• Tidak ada hasil yang ditemukan

Continuous piecewise linear representation of the approximate potential ๐‘‰ โ„Ž

One of the most successful applications of continuous piecewise-linear functions has been in nonlinear circuit theory, in particular, in the ๏ฌeld of nonlinear resistive networks. In 1965, Katzenelson [45]

presented an e๏ฌ€ective approach for the search of the operating point of a piecewise-linear resistive network. Since then, the same idea has been extended, improved and generalized [11,13,18]. Among these extensions and generalizations are the resolution of general nonlinear equations of the form ๐‘“(๐‘ฅ) = 0 where ๐‘“ : โ„๐‘‘ โ†’ โ„๐‘š is a continuous mapping [12], and the introduction of a canonical piecewise-linear function [43, 66] which allows for the compact and closed representation of any function using the minimal number of parameters by taking advantage of a simplicial partition of the domain [39].

Our aim in this section is to describe a unique, systematic and e๏ฌƒcient representation of the continuous piecewise-linear approximation of a function๐‘“ :โ„๐‘‘ โ†’โ„, in general, and the potential energy๐‘‰ :โ„๐‘‘ โ†’โ„, in particular. With this goal in mind, we ๏ฌrst consider a region ๐’ฎ โˆˆโ„๐‘‘ and its regular tessellation in hyperrectangles or orthotopes with characteristic length โ„Ž๐‘— โˆˆโ„+ in the ๐‘—-th direction, with๐‘—= 1,2, . . . , ๐‘‘. We then subdivide each hyperrectangle into proper simplices by introducing a unique, regular triangulation๐’ฏโ„Žin accordance with Chien and Kuh [11], see Figure 3.2.

For later reference, we de๏ฌne the homeomorphism ฮ› :๐’ฎ โ†’ ๐’ฎ๐ถ, represented by a diagonal matrix๐‘‡, i.e.,๐‘ง=๐‘‡ ๐‘ž, which maps hyperrectangles in๐’ฎ into hypercubes [0,1]๐‘‘ in a new region๐’ฎ๐ถโˆˆโ„๐‘‘. For

later reference, we name๐’ฑ and๐’ฑ๐ถ the sets of vertices contained in regions๐’ฎ and๐’ฎ๐ถ, respectively.

Figure 3.2: Simplicial partition of hypercubes [0,1]2 and [0,1]3.

Before we discuss further details of the continuous piecewise-linear representation of the approx- imate potential energy, we may ๏ฌrst recall some properties of a simplex and its boundaries.

De๏ฌnition 3.3.1 Let๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘be(๐‘‘+1)points in general position in the๐‘‘-dimensional space. A simplexฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘)is de๏ฌned as the convex hull of๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘โ€”the vertices of the simplexโ€”

ฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘) = {

๐‘ž:๐‘ž=

๐‘‘

โˆ‘

๐‘–=0

๐œ‡๐‘–๐‘ž๐‘–,1โ‰ฅ๐œ‡๐‘– โ‰ฅ0, ๐‘–= 0,1,2, . . . , ๐‘‘ and

๐‘‘

โˆ‘

๐‘–=0

๐œ‡๐‘–= 1 }

In addition, corresponding to the (๐‘‘+ 1)vertices, there are (๐‘‘+ 1) boundaries. The boundary ๐ต๐‘  which corresponds to the vertex ๐‘ž๐‘ is de๏ฌned as

๐ต๐‘ ={

๐‘ž:๐‘žโˆˆฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘)with ๐œ‡๐‘ = 0}

Since ๐ต๐‘  contains all the vertices except ๐‘ž๐‘ , there is a one-to-one correspondence between vertices and boundaries.

We now present the key steps for achieving a unique and systematic representation of force- stepping trajectories. To this end, we ๏ฌrst subdivide each hypercube which belongs to ๐’ฎ๐ถ into

non-overlapping simplices by properly arranging vertices of ๐’ฑ๐ถ in a ๏ฌxed order [11]. This ordering relation allows for a unique representation of every point ๐‘ง โˆˆ ๐’ฎ๐ถ and ๐‘ž โˆˆ ๐’ฎ (see Lemma 3.3.1).

Therefore, there is a unique representation of the a๏ฌƒne function๐‘‰โ„Ž(๐‘ž) :โ„๐‘‘โ†’โ„with๐‘‰โ„Ž(๐‘ž๐‘–) =๐‘‰(๐‘ž๐‘–) for all vertices๐‘ž๐‘– โˆˆ ๐’ฑ (see Lemma 3.3.2) upon which force-stepping trajectories are systematically built.

Lemma 3.3.1 Every๐‘งโˆˆ ๐’ฎ๐ถ has a unique representation๐‘ง=โˆ‘๐‘š

๐‘–=0๐œ‡๐‘–๐‘ง๐‘– where๐œ‡๐‘–>0,๐‘ง๐‘– โˆˆ ๐’ฑ๐ถ, for ๐‘–= 0,1, . . . , ๐‘š(โ‰ค๐‘‘),โˆ‘๐‘š

๐‘–=0๐œ‡๐‘– = 1, and the following ordering relation is attained ๐‘ง0 โฉฝ๐‘ง1 โฉฝ. . .โฉฝ ๐‘ง๐‘šโ‰ฆ๐‘ง0+1. Likewise, every๐‘žโˆˆ ๐’ฎhas a unique representation๐‘ž=โˆ‘๐‘š

๐‘–=0๐œ‡๐‘–๐‘ž๐‘–where๐‘ž๐‘– =๐‘‡โˆ’1๐‘ง๐‘–โˆˆ ๐’ฑ, and the following ordering relation is attained ๐‘‡ ๐‘ž0โฉฝ๐‘‡ ๐‘ž1โฉฝ. . .โฉฝ๐‘‡ ๐‘ž๐‘šโ‰ฆ๐‘‡ ๐‘ž0+ 1.

Proof. The proof in ๐’ฎ๐ถ is given by Kuhn [47]. The proof in ๐’ฎ follows from the fact that the homeomorphism ฮ›(โ‹…) is de๏ฌned by a positive-de๏ฌnite diagonal matrix๐‘‡ and therefore preserves the ordering of vertices.

Corollary 3.3.1 If ๐‘š=๐‘‘,๐‘ง is an interior point of the simplexฮ”(๐‘ง0, ๐‘ง1, . . . , ๐‘ง๐‘‘). Otherwise,๐‘ง lies on the boundary of a simplex. In addition, every ๐‘‘-dimensional simplex de๏ฌned by(๐‘‘+ 1) vertices contains๐‘ง0 and๐‘ง0+ 1which de๏ฌne the hypercube ๐ถ(๐‘ง0)containing the simplex.

Lemma 3.3.2 A nonlinear function๐‘‰(๐‘ž) :โ„๐‘‘ โ†’โ„ is approximated by an a๏ฌƒne function๐‘‰โ„Ž(๐‘ž) : โ„๐‘‘โ†’โ„as follows

๐‘‰โ„Ž(๐‘ž) =โˆ‡๐‘‰ฮ”โ‹…๐‘ž+๐‘‰0

for ๐‘ž โˆˆ ฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘), โˆ‡๐‘‰ฮ” = ยฏ๐ฝโ„Ž,[1...๐‘‘]๐‘‡ โˆˆ โ„๐‘‘โ€”the ๏ฌrst ๐‘‘ elements of the vectorโ€”and ๐‘‰0 = ๐ฝยฏโ„Ž,[๐‘‘+1] โˆˆ โ„. The Jacobian matrix of the piecewise-linear transformation is unique for a given simplex ฮ”and has the form

๐ฝยฏโ„Ž(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘) = (

๐‘‰(๐‘ž0) โ‹… โ‹… โ‹… ๐‘‰(๐‘ž๐‘‘) )

โŽ›

โŽœ

โŽœ

โŽ

๐‘‡ ๐‘ž0 โ‹… โ‹… โ‹… ๐‘‡ ๐‘ž๐‘‘ 1 โ‹… โ‹… โ‹… 1

โŽž

โŽŸ

โŽŸ

โŽ 

โˆ’1

=:๐‘‰ฮ”๐‘ฮ”โˆ’1

with๐‘‰ฮ”โˆˆโ„๐‘‘+1 and๐‘ฮ”โˆ’1โˆˆโ„•(๐‘‘+1)ร—(๐‘‘+1).

Proof. It follows from Lemma 3.3.1 that there is a unique representation of points๐‘žโˆˆฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘) and๐‘ง=๐‘‡ ๐‘ž given by

โŽ›

โŽœ

โŽœ

โŽ ๐‘ง 1

โŽž

โŽŸ

โŽŸ

โŽ 

=

โŽ›

โŽœ

โŽœ

โŽ ๐‘‡ ๐‘ž

1

โŽž

โŽŸ

โŽŸ

โŽ 

=

โŽ›

โŽœ

โŽœ

โŽ

๐‘‡ ๐‘ž0 โ‹… โ‹… โ‹… ๐‘‡ ๐‘ž๐‘‘ 1 โ‹… โ‹… โ‹… 1

โŽž

โŽŸ

โŽŸ

โŽ 

๐œ‡=๐‘ฮ”๐œ‡ (3.22)

We now de๏ฌne the a๏ฌƒne function๐‘‰โ„Ž(๐‘ž), with๐‘‰โ„Ž(๐‘ž๐‘–) =๐‘‰(๐‘ž๐‘–) for๐‘–= 0,1, . . . , ๐‘‘, as

๐‘‰โ„Ž(๐‘ž) = (

๐‘‰(๐‘ž0) โ‹… โ‹… โ‹… ๐‘‰(๐‘ž๐‘‘) )

โ‹…๐œ‡=๐‘‰ฮ”๐‘ฮ”โˆ’1โ‹…

โŽ›

โŽœ

โŽœ

โŽ ๐‘ง 1

โŽž

โŽŸ

โŽŸ

โŽ 

= ยฏ๐ฝโ„Žโ‹…

โŽ›

โŽœ

โŽœ

โŽ ๐‘‡ ๐‘ž

1

โŽž

โŽŸ

โŽŸ

โŽ 

(3.23)

Then, the claim follows from writing the a๏ฌƒne function as ๐‘‰โ„Ž(๐‘ž) =โˆ‡๐‘‰ฮ”โ‹…๐‘ž+๐‘‰0. We note that both matrices๐‘ฮ” and๐‘ฮ”โˆ’1 belong toโ„•(๐‘‘+1)ร—(๐‘‘+1)due to the fact that hypercubes in๐’ฎ๐ถ have unit volume, i.e., det(๐‘ฮ”) = 1.

We then show that force-stepping trajectories {๐‘ก๐‘˜, ๐‘ž๐‘˜,๐‘žห™๐‘˜}, as described in De๏ฌnition 3.2.1, can be systematically tracked in phase space. In particular, we show that successive times of boundary crossings๐‘ก0< ๐‘ก1< ๐‘ก2< . . .and the corresponding sequence of positions๐‘ž0, ๐‘ž1, ๐‘ž2, . . .can be obtained from the simplicial partition presented above. The procedure applied for solving this problem, namelythe time-step problem(see Proposition 3.3.1), is indeed the methodTime-Steprequired by the implementation of the force-stepping integrator presented in Algorithm 3,

{๐‘ก๐‘˜+1, ๐ต๐‘ } โ†Time-Step(

๐‘ž๐‘˜,๐‘žห™๐‘˜,โˆ‡๐‘‰๐‘˜, ๐‘ก๐‘˜;๐‘ฮ”โˆ’1

๐‘˜

)

Proposition 3.3.1 (The time-step problem) A general trajectory of the form๐‘ž(๐‘ก) =๐‘ž๐‘˜+ (๐‘กโˆ’ ๐‘ก๐‘˜) ห™๐‘ž๐‘˜โˆ’12(๐‘กโˆ’๐‘ก๐‘˜)2๐‘€โˆ’1โˆ‡๐‘‰๐‘˜, with๐‘ž(๐‘ก+๐‘˜)โˆˆฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘)and๐‘ก > ๐‘ก๐‘˜, intersects the boundary๐ต๐‘  of the simplexฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘) at๐‘ž(๐‘ก๐‘˜+1) =๐‘ž๐‘˜+1 with

๐‘ก๐‘˜+1= min

๐‘Ÿโˆˆ[0,๐‘‘]inf{

๐‘ก > ๐‘ก๐‘˜ :๐œ‡1,๐‘Ÿ+ (๐‘กโˆ’๐‘ก๐‘˜)๐œ‡2,๐‘Ÿ+ (๐‘กโˆ’๐‘ก๐‘˜)2๐œ‡3,๐‘Ÿ = 0} ๐‘ = arg min

๐‘Ÿโˆˆ[0,๐‘‘]

{๐œ‡1,๐‘Ÿ+ (๐‘ก๐‘˜+1โˆ’๐‘ก๐‘˜)๐œ‡2,๐‘Ÿ+ (๐‘ก๐‘˜+1โˆ’๐‘ก๐‘˜)2๐œ‡3,๐‘Ÿ = 0}

where

(

๐œ‡1 ๐œ‡2 ๐œ‡3

)

=๐‘ฮ”โˆ’1

โŽ›

โŽœ

โŽœ

โŽ

๐‘‡ ๐‘ž๐‘˜ ๐‘‡๐‘žห™๐‘˜ โˆ’๐‘€โˆ’1๐‘‡โˆ‡๐‘‰๐‘˜/2

1 0 0

โŽž

โŽŸ

โŽŸ

โŽ 

Proof. It follows from De๏ฌnition 3.3.1 and Lemma 3.3.1 that a trajectory of the form ๐‘ž(๐‘ก) =

โˆ‘๐‘‘

๐‘Ÿ=0๐œ‡๐‘Ÿ(๐‘ก)๐‘ž๐‘Ÿ, with๐‘ž(๐‘ก+๐‘˜)โˆˆฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘) and๐‘ก > ๐‘ก๐‘˜, intersects the boundary๐ต๐‘Ÿโˆ— of the simplex ฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘‘) at ๐‘ž(๐‘กโˆ—) if and only if the ๐‘Ÿโˆ—-th component of๐œ‡(๐‘กโˆ—) is equal to zero with all other components positive. Then, the following equality holds

๐œ‡(๐‘ก) =๐‘ฮ”โˆ’1

โŽ›

โŽœ

โŽœ

โŽ ๐‘‡ ๐‘ž(๐‘ก)

1

โŽž

โŽŸ

โŽŸ

โŽ 

=๐‘ฮ”โˆ’1

โŽ›

โŽœ

โŽœ

โŽ ๐‘‡ ๐‘ž๐‘˜

1

โŽž

โŽŸ

โŽŸ

โŽ 

| {z }

๐œ‡1โˆˆโ„๐‘‘+1

+(๐‘กโˆ’๐‘ก๐‘˜)๐‘ฮ”โˆ’1

โŽ›

โŽœ

โŽœ

โŽ ๐‘‡๐‘žห™๐‘˜

0

โŽž

โŽŸ

โŽŸ

โŽ 

| {z }

๐œ‡2โˆˆโ„๐‘‘+1

+(๐‘กโˆ’๐‘ก๐‘˜)2๐‘ฮ”โˆ’1

โŽ›

โŽœ

โŽœ

โŽ

โˆ’๐‘€โˆ’1๐‘‡โˆ‡๐‘‰๐‘˜/2 0

โŽž

โŽŸ

โŽŸ

โŽ 

| {z }

๐œ‡3โˆˆโ„๐‘‘+1

and the claim follows from the fact that๐‘ก๐‘˜+1 is the earliest๐‘กโˆ—> ๐‘ก๐‘˜ for which๐œ‡๐‘Ÿโˆ—=๐‘ (๐‘กโˆ—) = 0 among all possible pairs (๐‘กโˆ—, ๐‘Ÿโˆ—).

It is worth noting that the representation of the approximate potential energy๐‘‰โ„Žcan be restricted solely to the current simplex ฮ”๐‘˜ and the relevant simplex-related matrices areโŸจ๐‘‰ฮ”๐‘˜, ๐‘ฮ”๐‘˜, ๐‘ฮ”โˆ’1

๐‘˜โŸฉ, with

๐‘‰ฮ”๐‘˜ = (

๐‘‰(๐‘ž0) โ‹… โ‹… โ‹… ๐‘‰(๐‘ž๐‘ ) โ‹… โ‹… โ‹… ๐‘‰(๐‘ž๐‘‘) )

(3.24a)

๐‘ฮ”๐‘˜ =

โŽ›

โŽœ

โŽœ

โŽ

๐‘ง0 โ‹… โ‹… โ‹… ๐‘ง๐‘  โ‹… โ‹… โ‹… ๐‘ง๐‘‘ 1 โ‹… โ‹… โ‹… 1 โ‹… โ‹… โ‹… 1

โŽž

โŽŸ

โŽŸ

โŽ 

(3.24b)

We then claim thatthe replacement rule (see Chien and Kuh [11] and Lemma 3.3.3) provides for a very e๏ฌƒcient scheme to construct the adjacent simplex ฮ”๐‘˜+1 knowing only the boundary๐ต๐‘ of the current simplex ฮ”๐‘˜ intersected by the trajectory. Moreover, we describe an e๏ฌƒcient procedure for updating all simplex-related matrices required to compute the force-stepping trajectory in ฮ”๐‘˜+1. In particular, given all ฮ”๐‘˜-related matrices and the intersected boundary๐ต๐‘ , matrices are updated as

follows

๐‘‰ฮ”๐‘˜+1= (

๐‘‰(๐‘ž0) โ‹… โ‹… โ‹… ๐‘‰(๐‘žโ€ฒ๐‘ ) โ‹… โ‹… โ‹… ๐‘‰(๐‘ž๐‘‘) )

(3.25a)

๐‘ฮ”๐‘˜+1=

โŽ›

โŽœ

โŽœ

โŽ

๐‘ง0 โ‹… โ‹… โ‹… ๐‘งโ€ฒ๐‘  โ‹… โ‹… โ‹… ๐‘ง๐‘‘ 1 โ‹… โ‹… โ‹… 1 โ‹… โ‹… โ‹… 1

โŽž

โŽŸ

โŽŸ

โŽ 

(3.25b)

๐‘ฮ”โˆ’1

๐‘˜+1=๐‘ฮ”โˆ’1

๐‘˜โˆ’ (๐‘ฮ”โˆ’1

๐‘˜๐‘ข๐‘ )

โŠ—( ๐‘ฃ๐‘ ๐‘ฮ”โˆ’1

๐‘˜

) 1 +๐‘ฃ๐‘ ๐‘ฮ”โˆ’1

๐‘˜๐‘ข๐‘  (3.25c)

where ๐‘งโ€ฒ๐‘  = ๐‘ง๐‘ +1+๐‘ง๐‘ โˆ’1โˆ’๐‘ง๐‘ , ๐‘žโ€ฒ๐‘  = ๐‘‡โˆ’1๐‘งโ€ฒ๐‘ , ๐‘ข๐‘  = ๐‘งโ€ฒ๐‘ โˆ’๐‘ง๐‘ , and ๐‘ฃ๐‘–๐‘  = ๐›ฟ๐‘–,๐‘ . Matrices ๐‘ฮ”๐‘˜+1 and ๐‘‰ฮ”๐‘˜+1 are obtained by replacing๐‘ง๐‘ with๐‘งโ€ฒ๐‘  and๐‘‰(๐‘ž๐‘ ) with๐‘‰(๐‘žโ€ฒ๐‘ ), respectively. The matrix๐‘ฮ”โˆ’1

๐‘˜+1

is 1-rank updated by means of the Sherman-Morrison formula [28]โ€”with algorithm complexity ๐‘‚(๐‘‘2)โ€”instead of computing the inverse of ๐‘ฮ”๐‘˜+1โ€”with algorithm complexity๐‘‚(๐‘‘3). The overall gain in e๏ฌƒciency is remarkable.

Lemma 3.3.3 (The replacement rule) Let๐ต๐‘ be the boundary shared by two adjacent simplices.

Given the simplex ฮ”(๐‘ž0, ๐‘ž1, . . . , ๐‘ž๐‘ โˆ’1, ๐‘ž๐‘ , ๐‘ž๐‘ +1, . . . , ๐‘ž๐‘‘), with ๐‘‡ ๐‘ž0โฉฝ๐‘‡ ๐‘ž1โฉฝ. . .โฉฝ๐‘‡ ๐‘ž๐‘‘, its neighbor is simply de๏ฌned by replacing๐‘ž๐‘ with ๐‘žโ€ฒ๐‘ . The new vertex is de๏ฌned as

๐‘žโ€ฒ๐‘ =๐‘ž๐‘ +1+๐‘ž๐‘ โˆ’1โˆ’๐‘ž๐‘ 

where๐‘ž๐‘‘+1โ‰ก๐‘ž0 and๐‘žโˆ’1โ‰ก๐‘ž๐‘‘.

Corollary 3.3.2 The replacement rule preserves the order in the set of vertices๐’ฑ.

Proof. For๐‘ = 1, . . . , ๐‘‘โˆ’1, the following relation holds๐‘‡ ๐‘ž๐‘ โˆ’1โฉฝ๐‘‡ ๐‘žโ€ฒ๐‘ โฉฝ๐‘‡ ๐‘ž๐‘ +1. For๐‘ = 0 (๐‘ =๐‘‘) a simple backward (forward) shift of indices has to be introduced in the updated set of vertices. After the shift is performed, the new set of vertices veri๏ฌes the ordering relation.

We conclude this section with the second method required by the implementation of the force- stepping integrator presented in Algorithm 3,

{โˆ‡๐‘‰๐‘˜+1,โŸจ๐‘‰ฮ”๐‘˜+1, ๐‘ฮ”๐‘˜+1, ๐‘ฮ”โˆ’1

๐‘˜+1โŸฉ}

โ†Update(

โˆ‡๐‘‰๐‘˜,โŸจ๐‘‰ฮ”๐‘˜, ๐‘ฮ”๐‘˜, ๐‘ฮ”โˆ’1

๐‘˜โŸฉ;๐ต๐‘ 

)

The method is de๏ฌned in Algorithm 4 and is responsible for applyingthe replacement ruleas well as updatingโˆ‡๐‘‰๐‘˜ and all simplex-related matricesโŸจ๐‘‰ฮ”๐‘˜, ๐‘ฮ”๐‘˜, ๐‘ฮ”โˆ’1

๐‘˜โŸฉ. We remark that, for all practical purposes, there is no need to shift indices after vertices๐‘ž0 or ๐‘ž๐‘‘ are updated by the algorithm, as suggested by Corollary 3.3.2.

Algorithm 4Update(

โˆ‡๐‘‰๐‘˜,โŸจ๐‘‰ฮ”๐‘˜, ๐‘ฮ”๐‘˜, ๐‘ฮ”โˆ’1

๐‘˜โŸฉ;๐ต๐‘ )

Require: ๐‘งโ€ฒ๐‘ =๐‘ง๐‘ +1+๐‘ง๐‘ โˆ’1โˆ’๐‘ง๐‘ ,๐‘ข๐‘ =๐‘งโ€ฒ๐‘ โˆ’๐‘ง๐‘ ,๐‘ฃ๐‘ ๐‘– =๐›ฟ๐‘–,๐‘  and๐‘žโ€ฒ๐‘ =๐‘‡โˆ’1๐‘งโ€ฒ๐‘ 

1: ๐‘ฮ”โˆ’1

๐‘˜+1 โ†๐‘ฮ”โˆ’1

๐‘˜โˆ’(๐‘

โˆ’1

ฮ”๐‘˜๐‘ข๐‘ )โŠ—(๐‘ฃ๐‘ ๐‘ฮ”โˆ’1

๐‘˜) 1+๐‘ฃ๐‘ ๐‘โˆ’1ฮ”

๐‘˜๐‘ข๐‘  2: ๐‘ฮ”๐‘˜+1 โ†

( ๐‘ง0 โ‹… โ‹… โ‹… ๐‘งโ€ฒ๐‘  โ‹… โ‹… โ‹… ๐‘ง๐‘‘ 1 โ‹… โ‹… โ‹… 1 โ‹… โ‹… โ‹… 1

)

3: ๐‘‰ฮ”๐‘˜+1โ†(

๐‘‰(๐‘ž0) โ‹… โ‹… โ‹… ๐‘‰(๐‘žโ€ฒ๐‘ ) โ‹… โ‹… โ‹… ๐‘‰(๐‘ž๐‘‘) )

4: ๐ฝยฏโ„Žโ†๐‘‰ฮ”๐‘˜+1๐‘ฮ”โˆ’1

๐‘˜+1

5: โˆ‡๐‘‰๐‘˜+1โ†๐ฝยฏโ„Ž,[1...๐‘‘]๐‘‡

6: return โˆ‡๐‘‰๐‘˜+1,โŸจ๐‘‰ฮ”๐‘˜+1, ๐‘ฮ”๐‘˜+1, ๐‘ฮ”โˆ’1

๐‘˜+1โŸฉ