• Tidak ada hasil yang ditemukan

Untuk penelitian selanjutnya dapat meningkatkan perbesaran pada analisis SEM hingga 25.000x agar didapat gambar yang lebih baik sehingga nanoselulosa dapat dilihat dengan jelas..

DAFTAR PUSTAKA

Ali, J. B., Danladi, A., Bukhari, M. M., Nyakuma, B. B., Mamza, P., Mohamad, Z.

B., Musa, A. B., & Inuwa, I. M. (2020). Extraction and Characterization of Cellulose Nanofibres and Cellulose Nanocrystals from Sammaz-14 Maize Cobs. Journal of Natural Fibers, 00(00), 1–16.

https://doi.org/10.1080/15440478.2020.1856279

Alsaleh, N. B. (2021). Adverse cardiovascular responses of engineered nanomaterials: Current understanding of molecular mechanisms and future challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 37, 102421. https://doi.org/10.1016/j.nano.2021.102421

Biao, H., Li-rong, T., Da-song, D., Wen, O., Tao, L., & Xue-rong, C. (2011).

Preparation of Nanocellulose with Cation–Exchange Resin Catalysed Hydrolysis. Biomaterials Science and Engineering, 6, 139–152.

Bozolla, J. ., & Lonnie, D. R. (1998). Electron Microsopy: Principles and Techniques for Biologist. Jones and Brtlett Publisher.

Bradbury, S., David, C. joy, & Brian, J. F. (2019). scanning electrone microscope.

Encylcopedia Britannica.

Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles:

Sources and toxicity. Biointerphases, 2(4), MR17–MR71.

https://doi.org/10.1116/1.2815690

Cheng, H. (2015). Lignocellulose Biorefinery Engineering. Woodhead Publishing.

Pp 75-78.

Chorkendrof, I., & Niemantsverdriet, J. . (2003). Concept of Modern Catalysis and Kinetics. Willey-VCH GmbH and Co: Weinheim.

Clunan, A. (2014). Nanotechnology in a Globalized World Strategic Assessments of an Emerging Technology. University Circle Monterey.

Cullity, B. D. (1978). Elements of X-Ray Diffraction (02 ed.). Addison-Wesley Publishing Company, Inc. Pp 3-4,83-84.

Czaja, W., Krystynowicz, A., Bielecki, S., & Brown, R. M. (2006). Microbial cellulose - The natural power to heal wounds. Biomaterials, 27(2), 145–151.

https://doi.org/10.1016/j.biomaterials.2005.07.035

Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K., Faria, M., Thomas, S., & Pothan, L. A. (2015). Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22(2), 1075–1090. https://doi.org/10.1007/s10570-015- 0554-x

Ditzel, F. I., Prestes, E., Carvalho, B. M., Demiate, I. M., & Pinheiro, L. A. (2017).

Nanocrystalline cellulose extracted from pine wood and corncob.

Carbohydrate Polymers, 157, 1577–1585.

https://doi.org/10.1016/j.carbpol.2016.11.036

Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24. https://doi.org/10.1016/j.jcis.2011.07.017 Fan, L., Gharpuray, M. M., & Lee, Y.-H. (1987). Cellulose Hydrolisis. Springer-

Verlag Berlin Heidelberg. Pp 14.

Gatenholm, P., & Klemm, D. (2010). Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bulletin, 35(3), 208–213.

Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500.

https://doi.org/10.1021/cr900339w

Hanke, L. D. (2001). Hanbook of Analytical Methods of Materials Evaluation and Engineering. Inc: Plymouth.

Harini, K., & Mohan, C. C. (2020). Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse. International Journal of Biological Macromolecules, 163, 1375–

1383. https://doi.org/10.1016/j.ijbiomac.2020.07.239

Ieolovich, M. (2012). Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. Nanoscience and Nanotechnology, 2(2), 9–13.

Kamel, S. (2007). Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polymer Letters, 1(9), 546–575.

https://doi.org/10.3144/expresspolymlett.2007.78

Kementrian Pertanian Republik Indonesia. (2022). Kementerian Pertanian - Data

Lima Tahun Terakhir.

https://www.pertanian.go.id/home/?show=page&act=view&id=61

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, 44(22), 3358–3393. https://doi.org/10.1002/anie.200460587

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., &

Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials.

Angewandte Chemie - International Edition, 50(24), 5438–5466.

https://doi.org/10.1002/anie.201001273

Klemm, D., Schumman, D., Udhradt, U., & Marsch, S. (2001). Bacterial synthesized cellulose - Artificial blood vessels for microsurgery. Progress in Polymer Science (Oxford), 26(9), 1561–1603.

Lee, H. V., Hamid, S. B. A., & Zain, S. K. (2014). Convertion of Lignocellulosic Biomass to Nanocellulose: Strutucre and Chemical Process. The Scientific World, 1–20. https://doi.org/10.1155/2014/631013

Li, W., Yue, J., & Liu, S. (2012). Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites.

Ultrasonics Sonochemistry, 19(3), 479–485.

https://doi.org/10.1016/j.ultsonch.2011.11.007

Liu, C., Li, B., Du, H., Lv, D., Zhang, Y., Yu, G., Mu, X., & Peng, H. (2016).

Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate Polymers, 151, 716–724. https://doi.org/10.1016/j.carbpol.2016.06.025

Maneerung, T., Tokura, S., & Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing.

Carbohydrate Polymers, 72(1), 43–51.

https://doi.org/10.1016/j.carbpol.2007.07.025

Mendes, C. A. D. C., Adnet, F. A. O., Leite, M. C. A. M., Furtado, C. R. G., & De Sousa, A. M. F. (2015). Chemical, physical, mechanical, thermal and morphological characterization of corn husk residue. Cellulose Chemistry and Technology, 49(9–10), 727–735.

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011).

Cellulose nanomaterials review: Structure, properties and nanocomposites.

Chemical Society Reviews, 40(7), 3941–3994.

https://doi.org/10.1039/c0cs00108b

Nickerson, R. F., & Habrle, J. A. (1947). Cellulose intercrsytalline structure: study by hydrolitic methods. Journal of Industrial and Engineering Chemistry, 39(11), 1507–1512.

Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P. (2002). Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 124(31), 9074–9082. https://doi.org/10.1021/ja0257319

Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P. (2003). Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 125(47), 14300–14306. https://doi.org/10.1021/ja037055w

Peng, B. L., Dhar, N., Liu, H. L., & Tam, K. C. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective.

Canadian Journal of Chemical Engineering, 89(5), 1191–1206.

https://doi.org/10.1002/cjce.20554

Razaq, A., Nyholm, L., Sjödin, M., Strømme, M., & Mihranyan, A. (2012). Paper- based energy-storage devices comprising carbon fiber-reinforced polypyrrole- cladophora nanocellulose Composite electrodes. Advanced Energy Materials, 2(4), 445–454. https://doi.org/10.1002/aenm.201100713

Reed, S. J. B. (2005). Electron Micropobe Analysis and Scanning Electron Miscrocopy in Geology. Cambridge University Press. Pp 2-3,35,41.

Scherrer, P. (1918). Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Ges. Wiss. Gottingen 26.

Schweitzer, E. . (2011). Scanning Electron Microsope A to Z. Geol.

Segal, L., J.J, C., A.E, M., & C.M, C. (1959). An Empirical method For Estimating The Degree of Crystallinity of Native Cellulose Using The X-Ray Diffractometer. Textile Research Journa, 29(10), 786–794.

Silvério, H. A., Flauzino Neto, W. P., Dantas, N. O., & Pasquini, D. (2013).

Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products, 44, 427–436. https://doi.org/10.1016/j.indcrop.2012.10.014

Sirviö, J. A., Kolehmainen, A., Liimatainen, H., Niinimäki, J., & Hormi, O. E. O.

(2014). Biocomposite cellulose-alginate films: Promising packaging

materials. Food Chemistry, 151, 343–351.

https://doi.org/10.1016/j.foodchem.2013.11.037

Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z., & Huang, Y. (2013). The comparison of two activation techniques to prepare activated carbon from corn

cob. Biomass and Bioenergy, 48, 250–256.

https://doi.org/10.1016/j.biombioe.2012.11.007

Steven, S., Mardiyati, Y., Shoimah, S. M., Rizkiansyah, R. R., Samtosa, S. P., &

Suratman, R. (2021). Preparation and Characterization of Nanocrystalline Cellulose from Cladophora sp. Algae. International Journal on Advanced Science, Engineering and Information Technology, 11(3), 1035–1041.

https://doi.org/10.18517/ijaseit.11.3.10278

Suryanarayana, C., & Norton, M. G. (2013). X-Ray Difraction a Partical Approach.

Spring Science & Bussines. Pp4-6.

Taib, M. N. A. M., Yehye, W. A., Julkapli, N. M., & Hamid, S. B. O. A. A. (2018).

Influence of Hydrophobicity of Acetylated Nanocellulose on the Mechanical Performance of Nitrile Butadiene Rubber (NBR) Composites. Fibers and Polymers, 19(2), 383–392. https://doi.org/10.1007/s12221-018-7591-z

Talebian, S., Rodrigues, T., Das Neves, J., Sarmento, B., Langer, R., & Conde, J.

(2021). Facts and Figures on Materials Science and Nanotechnology Progress and Investment. ACS Nano, 15(10), 15940–15952.

https://doi.org/10.1021/acsnano.1c03992

Tang, Y., Yang, S., Zhang, N., & Zhang, J. (2014). Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose, 21(1), 335–346. https://doi.org/10.1007/s10570-013- 0158-2

Tenhunen, T. M., Moslemian, O., Kammiovirta, K., Harlin, A., Kääriäinen, P., Österberg, M., Tammelin, T., & Orelma, H. (2018). Surface tailoring and design-driven prototyping of fabrics with 3D-printing: An all-cellulose

approach. Materials and Design, 140, 409–419.

https://doi.org/10.1016/j.matdes.2017.12.012

Tsai, W. T., Chang, C. Y., Wang, S. Y., Chang, C. F., Chien, S. F., & Sun, H. F.

(2001). Utilization of agricultural waste corn cob for the preparation of carbon adsorbent. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 36(5), 677–686.

https://doi.org/10.1081/PFC-100106194

Turbak, A. F., Snyder, F. W., & Sandberg, K. R. (1983). Microfibrilated Cellulose, A New Cellulose Product: Properties, Uses, and Commercial Potential.

Journal of Applied Polymer Science, 37, 815–827.

Ulery, A. L., & Dress, L. R. (2008). Methods of Soil Analysis. Soil Science Society of America. Pp 82.

Watanabe, K., Tabuchi, M., Yasushi, M., & Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture.

Cellulose, 5, 187–200.

West, A. R. (1984). Solid State Chemistry and Its Application (Second). John Wiley.

Winarti, C., Kurniati, M., Arif, A. B., Sasmitaloka, K. S., & Nurfadila. (2018).

Cellulose-based nanohydrogel from corncob with chemical crosslinking methods. IOP Conference Series: Earth and Environmental Science, 209(1).

https://doi.org/10.1088/1755-1315/209/1/012043

Xie, H., Du, H., Yang, X., & Si, C. (2018). Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science, 2018.

https://doi.org/10.1155/2018/7923068

Yadav, S., Illa, M. P., Rastogi, T., & Sharma, C. S. (2016). High absorbency cellulose acetate electrospun nanofibers for feminine hygiene application.

Applied Materials Today, 4, 62–70.

https://doi.org/10.1016/j.apmt.2016.07.002

Dalam dokumen Selamat Datang - Digital Library (Halaman 48-54)

Dokumen terkait