ๐ ๐ ๐2
๐ค ๐ ๐ ๐
+1
!
=(๐พโ1)ยฉ
ยญ
ยญ
ยซ ๐๐ค
(๐พโ1)๐(๐๐ค ๐ ๐ ๐ โ๐๐ค) +๐๐ค ๐ ๐ ๐ ๐๐ค ๐ ๐ ๐
๐๐ค โ1 ๐2
๐ค ๐ ๐ ๐
ยช
ยฎ
ยฎ
ยฌ
=(๐พโ1)ยฉ
ยญ
ยญ
ยซ ๐๐ค
(๐๐ค ๐ ๐ ๐ โ๐๐ค)
(๐พ โ1)๐๐ ๐ก๐ ๐๐๐+ ๐๐ค ๐ ๐ ๐
๐๐ค
๐2 ๐ค ๐ ๐ ๐
ยช
ยฎ
ยฎ
ยฌ
>0, as๐๐ค ๐ ๐ ๐ > ๐๐ค.
This implies that within some๐-neighborhood of ๐ =0, ๐น is positive. Now we are going to show that at the other end, at ๐=p
๐๐ ๐ก๐ ๐๐๐, it is negative.
๐น(p
๐๐ ๐ก๐ ๐๐๐) =(๐พ โ1)
๐
1 2
๐ ๐ก๐ ๐๐๐(1โ ๐๐ ๐ก๐ ๐๐๐)๐พโ2(๐๐ ๐ก๐ ๐๐๐ +1)๐พโ3ร
ร ( (๐พ โ1)๐๐ ๐ก๐ ๐๐๐+1) โ ๐๐ค๐
1 2
๐ ๐ก๐ ๐๐๐
๐๐ค ๐ ๐ ๐
(1+ (๐พโ1)๐๐ ๐ก๐ ๐๐๐)
=โ (๐พโ1) (1+ (๐พโ1)๐๐ ๐ก๐ ๐๐๐)๐
1 2
๐ ๐ก๐ ๐๐๐
๐๐ค ๐๐ค ๐ ๐ ๐
โ (1โ๐2
๐ ๐ก๐ ๐๐๐)๐พโ3ร
ร (1โ ๐๐ ๐ก๐ ๐๐๐)
!
=โ (๐พโ1) (1+ (๐พโ1)๐๐ ๐ก๐ ๐๐๐)๐
1 2
๐ ๐ก๐ ๐๐๐
๐๐ค ๐๐ค ๐ ๐ ๐
โ
โ
1โ ๐ต2
(๐พโ1)2 ๐พโ3
1โ ๐ต ๐พโ1
!
โค โ (๐พโ1) (1+ (๐พโ1)๐๐ ๐ก๐ ๐๐๐)๐
1 2
๐ ๐ก๐ ๐๐๐
๐๐ค ๐๐ค ๐ ๐ ๐
โ๐
โ๐ต2(๐พโ3)
(๐พโ1)2 ร
ร
1โ ๐ต ๐พโ1
<0, as ๐๐ค ๐ ๐ ๐๐๐ค > ๐
โ๐ต2(๐พโ3)
(๐พโ1)2
1โ ๐ต
๐พโ1
. The fact that๐น(p
๐๐ ๐ก๐ ๐๐๐) < 0,๐น(๐) > 0 for some small๐ > 0 and it is a continuous function implies thatโ๐โ โ (0,p
๐๐ ๐ก๐ ๐๐๐)such that ๐น(๐โ) =0. Now we just need to make sure that such non trivial equilibrium ๐โis unique.
Because our function is positive and increasing near the 0 and is negative near p
๐๐ ๐ก๐ ๐๐๐then, at some point, ๐โ , its derivative has to become negative,๐น0(๐โ ) < 0, before๐น(๐)becomes negative.
๐น0(๐) =(๐พโ1) (1โ๐4)๐พโ4(1โ ๐2) 1+ (3๐พโ5)๐2โ (6๐พโ11)๐4โ (๐พโ1)ร
ร (4๐พโ7)๐6โ
3(๐พโ1)๐2
2โ ๐๐ค
๐๐ค ๐ ๐ ๐
๐๐ค ๐๐ค ๐ ๐ ๐
(1โ ๐4)๐พโ4(1โ ๐2)
! + + (๐พโ1) ๐๐ค
๐๐ค ๐ ๐ ๐
๐๐ ๐ก๐ ๐๐๐(๐พโ1)
1โ ๐๐ค ๐๐ค ๐ ๐ ๐
โ1
We would like ๐น0(๐) to stay negative after the first time it becomes less than 0.
Then it can not cross 0 more than once. Assume that the constant term above is
positive3. It is a part of the derivative of the second summand of ๐น(๐), ๐
2(๐). Notice, that๐
2(๐)has to be negative at the non trivial equilibrium, because๐
1(๐)is always positive and their sum is 0. Also,๐
2(๐)is concave,๐
2(0) =0 and๐0
2(0) โฅ 0, therefore, before ๐
2 becomes negative, its derivative has to become less than 0.
Denote by๐
1a point at which๐0
2(๐
1) =0. Then we can rewrite ๐น0(๐)as ๐น0(๐) =(๐พโ1) (1โ ๐4)๐พโ4(1โ ๐2)๐ด(๐),
where
๐ด(๐) =๐ ๐2โ2๐2โ๐ ๐4โ๐ ๐6โ
๐ ๐(๐2โ ๐2 1) 1โ๐2
1โ ๐4๐พโ4 +1,
and๐ =3(๐พโ1),๐ =(6๐พโ11),๐ =(๐พโ1) (4๐พโ7),๐ =(2โ๐๐ค/๐๐ค ๐ ๐ ๐)๐๐ค/๐๐ค ๐ ๐ ๐. It will be sufficient to show that once ๐ด becomes negative it stays negative as (1โ๐4)๐พโ4(1โ๐2)is always positive for๐ โ [0,p
๐๐ ๐ก๐ ๐๐๐]. Notice that ๐ด(0) > 0, so before it gets negative its derivative has to become negative.
๐ด0(๐) =2๐
โ๐ ๐
๐2+1 3โ๐พ
1โ๐2 2โ๐พ
2(๐พ โ4)๐4+ ๐2
(โ2๐พ+7)๐
12+1
โ
โ ๐
12+1
+๐โ2๐ ๐2โ3๐ ๐4โ2
Now, call the term in parentheses๐ต(๐), then๐ต0is negative for๐ > 0.
๐ต0(๐) =โ4๐
1โ ๐4 โ๐พ
1โ๐4 ๐พ
๐+3๐ ๐2
+๐ ๐
๐2โ1 ๐2+1 2
ร
ร
โ (๐พ โ4) (2๐พโ7)๐6+ (2๐พโ7)๐4
(๐พ โ3)๐
12โ1
+ + ๐2
2(๐พโ3)๐
12โ3๐พ+10
+ (๐พโ3)๐
12โ1 !
=โ4๐
1โ ๐4 โ๐พ
1โ๐4 ๐พ
๐+3๐ ๐2
+๐ ๐
๐2โ1 ๐2+1 2
ร
ร
โ1โ (2๐พโ7)๐4
(๐พโ4)๐2+1โ (๐พโ3)๐
12
โ
โ ๐2
โ2(๐พ โ3)๐
12+2๐พ+7
โ (๐พโ3) (๐2โ ๐
12) !
<0.
3If it is negative then instead of having๐2โ๐2
1below we are going to have๐2+๐2
1 which will only help with the analogous proof.
Thus, ๐ต0(๐)is negative. This implies the following. When ๐ด0becomes negative it stays negative. As ๐ด(0) > 0, before ๐ด becomes negative its derivative, ๐ด0, has to become negative. Therefore, once ๐ดstarts decreasing it continues decreasing from that point on. So when ๐ด becomes negative it stays negative and this is what we wanted. Hence, ๐น(๐) crosses 0 only once on (0,p
๐๐ ๐ก๐ ๐๐๐). Let us call this point ๐โ. This is a unique non trivial equilibrium of๐โ.
Now, assume that๐๐ค โฅ ๐๐ค ๐ ๐ ๐ then๐๐ค/๐๐ค ๐ ๐ ๐ โฅ 1> (1โ๐2
๐ ๐ก๐ ๐๐๐)๐พโ3(1โ๐๐ ๐ก๐ ๐๐๐). Furthermore, it means that ๐น(0) = 0 and ๐น0 is negative on (0,p
๐๐ ๐ก๐ ๐๐๐). Thus, there is only one equilibrium of๐โ: โ๐ ๐๐ =0 and๐๐ =๐๐ค ๐ ๐ ๐. When๐๐ค > ๐๐ค ๐ ๐ ๐ weak links are more beneficial at both distance 1 and 2 and so no one wants to invest in friends.
On the other hand, if๐๐ค/๐๐ค ๐ ๐ ๐ < (1โ ๐2
๐ ๐ก๐ ๐๐๐)๐พโ3(1โ๐๐ ๐ก๐ ๐๐๐)then๐๐ค < ๐๐ค ๐ ๐ ๐. It means that ๐น(p
๐๐ ๐ก๐ ๐๐๐) > 0. Hence, ๐น(๐) =0 does not have a solution and is positive on (0,p
๐๐ ๐ก๐ ๐๐๐]. So without the two conditions of the theorem we have only trivial symmetric equilibria.
To finish the proof we will show that we found the maximum and not the minimum.
๐2๐โ
๐ ๐2
๐
๐๐=๐
=โ (๐พโ2) (๐พโ1)๐4
1โ ๐2 ๐พโ3
๐2+1 ๐พโ4
(๐พโ1)๐2+2
<0.
Thus, the extremum we found is indeed the maximum. This concludes the proof.
Proof of Proposition 24. To prove this proposition, let us calculate derivatives of ๐น(๐) with respect to ๐๐ค ๐ ๐ ๐, ๐๐ค and ๐พ. We know from Theorem 23 the derivative of ๐น at ๐โ is negative. Hence, if we know the derivatives of ๐น and their signs with respect to those parameters we will be able to calculate the corresponding comparative statics. Notice, that only the second summand of๐น depends on these 3 parameters, which simplifies calculations.
1) ๐ ๐น(๐โ)
๐ ๐๐ค ๐ ๐ ๐
=๐ โ ๐๐ค(๐พโ1) ๐๐ค ๐ ๐ ๐
๐โ
1โ (๐พ โ1) (๐๐ ๐ก๐ ๐๐๐โ2๐โ
2) + + ๐๐ค
๐๐ค ๐ ๐ ๐
(๐พ โ1) (๐๐ ๐ก๐ ๐๐๐โ ๐โ
2)
!
/๐ ๐๐ค ๐ ๐ ๐
=
๐๐ค๐โ๐๐ค ๐ ๐ ๐
1โ (๐พโ1) (๐๐ ๐ก๐ ๐๐๐ โ2๐โ2) ๐3
๐ค ๐ ๐ ๐
+
+๐๐ค๐โ
2๐๐ค(๐พ โ1)
๐๐ ๐ก๐ ๐๐๐โ ๐โ2 ๐3
๐ค ๐ ๐ ๐
ยท
Remember, that the second summand of๐นis negative at the equilibrium,๐
2(๐โ) < 0 from Theorem 23, therefore
๐ ๐น(๐โ)
๐ ๐๐ค ๐ ๐ ๐
=
โ๐
2(๐โ) + ๐2๐ค๐
โ(๐พโ1) (๐๐ ๐ก ๐ ๐๐๐โ๐โ2) ๐2
๐ค ๐ ๐ ๐
๐๐ค ๐ ๐ ๐
>0.
Therefore, as we increase๐๐ค ๐ ๐ ๐, ๐โalso increases.
2) ๐ ๐น(๐โ)
๐ ๐ป
=โ ๐โ
1โ (๐พโ1) (๐๐ ๐ก๐ ๐๐๐ โ2๐โ2) +2๐๐ค ๐ ๐ ๐๐๐ค
(๐พโ1)
๐๐ ๐ก๐ ๐๐๐โ ๐โ2 ๐๐ค ๐ ๐ ๐
<0.
We get the last inequality in the same way we argued in 1) that๐
2(๐โ)/๐๐ค minus something negative is negative at ๐โ.
3) ๐ ๐น0(๐)
๐ ๐พ
=๐
1โ ๐2 1โ ๐4 ๐พโ3
(๐พโ1)๐2+1
log
1โ ๐4
+๐2
โ
โ ๐2
2โ ๐๐ค ๐๐ค ๐ ๐ ๐
๐๐ค ๐๐ค ๐ ๐ ๐
!
Notice, that log(1โ๐4) < 0. Furthermore, at the approximate equilibrium ๐โ we have
๐น(๐โ) =0
0=(๐พ โ1)๐โ
1โ ๐โ
2๐พโ2 ๐โ
2 +1 ๐พโ3
(๐พโ1)๐โ
2 +1
โ
โ ๐๐ค(๐พโ1) ๐๐ค ๐ ๐ ๐
๐โ
1โ (๐พโ1) (๐๐ ๐ก๐ ๐๐๐ โ2๐โ
2) + ๐๐ค ๐๐ค ๐ ๐ ๐
(๐พโ1) (๐๐ ๐ก๐ ๐๐๐ โ ๐โ
2)
. Hence,
1โ ๐โ
2
1โ ๐โ
4๐พโ3
= ๐๐ค
1โ (๐พ โ1) (๐๐ ๐ก๐ ๐๐๐โ2๐โ2) ๐๐ค ๐ ๐ ๐ (๐พโ1)๐โ2+1 + +
๐2 ๐ค
๐๐ค ๐ ๐ ๐
(๐พโ1) (๐โ ๐โ2) ๐๐ค ๐ ๐ ๐ (๐พโ1)๐โ2+1
Let us substitute this into๐ ๐น0(๐)/๐ ๐พ, but skip the term with the logarithm and the ๐term outside the parentheses.
๐๐ค
1โ (๐พโ1) (๐๐ ๐ก๐ ๐๐๐โ2๐โ2) + ๐๐ค
๐๐ค ๐ ๐ ๐(๐พ โ1) (๐๐ ๐ก๐ ๐๐๐โ ๐โ2)
๐๐ค ๐ ๐ ๐ (๐พ โ1)๐โ2 +1 ๐โ
2โ
โ ๐โ
2
2โ ๐๐ค ๐๐ค ๐ ๐ ๐
๐๐ค ๐๐ค ๐ ๐ ๐
= ๐๐ค๐โ2
๐๐ค ๐ ๐ ๐( (๐พ โ1)๐โ2 +1) 1โ (๐พโ1)๐๐ ๐ก๐ ๐๐๐
1โ ๐๐ค ๐๐ค ๐ ๐ ๐
+ ๐โ
2(๐พโ1)
2โ ๐๐ค ๐๐ค ๐ ๐ ๐
โ
โ
2โ ๐๐ค ๐๐ค ๐ ๐ ๐
( (๐พโ1)๐โ2+1)
!
= ๐๐ค๐2
๐๐ค ๐ ๐ ๐( (๐พ โ1)๐2+1) โ1+ ๐๐ค ๐๐ค ๐ ๐ ๐
โ (๐พโ1)๐๐ ๐ก๐ ๐๐๐
1โ ๐๐ค ๐๐ค ๐ ๐ ๐
!
< 0.
Thus, the whole๐ ๐น0(๐)/๐ ๐พ is also negative at๐ = ๐โ. So the probability of having a strong friend is decreasing as we increase๐พ. This concludes our proof.
Proof of Lemma 25. First we are going to show that ๐โ2 > ๐โ2 in equilibrium.
Remember that from the proof of Theorem 23 ๐โ
2
> ๐
๐๐ค ๐ ๐ ๐ โ๐๐ค 2๐๐ค ๐ ๐ ๐ โ๐๐ค
โ ๐๐ค ๐ ๐ ๐
(๐พ โ1) (2๐๐ค ๐ ๐ ๐ โ๐๐ค) = (๐ตโ1)๐๐ค ๐ ๐ ๐ โ๐ต๐๐ค (๐พ โ1) (2๐๐ค ๐ ๐ ๐ โ๐๐ค)
as the๐
2(๐) term has to be negative. Hence, ๐โ
2 = ๐ฟ(๐โ ๐โ
2) <
(๐พโ1) ๐พ ๐ ๐๐ค ๐ ๐ ๐
๐ต(2๐๐ค ๐ ๐ ๐ โ๐๐ค) โ (๐ตโ1)๐๐ค ๐ ๐ ๐ +๐ต๐๐ค (๐พ โ1) (2๐๐ค ๐ ๐ ๐ โ๐๐ค) โ
= (๐ต+1) ๐พ ๐(2๐๐ค ๐ ๐ ๐ โ๐๐ค)ยท Let us look at their difference
๐โ
2 โ๐โ
2
>
(๐ตโ1)๐๐ค ๐ ๐ ๐ โ๐ต๐๐ค
(๐พโ1) (2๐๐ค ๐ ๐ ๐ โ๐๐ค) โ (๐ต+1) ๐พ ๐(2๐๐ค ๐ ๐ ๐ โ๐๐ค)
= (๐ตโ1)๐๐ค ๐ ๐ ๐๐พ ๐โ๐ต๐๐ค๐พ ๐โ (๐ต+1) (๐พโ1) (๐พโ1)๐พ ๐(2๐๐ค ๐ ๐ ๐ โ๐๐ค) ยท For this difference to be greater than 0 we need to have
๐๐ค ๐ ๐ ๐ >
๐ต
(๐ตโ1)๐๐ค+ (๐ต+1) (๐พโ1) (๐ตโ1)๐พ ๐
ยท
Now let us remember a well-known fact about Erdลs - Rรฉnyi random graphs: the golbal clustering coefficient for friendsโ network is equal to ๐โ2+๐ (๐พ ๐)โ0.5
and the global๐ถ ๐ถ for acquanintancesโ network is ๐โ2 +๐ (๐พ ๐)โ0.5
. Using this fact and the inequality that we got above we can conclude that when ๐๐ค ๐ ๐ ๐ is not too close to ๐๐ค or when ๐ is big enough (so ๐โ > 0 and๐โ < ๐โ for big enough ๐) the๐ถ ๐ถ of the friendsโ network is bigger than the๐ถ ๐ถ of the acquaintancesโ. This concludes the proof.