One of the most successful applications of continuous piecewise-linear functions has been in nonlinear circuit theory, in particular, in the ๏ฌeld of nonlinear resistive networks. In 1965, Katzenelson [45]
presented an e๏ฌective approach for the search of the operating point of a piecewise-linear resistive network. Since then, the same idea has been extended, improved and generalized [11,13,18]. Among these extensions and generalizations are the resolution of general nonlinear equations of the form ๐(๐ฅ) = 0 where ๐ : โ๐ โ โ๐ is a continuous mapping [12], and the introduction of a canonical piecewise-linear function [43, 66] which allows for the compact and closed representation of any function using the minimal number of parameters by taking advantage of a simplicial partition of the domain [39].
Our aim in this section is to describe a unique, systematic and e๏ฌcient representation of the continuous piecewise-linear approximation of a function๐ :โ๐ โโ, in general, and the potential energy๐ :โ๐ โโ, in particular. With this goal in mind, we ๏ฌrst consider a region ๐ฎ โโ๐ and its regular tessellation in hyperrectangles or orthotopes with characteristic length โ๐ โโ+ in the ๐-th direction, with๐= 1,2, . . . , ๐. We then subdivide each hyperrectangle into proper simplices by introducing a unique, regular triangulation๐ฏโin accordance with Chien and Kuh [11], see Figure 3.2.
For later reference, we de๏ฌne the homeomorphism ฮ :๐ฎ โ ๐ฎ๐ถ, represented by a diagonal matrix๐, i.e.,๐ง=๐ ๐, which maps hyperrectangles in๐ฎ into hypercubes [0,1]๐ in a new region๐ฎ๐ถโโ๐. For
later reference, we name๐ฑ and๐ฑ๐ถ the sets of vertices contained in regions๐ฎ and๐ฎ๐ถ, respectively.
Figure 3.2: Simplicial partition of hypercubes [0,1]2 and [0,1]3.
Before we discuss further details of the continuous piecewise-linear representation of the approx- imate potential energy, we may ๏ฌrst recall some properties of a simplex and its boundaries.
De๏ฌnition 3.3.1 Let๐0, ๐1, . . . , ๐๐be(๐+1)points in general position in the๐-dimensional space. A simplexฮ(๐0, ๐1, . . . , ๐๐)is de๏ฌned as the convex hull of๐0, ๐1, . . . , ๐๐โthe vertices of the simplexโ
ฮ(๐0, ๐1, . . . , ๐๐) = {
๐:๐=
๐
โ
๐=0
๐๐๐๐,1โฅ๐๐ โฅ0, ๐= 0,1,2, . . . , ๐ and
๐
โ
๐=0
๐๐= 1 }
In addition, corresponding to the (๐+ 1)vertices, there are (๐+ 1) boundaries. The boundary ๐ต๐ which corresponds to the vertex ๐๐ is de๏ฌned as
๐ต๐ ={
๐:๐โฮ(๐0, ๐1, . . . , ๐๐)with ๐๐ = 0}
Since ๐ต๐ contains all the vertices except ๐๐ , there is a one-to-one correspondence between vertices and boundaries.
We now present the key steps for achieving a unique and systematic representation of force- stepping trajectories. To this end, we ๏ฌrst subdivide each hypercube which belongs to ๐ฎ๐ถ into
non-overlapping simplices by properly arranging vertices of ๐ฑ๐ถ in a ๏ฌxed order [11]. This ordering relation allows for a unique representation of every point ๐ง โ ๐ฎ๐ถ and ๐ โ ๐ฎ (see Lemma 3.3.1).
Therefore, there is a unique representation of the a๏ฌne function๐โ(๐) :โ๐โโwith๐โ(๐๐) =๐(๐๐) for all vertices๐๐ โ ๐ฑ (see Lemma 3.3.2) upon which force-stepping trajectories are systematically built.
Lemma 3.3.1 Every๐งโ ๐ฎ๐ถ has a unique representation๐ง=โ๐
๐=0๐๐๐ง๐ where๐๐>0,๐ง๐ โ ๐ฑ๐ถ, for ๐= 0,1, . . . , ๐(โค๐),โ๐
๐=0๐๐ = 1, and the following ordering relation is attained ๐ง0 โฉฝ๐ง1 โฉฝ. . .โฉฝ ๐ง๐โฆ๐ง0+1. Likewise, every๐โ ๐ฎhas a unique representation๐=โ๐
๐=0๐๐๐๐where๐๐ =๐โ1๐ง๐โ ๐ฑ, and the following ordering relation is attained ๐ ๐0โฉฝ๐ ๐1โฉฝ. . .โฉฝ๐ ๐๐โฆ๐ ๐0+ 1.
Proof. The proof in ๐ฎ๐ถ is given by Kuhn [47]. The proof in ๐ฎ follows from the fact that the homeomorphism ฮ(โ ) is de๏ฌned by a positive-de๏ฌnite diagonal matrix๐ and therefore preserves the ordering of vertices.
Corollary 3.3.1 If ๐=๐,๐ง is an interior point of the simplexฮ(๐ง0, ๐ง1, . . . , ๐ง๐). Otherwise,๐ง lies on the boundary of a simplex. In addition, every ๐-dimensional simplex de๏ฌned by(๐+ 1) vertices contains๐ง0 and๐ง0+ 1which de๏ฌne the hypercube ๐ถ(๐ง0)containing the simplex.
Lemma 3.3.2 A nonlinear function๐(๐) :โ๐ โโ is approximated by an a๏ฌne function๐โ(๐) : โ๐โโas follows
๐โ(๐) =โ๐ฮโ ๐+๐0
for ๐ โ ฮ(๐0, ๐1, . . . , ๐๐), โ๐ฮ = ยฏ๐ฝโ,[1...๐]๐ โ โ๐โthe ๏ฌrst ๐ elements of the vectorโand ๐0 = ๐ฝยฏโ,[๐+1] โ โ. The Jacobian matrix of the piecewise-linear transformation is unique for a given simplex ฮand has the form
๐ฝยฏโ(๐0, ๐1, . . . , ๐๐) = (
๐(๐0) โ โ โ ๐(๐๐) )
โ
โ
โ
โ
๐ ๐0 โ โ โ ๐ ๐๐ 1 โ โ โ 1
โ
โ
โ
โ
โ1
=:๐ฮ๐ฮโ1
with๐ฮโโ๐+1 and๐ฮโ1โโ(๐+1)ร(๐+1).
Proof. It follows from Lemma 3.3.1 that there is a unique representation of points๐โฮ(๐0, ๐1, . . . , ๐๐) and๐ง=๐ ๐ given by
โ
โ
โ
โ ๐ง 1
โ
โ
โ
โ
=
โ
โ
โ
โ ๐ ๐
1
โ
โ
โ
โ
=
โ
โ
โ
โ
๐ ๐0 โ โ โ ๐ ๐๐ 1 โ โ โ 1
โ
โ
โ
โ
๐=๐ฮ๐ (3.22)
We now de๏ฌne the a๏ฌne function๐โ(๐), with๐โ(๐๐) =๐(๐๐) for๐= 0,1, . . . , ๐, as
๐โ(๐) = (
๐(๐0) โ โ โ ๐(๐๐) )
โ ๐=๐ฮ๐ฮโ1โ
โ
โ
โ
โ ๐ง 1
โ
โ
โ
โ
= ยฏ๐ฝโโ
โ
โ
โ
โ ๐ ๐
1
โ
โ
โ
โ
(3.23)
Then, the claim follows from writing the a๏ฌne function as ๐โ(๐) =โ๐ฮโ ๐+๐0. We note that both matrices๐ฮ and๐ฮโ1 belong toโ(๐+1)ร(๐+1)due to the fact that hypercubes in๐ฎ๐ถ have unit volume, i.e., det(๐ฮ) = 1.
We then show that force-stepping trajectories {๐ก๐, ๐๐,๐ห๐}, as described in De๏ฌnition 3.2.1, can be systematically tracked in phase space. In particular, we show that successive times of boundary crossings๐ก0< ๐ก1< ๐ก2< . . .and the corresponding sequence of positions๐0, ๐1, ๐2, . . .can be obtained from the simplicial partition presented above. The procedure applied for solving this problem, namelythe time-step problem(see Proposition 3.3.1), is indeed the methodTime-Steprequired by the implementation of the force-stepping integrator presented in Algorithm 3,
{๐ก๐+1, ๐ต๐ } โTime-Step(
๐๐,๐ห๐,โ๐๐, ๐ก๐;๐ฮโ1
๐
)
Proposition 3.3.1 (The time-step problem) A general trajectory of the form๐(๐ก) =๐๐+ (๐กโ ๐ก๐) ห๐๐โ12(๐กโ๐ก๐)2๐โ1โ๐๐, with๐(๐ก+๐)โฮ(๐0, ๐1, . . . , ๐๐)and๐ก > ๐ก๐, intersects the boundary๐ต๐ of the simplexฮ(๐0, ๐1, . . . , ๐๐) at๐(๐ก๐+1) =๐๐+1 with
๐ก๐+1= min
๐โ[0,๐]inf{
๐ก > ๐ก๐ :๐1,๐+ (๐กโ๐ก๐)๐2,๐+ (๐กโ๐ก๐)2๐3,๐ = 0} ๐ = arg min
๐โ[0,๐]
{๐1,๐+ (๐ก๐+1โ๐ก๐)๐2,๐+ (๐ก๐+1โ๐ก๐)2๐3,๐ = 0}
where
(
๐1 ๐2 ๐3
)
=๐ฮโ1
โ
โ
โ
โ
๐ ๐๐ ๐๐ห๐ โ๐โ1๐โ๐๐/2
1 0 0
โ
โ
โ
โ
Proof. It follows from De๏ฌnition 3.3.1 and Lemma 3.3.1 that a trajectory of the form ๐(๐ก) =
โ๐
๐=0๐๐(๐ก)๐๐, with๐(๐ก+๐)โฮ(๐0, ๐1, . . . , ๐๐) and๐ก > ๐ก๐, intersects the boundary๐ต๐โ of the simplex ฮ(๐0, ๐1, . . . , ๐๐) at ๐(๐กโ) if and only if the ๐โ-th component of๐(๐กโ) is equal to zero with all other components positive. Then, the following equality holds
๐(๐ก) =๐ฮโ1
โ
โ
โ
โ ๐ ๐(๐ก)
1
โ
โ
โ
โ
=๐ฮโ1
โ
โ
โ
โ ๐ ๐๐
1
โ
โ
โ
โ
| {z }
๐1โโ๐+1
+(๐กโ๐ก๐)๐ฮโ1
โ
โ
โ
โ ๐๐ห๐
0
โ
โ
โ
โ
| {z }
๐2โโ๐+1
+(๐กโ๐ก๐)2๐ฮโ1
โ
โ
โ
โ
โ๐โ1๐โ๐๐/2 0
โ
โ
โ
โ
| {z }
๐3โโ๐+1
and the claim follows from the fact that๐ก๐+1 is the earliest๐กโ> ๐ก๐ for which๐๐โ=๐ (๐กโ) = 0 among all possible pairs (๐กโ, ๐โ).
It is worth noting that the representation of the approximate potential energy๐โcan be restricted solely to the current simplex ฮ๐ and the relevant simplex-related matrices areโจ๐ฮ๐, ๐ฮ๐, ๐ฮโ1
๐โฉ, with
๐ฮ๐ = (
๐(๐0) โ โ โ ๐(๐๐ ) โ โ โ ๐(๐๐) )
(3.24a)
๐ฮ๐ =
โ
โ
โ
โ
๐ง0 โ โ โ ๐ง๐ โ โ โ ๐ง๐ 1 โ โ โ 1 โ โ โ 1
โ
โ
โ
โ
(3.24b)
We then claim thatthe replacement rule (see Chien and Kuh [11] and Lemma 3.3.3) provides for a very e๏ฌcient scheme to construct the adjacent simplex ฮ๐+1 knowing only the boundary๐ต๐ of the current simplex ฮ๐ intersected by the trajectory. Moreover, we describe an e๏ฌcient procedure for updating all simplex-related matrices required to compute the force-stepping trajectory in ฮ๐+1. In particular, given all ฮ๐-related matrices and the intersected boundary๐ต๐ , matrices are updated as
follows
๐ฮ๐+1= (
๐(๐0) โ โ โ ๐(๐โฒ๐ ) โ โ โ ๐(๐๐) )
(3.25a)
๐ฮ๐+1=
โ
โ
โ
โ
๐ง0 โ โ โ ๐งโฒ๐ โ โ โ ๐ง๐ 1 โ โ โ 1 โ โ โ 1
โ
โ
โ
โ
(3.25b)
๐ฮโ1
๐+1=๐ฮโ1
๐โ (๐ฮโ1
๐๐ข๐ )
โ( ๐ฃ๐ ๐ฮโ1
๐
) 1 +๐ฃ๐ ๐ฮโ1
๐๐ข๐ (3.25c)
where ๐งโฒ๐ = ๐ง๐ +1+๐ง๐ โ1โ๐ง๐ , ๐โฒ๐ = ๐โ1๐งโฒ๐ , ๐ข๐ = ๐งโฒ๐ โ๐ง๐ , and ๐ฃ๐๐ = ๐ฟ๐,๐ . Matrices ๐ฮ๐+1 and ๐ฮ๐+1 are obtained by replacing๐ง๐ with๐งโฒ๐ and๐(๐๐ ) with๐(๐โฒ๐ ), respectively. The matrix๐ฮโ1
๐+1
is 1-rank updated by means of the Sherman-Morrison formula [28]โwith algorithm complexity ๐(๐2)โinstead of computing the inverse of ๐ฮ๐+1โwith algorithm complexity๐(๐3). The overall gain in e๏ฌciency is remarkable.
Lemma 3.3.3 (The replacement rule) Let๐ต๐ be the boundary shared by two adjacent simplices.
Given the simplex ฮ(๐0, ๐1, . . . , ๐๐ โ1, ๐๐ , ๐๐ +1, . . . , ๐๐), with ๐ ๐0โฉฝ๐ ๐1โฉฝ. . .โฉฝ๐ ๐๐, its neighbor is simply de๏ฌned by replacing๐๐ with ๐โฒ๐ . The new vertex is de๏ฌned as
๐โฒ๐ =๐๐ +1+๐๐ โ1โ๐๐
where๐๐+1โก๐0 and๐โ1โก๐๐.
Corollary 3.3.2 The replacement rule preserves the order in the set of vertices๐ฑ.
Proof. For๐ = 1, . . . , ๐โ1, the following relation holds๐ ๐๐ โ1โฉฝ๐ ๐โฒ๐ โฉฝ๐ ๐๐ +1. For๐ = 0 (๐ =๐) a simple backward (forward) shift of indices has to be introduced in the updated set of vertices. After the shift is performed, the new set of vertices veri๏ฌes the ordering relation.
We conclude this section with the second method required by the implementation of the force- stepping integrator presented in Algorithm 3,
{โ๐๐+1,โจ๐ฮ๐+1, ๐ฮ๐+1, ๐ฮโ1
๐+1โฉ}
โUpdate(
โ๐๐,โจ๐ฮ๐, ๐ฮ๐, ๐ฮโ1
๐โฉ;๐ต๐
)
The method is de๏ฌned in Algorithm 4 and is responsible for applyingthe replacement ruleas well as updatingโ๐๐ and all simplex-related matricesโจ๐ฮ๐, ๐ฮ๐, ๐ฮโ1
๐โฉ. We remark that, for all practical purposes, there is no need to shift indices after vertices๐0 or ๐๐ are updated by the algorithm, as suggested by Corollary 3.3.2.
Algorithm 4Update(
โ๐๐,โจ๐ฮ๐, ๐ฮ๐, ๐ฮโ1
๐โฉ;๐ต๐ )
Require: ๐งโฒ๐ =๐ง๐ +1+๐ง๐ โ1โ๐ง๐ ,๐ข๐ =๐งโฒ๐ โ๐ง๐ ,๐ฃ๐ ๐ =๐ฟ๐,๐ and๐โฒ๐ =๐โ1๐งโฒ๐
1: ๐ฮโ1
๐+1 โ๐ฮโ1
๐โ(๐
โ1
ฮ๐๐ข๐ )โ(๐ฃ๐ ๐ฮโ1
๐) 1+๐ฃ๐ ๐โ1ฮ
๐๐ข๐ 2: ๐ฮ๐+1 โ
( ๐ง0 โ โ โ ๐งโฒ๐ โ โ โ ๐ง๐ 1 โ โ โ 1 โ โ โ 1
)
3: ๐ฮ๐+1โ(
๐(๐0) โ โ โ ๐(๐โฒ๐ ) โ โ โ ๐(๐๐) )
4: ๐ฝยฏโโ๐ฮ๐+1๐ฮโ1
๐+1
5: โ๐๐+1โ๐ฝยฏโ,[1...๐]๐
6: return โ๐๐+1,โจ๐ฮ๐+1, ๐ฮ๐+1, ๐ฮโ1
๐+1โฉ