Linear Equations of the First Kind With Variable Limit of Integration
1.8. Equations Whose Kernels Contain Special Functions
96.
x a
Atanhβ(λx) +Bcosγ(µt) +C
y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =Atanhβ(λx) andh(t) =Bcosγ(µt) +C.
97.
x a
Atanhβ(λx) +Bsinγ(µt) +C
y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =Atanhβ(λx) andh(t) =Bsinγ(µt) +C.
1.7-6. Kernels Containing Logarithmic and Trigonometric Functions
98.
x a
Acosβ(λx) +Blnγ(µt) +C
y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =Acosβ(λx) andh(t) =Blnγ(µt) +C.
99.
x a
Acosβ(λt) +Blnγ(µx) +C
y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =Blnγ(µx) +Candh(t) =Acosβ(λt).
100.
x
a
Asinβ(λx) +Blnγ(µt) +C
y(t)dt =f(x).
This is a special case of equation 1.9.6 withg(x) =Asinβ(λx) andh(t) =Blnγ(µt) +C.
101.
x a
Asinβ(λt) +Blnγ(µx) +C
y(t)dt =f(x).
This is a special case of equation 1.9.6 withg(x) =Blnγ(µx) andh(t) =Asinβ(λt) +C.
1.8. Equations Whose Kernels Contain Special
3.
x a
[AJ0(λx) +BJ0(λt)]y(t)dt=f(x).
ForB =–A, see equation 1.8.2. We consider the interval [a,x] in whichJ0(λx) does not change its sign.
Solution withB≠–A:
y(x) =± 1 A+B
d dx
J0(λx)–A+BA x
a
J0(λt)–A+BB ft(t)dt
. Here the sign ofJ0(λx) should be taken.
4.
x
a
(x–t)J0[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt, where
g(t) = 1 λ
d2 dt2 +λ2
3 t a
(t–τ)J1[λ(t–τ)]f(τ)dτ.
5.
x
a
(x–t)J1[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = 1 3λ3
d2 dx2 +λ2
4 x a
(x–t)2J2[λ(x–t)]f(t)dt.
6.
x
a
x–t2
J1[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt, where
g(t) = 1 9λ3
d2 dt2 +λ2
5 t a
t–τ2
J2[λ(t–τ)]f(τ)dτ.
7.
x
a
x–tn
Jn[λ(x–t)]y(t)dt=f(x), n= 0, 1, 2,. . .
Solution:
y(x) =A d2
dx2 +λ2
2n+2 x a
(x–t)n+1Jn+1[λ(x–t)]f(t)dt, A= 2
λ
2n+1 n! (n+ 1)!
(2n)! (2n+ 2)!.
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(2n+1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form
y(x) =A x
a
(x–t)2n+1J2n+1[λ(x–t)]F(t)dt, F(t) = d2
dt2 +λ2 2n+2
f(t)dt.
8.
x a
x–tn+1
Jn[λ(x–t)]y(t)dt=f(x), n= 0, 1, 2,. . . Solution:
y(x) = x
a
g(t)dt,
where
g(t) =A d2
dt2 +λ2
2n+3 t a
(t–τ)n+1Jn+1[λ(t–τ)]f(τ)dτ, A= 2
λ
2n+1 n! (n+ 1)!
(2n+ 1)! (2n+ 2)!.
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(2n+2)(a) = 0 are satisfied, then the functiong(t) defining the solution can be written in the form
g(t) =A t
a
(t–τ)n–ν–2Jn–ν–2[λ(t–τ)]F(τ)dτ, F(τ) = d2
dτ2 +λ2 2n+2
f(τ).
9.
x
a
(x–t)1/2J1/2[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = π 4λ2
d2 dx2 +λ2
3 x a
(x–t)3/2J3/2[λ(x–t)]f(t)dt.
10.
x
a
(x–t)3/2J1/2[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt, where
g(t) = π 8λ2
d2 dt2 +λ2
4 t a
(t–τ)3/2J3/2[λ(t–τ)]f(τ)dτ.
11.
x a
(x–t)3/2J3/2[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) =
√π 23/2λ5/2
d2 dx2 +λ2
3 x a
sin[λ(x–t)]f(t)dt.
12.
x
a
(x–t)5/2J3/2[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt, where
g(t) = π 128λ4
d2 dt2 +λ2
6 t a
(t–τ)5/2J5/2[λ(t–τ)]f(τ)dτ.
13.
x a
(x–t)
2n–1 2 J2n–1
2
[λ(x–t)]y(t)dt=f(x), n= 2, 3,. . .
Solution:
y(x) =
√π
√2λ2n+12 (2n–2)!!
d2 dx2 +λ2
n x
a
sin[λ(x–t)]f(t)dt.
14.
x
a
[Jν(λx)–Jν(λt)]y(t)dt=f(x).
This is a special case of equation 1.9.2 withg(x) =Jν(λx).
Solution: y(x) = d dx
xfx(x) νJν(λx)–λxJν+1(λx)
.
15.
x a
[AJν(λx) +BJν(λt)]y(t)dt=f(x).
ForB =–A, see equation 1.8.14. We consider the interval [a,x] in whichJν(λx) does not change its sign.
Solution withB≠–A:
y(x) =± 1 A+B
d dx
Jν(λx)–A+BA x
a
Jν(λt)–A+BB ft(t)dt
. Here the sign ofJν(λx) should be taken.
16.
x a
[AJν(λx) +BJµ(βt)]y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =AJν(λx) andh(t) =BJµ(βt).
17.
x
a
(x–t)νJν[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) =A d2
dx2 +λ2 n x
a
(x–t)n–ν–1Jn–ν–1[λ(x–t)]f(t)dt, A= 2
λ
n–1 Γ(ν+ 1)Γ(n–ν) Γ(2ν+ 1)Γ(2n–2ν–1), where–12 <ν< n–12 andn= 1, 2,. . .
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form
y(x) =A x
a
(x–t)n–ν–1Jn–ν–1[λ(x–t)]F(t)dt, F(t) = d2
dt2 +λ2 n
f(t).
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
18.
x a
(x–t)ν+1Jν[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt,
where
g(t) =A d2
dt2 +λ2 n t
a
(t–τ)n–ν–2Jn–ν–2[λ(t–τ)]f(τ)dτ, A= 2
λ
n–2 Γ(ν+ 1)Γ(n–ν–1) Γ(2ν+ 2)Γ(2n–2ν–3), where–1 <ν < n2 –1 andn= 1, 2,. . .
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the functiong(t) defining the solution can be written in the form
g(t) =A t
a
(t–τ)n–ν–2Jn–ν–2[λ(t–τ)]F(τ)dτ, F(τ) = d2
dτ2 +λ2 n
f(τ).
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
19.
x
a
J0
λ√ x–t
y(t)dt=f(x).
Solution:
y(x) = d2 dx2
x a
I0
λ√ x–t
f(t)dt.
20.
x a
AJν
λ√ x
+BJν
λ√ t
y(t)dt=f(x).
We consider the interval [a,x] in whichJν λ√
x
does not change its sign.
Solution withB≠–A:
y(x) =± 1 A+B
d dx
Jν
λ√
x–A+BA x
a
Jν
λ√
t–A+BB ft(t)dt
. Here the signJν
λ√ x
should be taken.
21.
x a
AJν
λ√ x
+BJµ
β√ t
y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =AJν
λ√ x
andh(t) =BJµ
β√ t
. 22.
x a
√x–t J1
λ√ x–t
y(t)dt=f(x).
Solution:
y(x) = 2 λ
d3 dx3
x
a
I0 λ√
x–t f(t)dt.
23.
x a
(x–t)1/4J1/2
λ√ x–t
y(t)dt=f(x).
Solution:
y(x) = 2
πλ d2 dx2
x a
cosh λ√
x–t
√x–t f(t)dt.
24.
x
a
(x–t)3/4J3/2 λ√
x–t
y(t)dt=f(x).
Solution:
y(x) = 23/2
√π λ3/2 d3 dx3
x
a
cosh λ√
x–t
√x–t f(t)dt.
25.
x a
(x–t)n/2Jn
λ√ x–t
y(t)dt=f(x), n= 0, 1, 2,. . . Solution:
y(x) = 2 λ
n dn+2 dxn+2
x a
I0
λ√ x–t
f(t)dt.
26.
x
a
x–t2n–3
4 J2n–3 2
λ√ x–t
y(t)dt=f(x), n= 1, 2,. . . Solution:
y(x) = 1
√π 2
λ 2n–3
2 dn dxn
x
a
cosh λ√
x–t
√x–t f(t)dt.
27.
x
a
(x–t)–1/4J–1/2 λ√
x–t
y(t)dt=f(x).
Solution:
y(x) = λ
2π d dx
x a
cosh λ√
x–t
√x–t f(t)dt.
28.
x
a
(x–t)ν/2Jν
λ√ x–t
y(t)dt=f(x).
Solution:
y(x) = 2 λ
n–2 dn dxn
x
a
x–tn–ν–2
2 In–ν–2 λ√
x–t f(t)dt, where–1 <ν <n–1,n= 1, 2,. . .
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form
y(x) = 2 λ
n–2 x
a
x–tn–ν–2
2 In–ν–2 λ√
x–t
ft(n)(t)dt.
29.
x 0
x2–t2–1/4
J–1/2 λ√
x2–t2
y(t)dt=f(x).
Solution:
y(x) = 2λ
π d dx
x 0
tcosh λ√
x2–t2
√x2–t2 f(t)dt.
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
30.
∞
x
t2–x2–1/4
J–1/2
λ√
t2–x2
y(t)dt=f(x).
Solution:
y(x) =– 2λ
π d dx
∞
x
t cosh λ√
t2–x2
√t2–x2 f(t)dt.
31.
x
0
x2–t2ν/2
Jν λ√
x2–t2
y(t)dt=f(x), –1 <ν < 0.
Solution:
y(x) =λ d dx
x
0
t
x2–t2–(ν+1)/2
I–ν–1 λ√
x2–t2 f(t)dt.
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
32.
∞
x
t2–x2ν/2
Jν
λ√
t2–x2
y(t)dt=f(x), –1 <ν< 0.
Solution:
y(x) =–λ d dx
∞
x
t
t2–x2–(ν+1)/2
I–ν–1 λ√
t2–x2 f(t)dt.
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
33.
x a
[AtkJν(λx) +BxmJµ(λt)]y(t)dt=f(x).
This is a special case of equation 1.9.15 withg1(x) =AJν(λx),h1(t) =tk,g2(x) =Bxm, and h2(t) =Jµ(λt).
34.
x a
[AJν2(λx) +BJν2(λt)]y(t)dt=f(x).
Solution withB≠–A:
y(x) = 1 A+B
d dx
Jν(λx)–A+B2A x
a
Jν(λt)–A+B2B ft(t)dt
.
35.
x
a
AJνk(λx) +BJµm(βt)
y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =AJνk(λx) andh(t) =BJµm(βt).
36.
x a
[Y0(λx)–Y0(λt)]y(t)dt=f(x).
Solution: y(x) =– d dx
fx(x) λY1(λx)
.
37.
x
a
[Yν(λx)–Yν(λt)]y(t)dt=f(x).
Solution: y(x) = d dx
xfx(x) νYν(λx)–λxYν+1(λx)
.
38.
x a
[AYν(λx) +BYν(λt)]y(t)dt=f(x).
ForB =–A, see equation 1.8.37. We consider the interval [a,x] in whichYν(λx) does not change its sign.
Solution withB≠–A:
y(x) =± 1 A+B
d dx
Yν(λx)–A+BA x
a
Yν(λt)–A+BB ft(t)dt
. Here the sign ofYν(λx) should be taken.
39.
x a
[AtkYν(λx) +BxmYµ(λt)]y(t)dt=f(x).
This is a special case of equation 1.9.15 withg1(x) =AYν(λx),h1(t) =tk,g2(x) =Bxm, and h2(t) =Yµ(λt).
40.
x a
[AJν(λx)Yµ(βt) +BJν(λt)Yµ(βx)]y(t)dt=f(x).
This is a special case of equation 1.9.15 with g1(x) = AYν(λx), h1(t) = Yµ(βt), g2(x) = BYµ(βx), andh2(t) =Jν(λt).
1.8-2. Kernels Containing Modified Bessel Functions 41.
x a
I0[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = 1 λ
d2 dx2 –λ2
2 x a
(x–t)I1[λ(x–t)]f(t)dt.
42.
x a
[I0(λx) –I0(λt)]y(t)dt=f(x), f(a) =fx(a) = 0.
Solution: y(x) = d dx
fx(x) λI1(λx)
.
43.
x a
[AI0(λx) +BI0(λt)]y(t)dt =f(x).
ForB =–A, see equation 1.8.42. Solution withB≠–A:
y(x) =± 1 A+B
d dx
I0(λx)–A+BA x a
I0(λt)–A+BB ft(t)dt
. Here the sign ofIν(λx) should be taken.
44.
x
a
(x–t)I0[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt, where
g(t) = 1 λ
d2 dt2 –λ2
3 t a
(t–τ)I1[λ(t–τ)]f(τ)dτ.
45.
x a
(x–t)I1[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = 1 3λ3
d2 dx2 –λ2
4 x
a
(x–t)2I2[λ(x–t)]f(t)dt.
46.
x
a
(x–t)2I1[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt, where
g(t) = 1 9λ3
d2 dt2 –λ2
5 t a
t–τ2
I2[λ(t–τ)]f(τ)dτ.
47.
x a
(x–t)nIn[λ(x–t)]y(t)dt=f(x), n= 0, 1, 2,. . .
Solution:
y(x) =A d2
dx2 –λ2
2n+2 x
a
(x–t)n+1In+1[λ(x–t)]f(t)dt, A= 2
λ
2n+1 n! (n+ 1)!
(2n)! (2n+ 2)!.
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(2n+1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form
y(x) =A x
a
(x–t)2n+1I2n+1[λ(x–t)]F(t)dt, F(t) = d2
dt2 –λ2 2n+2
f(t).
48.
x a
(x–t)n+1In[λ(x–t)]y(t)dt=f(x), n= 0, 1, 2,. . .
Solution:
y(x) = x
a
g(t)dt,
where
g(t) =A d2
dt2 –λ2
2n+3 t a
(t–τ)n+1In+1[λ(t–τ)]f(τ)dτ, A= 2
λ
2n+1 n! (n+ 1)!
(2n+ 1)! (2n+ 2)!.
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(2n+2)(a) = 0 are satisfied, then the functiong(t) defining the solution can be written in the form
g(t) =A t
a
(t–τ)n–ν–2In–ν–2[λ(t–τ)]F(τ)dτ, F(τ) = d2
dτ2 –λ2 2n+2
f(τ).
49.
x a
(x–t)1/2I1/2[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = π 4λ2
d2 dx2 –λ2
3 x a
(x–t)3/2I3/2[λ(x–t)]f(t)dt.
50.
x a
(x–t)3/2I1/2[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt, where
g(t) = π 8λ2
d2 dt2 –λ2
4 t a
(t–τ)3/2I3/2[λ(t–τ)]f(τ)dτ.
51.
x a
(x–t)3/2I3/2[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) =
√π 23/2λ5/2
d2 dx2 –λ2
3 x a
sinh[λ(x–t)]f(t)dt.
52.
x a
(x–t)5/2I3/2[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt, where
g(t) = π 128λ4
d2 dt2 –λ2
6 t
a
(t–τ)5/2I5/2[λ(t–τ)]f(τ)dτ.
53.
x
a
x–t2n–12 I2n–1
2
[λ(x–t)]y(t)dt=f(x), n= 2, 3,. . .
Solution:
y(x) =
√π
√2λ2n+12 (2n–2)!!
d2 dx2 –λ2
n x a
sinh[λ(x–t)]f(t)dt.
54.
x
a
[Iν(λx)–Iν(λt)]y(t)dt=f(x).
This is a special case of equation 1.9.2 withg(x) =Iν(λx).
55.
x a
[AIν(λx) +BIν(λt)]y(t)dt=f(x).
Solution withB≠–A:
y(x) = 1 A+B
d dx
Iν(λx)–A+BA x a
Iν(λt)–A+BB ft(t)dt
.
56.
x a
[AIν(λx) +BIµ(βt)]y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =AIν(λx) andh(t) =BIµ(βt).
57.
x
a
(x–t)νIν[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) =A d2
dx2 –λ2 n x
a
(x–t)n–ν–1In–ν–1[λ(x–t)]f(t)dt, A= 2
λ
n–1 Γ(ν+ 1)Γ(n–ν) Γ(2ν+ 1)Γ(2n–2ν–1), where–12 <ν< n–12 andn= 1, 2,. . .
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form
y(x) =A x
a
(x–t)n–ν–1In–ν–1[λ(x–t)]F(t)dt, F(t) = d2
dt2 –λ2 n
f(t).
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
58.
x
a
(x–t)ν+1Iν[λ(x–t)]y(t)dt=f(x).
Solution:
y(x) = x
a
g(t)dt,
where
g(t) =A d2
dt2 –λ2 n t
a
(t–τ)n–ν–2In–ν–2[λ(t–τ)]f(τ)dτ, A= 2
λ
n–2 Γ(ν+ 1)Γ(n–ν–1) Γ(2ν+ 2)Γ(2n–2ν–3), where–1 <ν < n2 –1 andn= 1, 2,. . .
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the functiong(t) defining the solution can be written in the form
g(t) =A t
a
(t–τ)n–ν–2In–ν–2[λ(t–τ)]F(τ)dτ, F(τ) = d2
dτ2 –λ2 n
f(τ).
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
59.
x
a
I0
λ√ x–t
y(t)dt=f(x).
Solution:
y(x) = d2 dx2
x
a
J0 λ√
x–t f(t)dt.
60.
x a
AIν
λ√ x
+BIν
λ√ t
y(t)dt =f(x).
Solution withB≠–A:
y(x) = 1 A+B
d dx
Iν
λ√
x–A+BA x a
Iν
λ√
t–A+BB ft(t)dt
.
61.
x
a
AIν λ√
x
+BIµ β√
t
y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =AIν
λ√ x
andh(t) =BIµ
β√ t
. 62.
x a
√x–t I1
λ√ x–t
y(t)dt=f(x).
Solution:
y(x) = 2 λ
d3 dx3
x a
J0 λ√
x–t f(t)dt.
63.
x
a
(x–t)1/4I1/2 λ√
x–t
y(t)dt=f(x).
Solution:
y(x) = 2
πλ d2 dx2
x a
cos λ√
x–t
√x–t f(t)dt.
64.
x a
(x–t)3/4I3/2 λ√
x–t
y(t)dt=f(x).
Solution:
y(x) = 23/2
√π λ3/2 d3 dx3
x
a
cos λ√
x–t
√x–t f(t)dt.
65.
x a
(x–t)n/2In λ√
x–t
y(t)dt=f(x), n= 0, 1, 2,. . .
Solution:
y(x) = 2 λ
n dn+2 dxn+2
x a
J0 λ√
x–t f(t)dt.
66.
x a
x–t2n–3
4 I2n–3 2
λ√ x–t
y(t)dt=f(x), n= 1, 2,. . .
Solution:
y(x) = 1
√π 2
λ 2n–3
2 dn dxn
x a
cos λ√
x–t
√x–t f(t)dt.
67.
x
a
(x–t)–1/4I–1/2 λ√
x–t
y(t)dt=f(x).
Solution:
y(x) = λ
2π d dx
x
a
cos λ√
x–t
√x–t f(t)dt.
68.
x a
(x–t)ν/2Iν
λ√ x–t
y(t)dt=f(x).
Solution:
y(x) = 2 λ
n–2 dn dxn
x a
x–tn–ν–2
2 Jn–ν–2
λ√ x–t
f(t)dt, where–1 <ν <n–1,n= 1, 2,. . .
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form
y(x) = 2 λ
n–2 x
a
x–tn–ν–2
2 Jn–ν–2 λ√
x–t
ft(n)(t)dt.
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
69.
x
0
x2–t2–1/4
I–1/2 λ√
x2–t2
y(t)dt =f(x).
Solution:
y(x) = 2λ
π d dx
x 0
tcos λ√
x2–t2
√x2–t2 f(t)dt.
70.
∞
x
t2–x2–1/4
I–1/2 λ√
t2–x2
y(t)dt=f(x).
Solution:
y(x) =– 2λ
π d dx
∞
x
tcos λ√
t2–x2
√t2–x2 f(t)dt.
71.
x 0
x2–t2ν/2
Iν
λ√
x2–t2
y(t)dt=f(x), –1 <ν < 0.
Solution:
y(x) =λ d dx
x 0
t
x2–t2–(ν+1)/2
J–ν–1
λ√ x2–t2
f(t)dt.
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
72.
∞
x
(t2–x2)ν/2Iν
λ√
t2–x2
y(t)dt=f(x), –1 <ν < 0.
Solution:
y(x) =–λ d dx
∞
x
t(t2–x2)–(ν+1)/2J–ν–1
λ√ t2–x2
f(t)dt.
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
73.
x a
[AtkIν(λx) +BxsIµ(λt)]y(t)dt=f(x).
This is a special case of equation 1.9.15 withg1(x) =AIν(λx),h1(t) =tk,g2(x) =Bxs, and h2(t) =Iµ(λt).
74.
x a
[AIν2(λx) +BIν2(λt)]y(t)dt=f(x).
Solution withB≠–A:
y(x) = 1 A+B
d dx
Iν(λx)–A+B2A x
a
Iν(λt)–A+B2B ft(t)dt
.
75.
x
a
[AIνk(λx) +BIµs(βt)]y(t)dt=f(x).
This is a special case of equation 1.9.6 withg(x) =AIνk(λx) andh(t) =BIµs(βt).
76.
x
a
[K0(λx)–K0(λt)]y(t)dt =f(x).
Solution: y(x) =– d dx
fx(x) λK1(λx)
.
77.
x a
[Kν(λx)–Kν(λt)]y(t)dt=f(x).
This is a special case of equation 1.9.2 withg(x) =Kν(λx).
78.
x a
[AKν(λx) +BKν(λt)]y(t)dt=f(x).
Solution withB≠–A:
y(x) = 1 A+B
d dx
Kν(λx)–A+BA x
a
Kν(λt)–A+BB ft(t)dt
.
79.
x
a
[AtkKν(λx) +BxsKµ(λt)]y(t)dt=f(x).
This is a special case of equation 1.9.15 withg1(x) =AKν(λx),h1(t) =tk,g2(x) =Bxs, and h2(t) =Kµ(λt).
80.
x a
[AIν(λx)Kµ(βt) +BIν(λt)Kµ(βx)]y(t)dt=f(x).
This is a special case of equation 1.9.15 with g1(x) = AIν(λx), h1(t) = Kµ(βt), g2(x) = BKµ(βx), andh2(t) =Iν(λt).
1.8-3. Kernels Containing Associated Legendre Functions
81.
x a
(x2–t2)–µ/2Pνµ x t
y(t)dt=f(x), 0 <a<∞.
HerePνµ(x) is the associated Legendre function (see Supplement 10).
Solution:
y(x) =xn+µ–1 dn dxn
x1–µ
x a
(x2–t2)
n+µ–2
2 t–nPν2–n–µ t
x
f(t)dt
, whereµ< 1,ν ≥–12, andn= 1, 2,. . .
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
82.
x a
(x2–t2)–µ/2Pνµ t x
y(t)dt=f(x), 0 <a<∞.
HerePνµ(x) is the associated Legendre function (see Supplement 10).
Solution:
y(x) = dn dxn
x
a
(x2–t2)n+µ–22 Pν2–n–µ x t
f(t)dt, whereµ< 1,ν ≥–12, andn= 1, 2,. . .
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
83.
b x
(t2–x2)–µ/2Pνµ x t
y(t)dt=f(x), 0 <b<∞.
HerePνµ(x) is the associated Legendre function (see Supplement 10).
Solution:
y(x) = (–1)nxn+µ–1 dn dxn
x1–µ
b x
(t2–x2)
n+µ–2
2 t–nPν2–n–µ t
x
f(t)dt
, whereµ< 1,ν ≥–12, andn= 1, 2,. . .
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
84.
b
x
(t2–x2)–µ/2Pνµ t x
y(t)dt=f(x), 0 <b<∞.
HerePνµ(x) is the associated Legendre function (see Supplement 10).
Solution:
y(x) = (–1)n dn dxn
b
x
(t2–x2)n+µ–22 Pν2–n–µ x t
f(t)dt, whereµ< 1,ν ≥–12, andn= 1, 2,. . .
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
1.8-4. Kernels Containing Hypergeometric Functions
85.
x s
(x–t)b–1Φ
a,b;λ(x–t)
y(t)dt=f(x).
HereΦ(a,b;z) is the degenerate hypergeometric function (see Supplement 10).
Solution:
y(x) = dn dxn
x
s
(x–t)n–b–1 Γ(b)Γ(n–b)Φ
–a,n–b;λ(x–t) f(t)dt, where 0 <b<nandn= 1, 2,. . .
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(s) =fx(s) =· · · =fx(n–1)(s) = 0 are satisfied, then the solution of the integral equation can be written in the form
y(x) = x
s
(x–t)n–b–1 Γ(b)Γ(n–b)Φ
–a,n–b;λ(x–t)
ft(n)(t)dt.
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
86.
x
s
(x–t)c–1F
a,b,c; 1– x t
y(t)dt=f(x).
HereΦ(a,b,c;z) is the Gaussian hypergeometric function (see Supplement 10).
Solution:
y(x) =x–a dn dxn
xa
x s
(x–t)n–c–1
Γ(c)Γ(n–c)F –a,n–b,n–c; 1– t x
f(t)dt
, where 0 <c<nandn= 1, 2,. . .
If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(s) =fx(s) =· · · =fx(n–1)(s) = 0 are satisfied, then the solution of the integral equation can be written in the form
y(x) = x
s
(x–t)n–c–1
Γ(c)Γ(n–c)F –a,–b,n–c; 1– t x
ft(n)(t)dt.
• Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).