• Tidak ada hasil yang ditemukan

Derivation of the Hamilton principle for the discontinuous energy stepping

2.2 Energy-stepping integrators

2.2.2 Derivation of the Hamilton principle for the discontinuous energy stepping

The energy stepping potential (2.4) is not continuous and the corresponding action functional (2.6) is not Gateaux-differentiable on the space of curves in phase space. In particular, the first variation of πΌβ„Ž is not well-defined on this space and so the notion of critical points does not have a well- defined meaning in the classical sense. However, the calculations in the previous subsection can be given a rigorous interpretation by recourse to a smooth approximation procedure. In the spirit of identifying solutions to non-smooth differential equations by suitable selection principles, we will show that the energy-stepping dynamics for fixed β„Ž is given by those solutions to (2.8) and (2.9) that are limiting trajectories of a nearby smooth dynamical system. It should be carefully noted that there are solutions to these equations other than those described in Section 2.2.1, as exemplified by a particle bouncing at an energy barrier that can be overcome energetically.

This approximation result has three important consequences:

(i) The notion of a critical point ofπΌβ„Žis given a rigorous definition.

(ii) The physical solutions to (2.8) and (2.9) are selected.

(iii) The existence of a nearby smooth system will prove extremely useful when investigating ana- lytical aspects of the energy-stepping trajectories such as conservation properties (cf. Section 2.3).

Here we call a solutionπ‘žto the equations (2.8) and (2.9)physicalif and only ifπ‘žbehaves as described in Paragraph 2.2.1.1, 2.2.1.2 or 2.2.1.3. For later use we note that this is the case if and only if π‘ž passes an energy jump surface precisely if this is possible without violating energy conservation. As a consequence, an energy-stepping trajectory is uniquely given byπ‘ž(0) and Λ™π‘ž(0).

For fixed β„Ž >0 consider the smooth approximationπœ’πœ€to the stepping function𝑑7β†’β„ŽβŒŠβ„Žβˆ’1π‘‘βŒ‹as given by the convolution

πœ’(𝑑) =

∫

ℝ

πœ€βˆ’1πœ‚(πœ€βˆ’1(π‘‘βˆ’π‘ ))β„ŽβŒŠβ„Žβˆ’1π‘ βŒ‹π‘‘π‘ , πœ€β‰ͺβ„Ž (2.22)

whereπœ‚ denotes a standard mollifier, i.e., πœ‚βˆˆπΆπ‘βˆž(βˆ’1,1),πœ‚β‰₯0 and∫1

βˆ’1πœ‚= 1. Now define

πΏβ„Ž,πœ€(π‘ž,π‘ž) =Λ™ 1

2π‘žΛ™π‘‡π‘€π‘žΛ™βˆ’π‘‰β„Ž,πœ€(π‘ž) for π‘‰β„Ž,πœ€(π‘ž) :=πœ’πœ€(𝑉(π‘ž)) (2.23)

Since πΏβ„Ž,πœ€ is a smooth function, there is a well-defined classical dynamics corresponding to this Lagrangian. We will prove that, asπœ€β†’0, the critical points of the action functional

πΌβ„Ž,πœ€(π‘ž) =

∫ 𝑑2 𝑑0

πΏβ„Ž,πœ€(π‘ž,π‘ž)Λ™ 𝑑𝑑 (2.24)

converge to the trajectories identified in Section 2.2.

More precisely, we have the following

Theorem 2.2.1 Supposeπ‘ž is an energy-stepping trajectory satisfying βˆ‡π‘‰(π‘ž) βˆ•= 0and (π‘›β‹…π‘žΛ™βˆ’)2 ∈/ {0,2β„Žπ‘›π‘‡π‘€βˆ’1𝑛}for𝑛=𝑛(π‘ž) = βˆ£βˆ‡π‘‰βˆ‡π‘‰(π‘ž)(π‘ž)∣on every energy jump surface. Letπ‘žπœ€be the smooth trajectory corresponding to πΏβ„Ž,πœ€ with the same initial conditions (π‘ž0,π‘žΛ™0). Then π‘žπœ€ converges to π‘ž strongly in π‘Š1,𝑝(0, 𝑇)for each𝑇 >0 and all𝑝 <∞and weakβˆ— inπ‘Š1,∞(0, 𝑇). Moreover, π‘žΛ™πœ€β†’π‘žΛ™uniformly on [0, 𝑇]βˆ–π‘†π‘Ÿ(π‘ž)for every π‘Ÿ >0, whereπ‘†π‘Ÿ(π‘ž)is theπ‘Ÿ-neighborhood of the jump set of π‘ž.Λ™

It is worth noting that a proof for this result can be given that does not make use of the explicit formulae forπ‘žobtained Section 2.2. Instead, we will see that limiting trajectories satisfy the discrete variational principle leading to (2.8) and (2.9) and thus give an a priori justification of the procedure employed in Section 2.2 to computeπ‘ž.

Proof. First note that asπœ€β†’0,πœ’πœ€(𝑉(π‘ž))β†’β„ŽβŒŠβ„Žβˆ’1𝑉(π‘ž)βŒ‹=π‘‰β„Ž(π‘ž). In particular, π‘žπœ€(𝑑) is linear in time except in a small neighborhood of the energy jump surfaces. It suffices to consider the case when π‘ž meets a jump surface Ξ“ precisely once, at time 𝑑1 ∈ (𝑑0, 𝑑2), for example, and so we may

assume thatπ‘žis a physical solution to (2.8) and (2.9).

We begin by showing that π‘žπœ€ β†’π‘žΛœas πœ€ β†’0 strongly in π‘Š1,𝑝(𝑑0, 𝑑2) for all𝑝 <∞ (and weakβˆ— in π‘Š1,∞(𝑑0, 𝑑2)), where Λœπ‘ž is linear on (𝑑0, 𝑑1) and (𝑑1, 𝑑2). By Ξ“πœ€ we denote the neighborhood of Ξ“ defined by

Ξ“πœ€={π‘₯βˆˆβ„π‘ :𝑉2βˆ’πœ€β‰€π‘‰(π‘₯)≀𝑉2+πœ€} (2.25)

Note that asβˆ‡π‘‰(π‘ž(𝑑1))βˆ•= 0 by assumption, in the vicinity ofπ‘ž(𝑑1) Ξ“πœ€lies in an𝑂(πœ€)-neighborhood of Ξ“. π‘žπœ€being a critical point ofπΌβ„Ž,πœ€ satisfies the Euler-Lagrange equation

Β¨

π‘žπœ€=βˆ’π‘€βˆ’1βˆ‡π‘‰β„Ž,πœ€ (2.26)

Choose𝜏1,πœ€, 𝜏2,πœ€ such thatπ‘žπœ€enters Ξ“πœ€at time 𝑑1βˆ’πœ1,πœ€ and leaves it at time𝑑1+𝜏2,πœ€. Writing

βˆ‡π‘‰β„Ž,πœ€(π‘₯) =𝛼(π‘₯)𝑛+𝛽(π‘₯)𝑃 π‘₯ (2.27)

for𝑛=𝑛(π‘ž(𝑑1)),𝑃 the projection onto the plane perpendicular to 𝑛and𝛼, π›½βˆˆβ„, we obtain that

βˆ£π›½(π‘₯)∣ is bounded on π‘Ÿπœ€-neighborhoods of π‘ž(𝑑1) independently of πœ€ for each π‘Ÿ ∈ ℝ, whereas 𝛼(π‘₯) scales withπœ€βˆ’1. Splitting the trajectories accordingly as

π‘žπœ€(𝑑) =π‘žπœ€βˆ₯(𝑑) +π‘žβŠ₯πœ€(𝑑) with π‘žβˆ₯πœ€βˆˆπ‘ž(𝑑1) +β„π‘€βˆ’1𝑛, π‘žβŠ₯πœ€ βˆˆπ‘€βˆ’1𝑃ℝ𝑑 (2.28)

we obtain that

Β¨

π‘žπœ€βˆ₯(𝑑) =βˆ’π‘€βˆ’1𝛼(π‘žπœ€(𝑑))𝑛, π‘žΒ¨πœ€βŠ₯(𝑑) =βˆ’π‘€βˆ’1𝛽(π‘žπœ€(𝑑))𝑃 π‘žπœ€(𝑑) (2.29)

It is not hard to see that 𝜏2,πœ€+𝜏1,πœ€ =𝑂(πœ€) and so βˆ£Β¨π‘žβˆ₯πœ€(𝑑) +π‘€βˆ’1𝛼(π‘žπœ€βˆ₯(𝑑))π‘›βˆ£ ≀ 𝐢, βˆ£Β¨π‘žπœ€βŠ₯(𝑑)∣ ≀ 𝐢, on (𝑑1βˆ’πœ1,πœ€, 𝑑1+𝜏2,πœ€) for some suitable constant𝐢 >0. This proves that in fact Λ™π‘žπœ€βŠ₯(𝑑1βˆ’πœ2,πœ€)βˆ’π‘žΛ™βŠ₯πœ€(𝑑1βˆ’ 𝜏1,πœ€)β†’0 asπœ€β†’0 and, by energy conservation,

Λ™

π‘žπœ€(𝑑1βˆ’πœ2,πœ€)βˆ’π‘žΛ™πœ€(𝑑1βˆ’πœ1,πœ€)β†’π‘žΛ™+βˆ’π‘žΛ™βˆ’ (2.30)

where Λ™π‘ž+ is given by (2.15) resp. (2.18) resp. (2.21). From here it is now straightforward to obtain thatπ‘žπœ€converges to Λœπ‘ž, where Λœπ‘žis linear on (𝑑0, 𝑑1) and (𝑑1, 𝑑2) and satisfies the jump condition (2.15) resp. (2.18) resp. (2.21) at𝑑1.

Since we do not wish to use the fact that π‘ž is explicitly given by these equations in our proof, we proceed as follows. As π‘žπœ€ is a critical point ofπΌβ„Ž,πœ€, for allπœ‘ βˆˆπΆπ‘βˆž((𝑑0, 𝑑2),ℝ𝑑×ℝ𝑑), the first variation

π›ΏπΌβ„Ž,πœ€(π‘ž, πœ‘) =

∫ 𝑑2 𝑑0

Λ™

π‘žπ‘‡π‘€πœ‘Λ™βˆ’ βˆ‡π‘‰β„Ž,πœ€(π‘ž)πœ‘ 𝑑𝑑 (2.31)

vanishes. A standard approximation argument show that this remains true for allπœ‘βˆˆπ‘Š01,∞((𝑑0, 𝑑2),ℝ𝑑× ℝ𝑑). Now suppose that π‘žβ€² is another piecewise linear trajectory with Λœπ‘ž(𝑑0) = π‘žβ€²(𝑑0), Λœπ‘ž(𝑑2) =π‘žβ€²(𝑑2), which is nearby Λœπ‘žand meets the same energy jump surface Ξ“ at time𝑑′1. Choose𝜏1,πœ€β€² , 𝜏2,πœ€β€² , such that π‘žβ€² enters, resp. leaves, Ξ“πœ€ at time𝑑′1βˆ’πœ1,πœ€β€² resp.𝑑′1+𝜏2,πœ€β€²

Now construct the following particular approximation π‘žπœ€β€² toπ‘žβ€²:

βˆ™ π‘žπœ€β€²(𝑑) is linear on (𝑑0, 𝑑′1βˆ’πœ1,πœ€) and on (𝑑′1+𝜏2,πœ€, 𝑑2),

βˆ™ π‘žπœ€β€²(𝑑′1βˆ’πœ1,πœ€) =π‘žβ€²(𝑑′1βˆ’πœ1,πœ€β€² ) andπ‘žπœ€β€²(𝑑′1+𝜏2,πœ€)βˆ’π‘žβ€²(𝑑′1+𝜏2,πœ€β€² )β†’0 asπœ€β†’0 and

βˆ™ π‘‰β„Ž,πœ€(π‘žπœ€β€²(𝑑′1+𝑑)) =π‘‰β„Ž,πœ€(π‘žπœ€(𝑑1+𝑑)) for π‘‘βˆˆ[βˆ’πœ1,πœ€, 𝜏2,πœ€].

It is not hard to see that, asπœ€β†’0,π‘žπœ€β€² β†’π‘žβ€²strongly inπ‘Š1,𝑝for all𝑝 <∞(and weakβˆ—inπ‘Š1,∞), and in particularπΌβ„Ž,πœ€(π‘žπœ€)β†’πΌβ„Ž(Λœπ‘ž),πΌβ„Ž,πœ€(π‘žπœ€β€²)β†’πΌβ„Ž(π‘žβ€²). In fact, due to the careful definition ofπ‘žπœ€β€², we also obtain control over the difference

πΌβ„Ž,πœ€(π‘žπœ€)βˆ’πΌβ„Ž,πœ€(π‘žπœ€β€²)β†’πΌβ„Ž(Λœπ‘ž)βˆ’πΌβ„Ž(π‘žβ€²) (2.32)

To see this, it suffices to note that

∫ 𝑑′1+𝜏2,πœ€

𝑑′1βˆ’πœ1,πœ€

𝑉(π‘žβ€²πœ€(𝑑))π‘‘π‘‘βˆ’

∫ 𝑑1+𝜏2,πœ€

𝑑1βˆ’πœ1,πœ€

𝑉(π‘žπœ€(𝑑))𝑑𝑑= 0.In fact, sinceπ‘žπœ€is a critical point ofπΌβ„Ž,πœ€, we have

βˆ£πΌβ„Ž,πœ€(π‘žπœ€)βˆ’πΌβ„Ž,πœ€(π‘žπœ€β€²)∣=π‘œ(βˆ₯π‘žπœ€βˆ’π‘žβ€²πœ€βˆ₯π‘Š1,2) (2.33)

with a term π‘œ(β‹…) independent ofπœ€. (Consider a path [0,1]βˆ‹π‘ 7β†’π‘žπœ€(β‹…, 𝑠) in the space of curves such thatπ‘žπœ€(β‹…,0) =π‘žπœ€,π‘žπœ€(β‹…,1) =π‘žπœ€β€² andπ‘‰β„Ž,πœ€(π‘žπœ€(𝑑1(𝑠) +β‹…, 𝑠)) =π‘‰β„Ž,πœ€(π‘žπœ€(𝑑1+β‹…)) on [βˆ’πœ1,πœ€, 𝜏2,πœ€], where𝑑1(𝑠) interpolates between𝑑1and𝑑′1, i.e., 𝑑1(0) =𝑑1 and𝑑1(1) =𝑑′1.)

As a consequence we obtain

βˆ£πΌβ„Ž(Λœπ‘ž)βˆ’πΌβ„Ž(π‘žβ€²)∣=π‘œ(βˆ₯π‘žΛœβˆ’π‘žβ€²βˆ₯π‘Š1,2) (2.34)

and thus that Λœπ‘ž is a critical point of the action functional πΌβ„Ž on piecewise linear trajectories as identified in Section 2.2. Now sinceπ‘ž(0) = Λœπ‘ž(0) and Λ™π‘ž(0) = Λ™Λœπ‘ž(0), we obtain Λœπ‘ž=π‘ž. Hence,π‘ž is the limit, asπœ€β†’0 of the smooth trajectoriesπ‘žπœ€corresponding to the smooth LagrangianπΏβ„Ž,πœ€.