• Tidak ada hasil yang ditemukan

Equations Whose Kernels Contain Special Functions

Dalam dokumen HANDBOOK OF INTEGRAL EQUATIONS (Halaman 99-114)

Linear Equations of the First Kind With Variable Limit of Integration

1.8. Equations Whose Kernels Contain Special Functions

96.

x a

Atanhβ(λx) +Bcosγ(µt) +C

y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =Atanhβ(λx) andh(t) =Bcosγ(µt) +C.

97.

x a

Atanhβ(λx) +Bsinγ(µt) +C

y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =Atanhβ(λx) andh(t) =Bsinγ(µt) +C.

1.7-6. Kernels Containing Logarithmic and Trigonometric Functions

98.

x a

Acosβ(λx) +Blnγ(µt) +C

y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =Acosβ(λx) andh(t) =Blnγ(µt) +C.

99.

x a

Acosβ(λt) +Blnγ(µx) +C

y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =Blnγ(µx) +Candh(t) =Acosβ(λt).

100.

x

a

Asinβ(λx) +Blnγ(µt) +C

y(t)dt =f(x).

This is a special case of equation 1.9.6 withg(x) =Asinβ(λx) andh(t) =Blnγ(µt) +C.

101.

x a

Asinβ(λt) +Blnγ(µx) +C

y(t)dt =f(x).

This is a special case of equation 1.9.6 withg(x) =Blnγ(µx) andh(t) =Asinβ(λt) +C.

1.8. Equations Whose Kernels Contain Special

3.

x a

[AJ0(λx) +BJ0(λt)]y(t)dt=f(x).

ForB =–A, see equation 1.8.2. We consider the interval [a,x] in whichJ0(λx) does not change its sign.

Solution withB≠–A:

y(x) =± 1 A+B

d dx

J0(λx)–A+BA x

a

J0(λt)–A+BB ft(t)dt

. Here the sign ofJ0(λx) should be taken.

4.

x

a

(xt)J0[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt, where

g(t) = 1 λ

d2 dt2 +λ2

3 t a

(tτ)J1[λ(tτ)]f(τ).

5.

x

a

(xt)J1[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = 1 3λ3

d2 dx2 +λ2

4 x a

(xt)2J2[λ(xt)]f(t)dt.

6.

x

a

xt2

J1[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt, where

g(t) = 1 9λ3

d2 dt2 +λ2

5 t a

tτ2

J2[λ(tτ)]f(τ).

7.

x

a

xtn

Jn[λ(xt)]y(t)dt=f(x), n= 0, 1, 2,. . .

Solution:

y(x) =A d2

dx2 +λ2

2n+2 x a

(xt)n+1Jn+1[λ(xt)]f(t)dt, A= 2

λ

2n+1 n! (n+ 1)!

(2n)! (2n+ 2)!.

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(2n+1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form

y(x) =A x

a

(xt)2n+1J2n+1[λ(xt)]F(t)dt, F(t) = d2

dt2 +λ2 2n+2

f(t)dt.

8.

x a

xtn+1

Jn[λ(xt)]y(t)dt=f(x), n= 0, 1, 2,. . . Solution:

y(x) = x

a

g(t)dt,

where

g(t) =A d2

dt2 +λ2

2n+3 t a

(tτ)n+1Jn+1[λ(tτ)]f(τ), A= 2

λ

2n+1 n! (n+ 1)!

(2n+ 1)! (2n+ 2)!.

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(2n+2)(a) = 0 are satisfied, then the functiong(t) defining the solution can be written in the form

g(t) =A t

a

(tτ)nν–2Jnν–2[λ(tτ)]F(τ), F(τ) = d2

2 +λ2 2n+2

f(τ).

9.

x

a

(xt)1/2J1/2[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = π 4λ2

d2 dx2 +λ2

3 x a

(xt)3/2J3/2[λ(xt)]f(t)dt.

10.

x

a

(xt)3/2J1/2[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt, where

g(t) = π 8λ2

d2 dt2 +λ2

4 t a

(tτ)3/2J3/2[λ(tτ)]f(τ).

11.

x a

(xt)3/2J3/2[λ(xt)]y(t)dt=f(x).

Solution:

y(x) =

√π 23/2λ5/2

d2 dx2 +λ2

3 x a

sin[λ(xt)]f(t)dt.

12.

x

a

(xt)5/2J3/2[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt, where

g(t) = π 128λ4

d2 dt2 +λ2

6 t a

(tτ)5/2J5/2[λ(tτ)]f(τ).

13.

x a

(xt)

2n–1 2 J2n–1

2

[λ(xt)]y(t)dt=f(x), n= 2, 3,. . .

Solution:

y(x) =

√π

2λ2n+12 (2n–2)!!

d2 dx2 +λ2

n x

a

sin[λ(xt)]f(t)dt.

14.

x

a

[Jν(λx)–Jν(λt)]y(t)dt=f(x).

This is a special case of equation 1.9.2 withg(x) =Jν(λx).

Solution: y(x) = d dx

xfx(x) νJν(λx)–λxJν+1(λx)

.

15.

x a

[AJν(λx) +BJν(λt)]y(t)dt=f(x).

ForB =–A, see equation 1.8.14. We consider the interval [a,x] in whichJν(λx) does not change its sign.

Solution withB≠–A:

y(x) =± 1 A+B

d dx

Jν(λx)–A+BA x

a

Jν(λt)–A+BB ft(t)dt

. Here the sign ofJν(λx) should be taken.

16.

x a

[AJν(λx) +BJµ(βt)]y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =AJν(λx) andh(t) =BJµ(βt).

17.

x

a

(xt)νJν[λ(xt)]y(t)dt=f(x).

Solution:

y(x) =A d2

dx2 +λ2 n x

a

(xt)nν–1Jnν–1[λ(xt)]f(t)dt, A= 2

λ

n–1 Γ(ν+ 1)Γ(nν) Γ(2ν+ 1)Γ(2n–2ν–1), where–12 <ν< n–12 andn= 1, 2,. . .

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form

y(x) =A x

a

(xt)nν–1Jnν–1[λ(xt)]F(t)dt, F(t) = d2

dt2 +λ2 n

f(t).

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

18.

x a

(xt)ν+1Jν[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt,

where

g(t) =A d2

dt2 +λ2 n t

a

(tτ)nν–2Jnν–2[λ(tτ)]f(τ), A= 2

λ

n–2 Γ(ν+ 1)Γ(nν–1) Γ(2ν+ 2)Γ(2n–2ν–3), where–1 <ν < n2 –1 andn= 1, 2,. . .

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the functiong(t) defining the solution can be written in the form

g(t) =A t

a

(tτ)nν–2Jnν–2[λ(tτ)]F(τ), F(τ) = d2

2 +λ2 n

f(τ).

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

19.

x

a

J0

λ xt

y(t)dt=f(x).

Solution:

y(x) = d2 dx2

x a

I0

λ√ xt

f(t)dt.

20.

x a

AJν

λ x

+BJν

λ t

y(t)dt=f(x).

We consider the interval [a,x] in whichJν λ√

x

does not change its sign.

Solution withB≠–A:

y(x) =± 1 A+B

d dx

Jν

λ√

xA+BA x

a

Jν

λ√

tA+BB ft(t)dt

. Here the signJν

λ√ x

should be taken.

21.

x a

AJν

λ x

+BJµ

β t

y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =AJν

λ√ x

andh(t) =BJµ

β√ t

. 22.

x a

xt J1

λ xt

y(t)dt=f(x).

Solution:

y(x) = 2 λ

d3 dx3

x

a

I0 λ√

xt f(t)dt.

23.

x a

(xt)1/4J1/2

λ xt

y(t)dt=f(x).

Solution:

y(x) = 2

πλ d2 dx2

x a

cosh λ√

xt

√xt f(t)dt.

24.

x

a

(xt)3/4J3/2 λ

xt

y(t)dt=f(x).

Solution:

y(x) = 23/2

√π λ3/2 d3 dx3

x

a

cosh λ√

xt

√xt f(t)dt.

25.

x a

(xt)n/2Jn

λ xt

y(t)dt=f(x), n= 0, 1, 2,. . . Solution:

y(x) = 2 λ

n dn+2 dxn+2

x a

I0

λ√ xt

f(t)dt.

26.

x

a

xt2n–3

4 J2n–3 2

λ xt

y(t)dt=f(x), n= 1, 2,. . . Solution:

y(x) = 1

√π 2

λ 2n–3

2 dn dxn

x

a

cosh λ√

xt

√xt f(t)dt.

27.

x

a

(xt)–1/4J–1/2 λ

xt

y(t)dt=f(x).

Solution:

y(x) = λ

2π d dx

x a

cosh λ√

xt

√xt f(t)dt.

28.

x

a

(xt)ν/2Jν

λ xt

y(t)dt=f(x).

Solution:

y(x) = 2 λ

n–2 dn dxn

x

a

xtnν–2

2 Inν–2 λ√

xt f(t)dt, where–1 <ν <n–1,n= 1, 2,. . .

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form

y(x) = 2 λ

n–2 x

a

xtnν–2

2 Inν–2 λ√

xt

ft(n)(t)dt.

29.

x 0

x2t2–1/4

J–1/2 λ

x2t2

y(t)dt=f(x).

Solution:

y(x) = 2λ

π d dx

x 0

tcosh λ√

x2t2

√x2t2 f(t)dt.

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

30.

x

t2x2–1/4

J–1/2

λ

t2x2

y(t)dt=f(x).

Solution:

y(x) =– 2λ

π d dx

x

t cosh λ√

t2x2

√t2x2 f(t)dt.

31.

x

0

x2t2ν/2

Jν λ

x2t2

y(t)dt=f(x), –1 <ν < 0.

Solution:

y(x) =λ d dx

x

0

t

x2t2–(ν+1)/2

Iν–1 λ√

x2t2 f(t)dt.

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

32.

x

t2x2ν/2

Jν

λ

t2x2

y(t)dt=f(x), –1 <ν< 0.

Solution:

y(x) =–λ d dx

x

t

t2x2–(ν+1)/2

Iν–1 λ√

t2x2 f(t)dt.

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

33.

x a

[AtkJν(λx) +BxmJµ(λt)]y(t)dt=f(x).

This is a special case of equation 1.9.15 withg1(x) =AJν(λx),h1(t) =tk,g2(x) =Bxm, and h2(t) =Jµ(λt).

34.

x a

[AJν2(λx) +BJν2(λt)]y(t)dt=f(x).

Solution withB≠–A:

y(x) = 1 A+B

d dx

Jν(λx)–A+B2A x

a

Jν(λt)–A+B2B ft(t)dt

.

35.

x

a

AJνk(λx) +BJµm(βt)

y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =AJνk(λx) andh(t) =BJµm(βt).

36.

x a

[Y0(λx)–Y0(λt)]y(t)dt=f(x).

Solution: y(x) =– d dx

fx(x) λY1(λx)

.

37.

x

a

[Yν(λx)–Yν(λt)]y(t)dt=f(x).

Solution: y(x) = d dx

xfx(x) νYν(λx)–λxYν+1(λx)

.

38.

x a

[AYν(λx) +BYν(λt)]y(t)dt=f(x).

ForB =–A, see equation 1.8.37. We consider the interval [a,x] in whichYν(λx) does not change its sign.

Solution withB≠–A:

y(x) =± 1 A+B

d dx

Yν(λx)–A+BA x

a

Yν(λt)–A+BB ft(t)dt

. Here the sign ofYν(λx) should be taken.

39.

x a

[AtkYν(λx) +BxmYµ(λt)]y(t)dt=f(x).

This is a special case of equation 1.9.15 withg1(x) =AYν(λx),h1(t) =tk,g2(x) =Bxm, and h2(t) =Yµ(λt).

40.

x a

[AJν(λx)Yµ(βt) +BJν(λt)Yµ(βx)]y(t)dt=f(x).

This is a special case of equation 1.9.15 with g1(x) = AYν(λx), h1(t) = Yµ(βt), g2(x) = BYµ(βx), andh2(t) =Jν(λt).

1.8-2. Kernels Containing Modified Bessel Functions 41.

x a

I0[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = 1 λ

d2 dx2λ2

2 x a

(xt)I1[λ(xt)]f(t)dt.

42.

x a

[I0(λx) –I0(λt)]y(t)dt=f(x), f(a) =fx(a) = 0.

Solution: y(x) = d dx

fx(x) λI1(λx)

.

43.

x a

[AI0(λx) +BI0(λt)]y(t)dt =f(x).

ForB =–A, see equation 1.8.42. Solution withB≠–A:

y(x) =± 1 A+B

d dx

I0(λx)–A+BA x a

I0(λt)–A+BB ft(t)dt

. Here the sign ofIν(λx) should be taken.

44.

x

a

(xt)I0[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt, where

g(t) = 1 λ

d2 dt2λ2

3 t a

(tτ)I1[λ(tτ)]f(τ).

45.

x a

(xt)I1[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = 1 3λ3

d2 dx2λ2

4 x

a

(xt)2I2[λ(xt)]f(t)dt.

46.

x

a

(xt)2I1[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt, where

g(t) = 1 9λ3

d2 dt2λ2

5 t a

tτ2

I2[λ(tτ)]f(τ).

47.

x a

(xt)nIn[λ(xt)]y(t)dt=f(x), n= 0, 1, 2,. . .

Solution:

y(x) =A d2

dx2λ2

2n+2 x

a

(xt)n+1In+1[λ(xt)]f(t)dt, A= 2

λ

2n+1 n! (n+ 1)!

(2n)! (2n+ 2)!.

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(2n+1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form

y(x) =A x

a

(xt)2n+1I2n+1[λ(xt)]F(t)dt, F(t) = d2

dt2λ2 2n+2

f(t).

48.

x a

(xt)n+1In[λ(xt)]y(t)dt=f(x), n= 0, 1, 2,. . .

Solution:

y(x) = x

a

g(t)dt,

where

g(t) =A d2

dt2λ2

2n+3 t a

(tτ)n+1In+1[λ(tτ)]f(τ), A= 2

λ

2n+1 n! (n+ 1)!

(2n+ 1)! (2n+ 2)!.

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(2n+2)(a) = 0 are satisfied, then the functiong(t) defining the solution can be written in the form

g(t) =A t

a

(tτ)nν–2Inν–2[λ(tτ)]F(τ), F(τ) = d2

2λ2 2n+2

f(τ).

49.

x a

(xt)1/2I1/2[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = π 4λ2

d2 dx2λ2

3 x a

(xt)3/2I3/2[λ(xt)]f(t)dt.

50.

x a

(xt)3/2I1/2[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt, where

g(t) = π 8λ2

d2 dt2λ2

4 t a

(tτ)3/2I3/2[λ(tτ)]f(τ).

51.

x a

(xt)3/2I3/2[λ(xt)]y(t)dt=f(x).

Solution:

y(x) =

√π 23/2λ5/2

d2 dx2λ2

3 x a

sinh[λ(xt)]f(t)dt.

52.

x a

(xt)5/2I3/2[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt, where

g(t) = π 128λ4

d2 dt2λ2

6 t

a

(tτ)5/2I5/2[λ(tτ)]f(τ).

53.

x

a

xt2n–12 I2n–1

2

[λ(xt)]y(t)dt=f(x), n= 2, 3,. . .

Solution:

y(x) =

√π

2λ2n+12 (2n–2)!!

d2 dx2λ2

n x a

sinh[λ(xt)]f(t)dt.

54.

x

a

[Iν(λx)–Iν(λt)]y(t)dt=f(x).

This is a special case of equation 1.9.2 withg(x) =Iν(λx).

55.

x a

[AIν(λx) +BIν(λt)]y(t)dt=f(x).

Solution withB≠–A:

y(x) = 1 A+B

d dx

Iν(λx)–A+BA x a

Iν(λt)–A+BB ft(t)dt

.

56.

x a

[AIν(λx) +BIµ(βt)]y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =AIν(λx) andh(t) =BIµ(βt).

57.

x

a

(xt)νIν[λ(xt)]y(t)dt=f(x).

Solution:

y(x) =A d2

dx2λ2 n x

a

(xt)nν–1Inν–1[λ(xt)]f(t)dt, A= 2

λ

n–1 Γ(ν+ 1)Γ(nν) Γ(2ν+ 1)Γ(2n–2ν–1), where–12 <ν< n–12 andn= 1, 2,. . .

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form

y(x) =A x

a

(xt)nν–1Inν–1[λ(xt)]F(t)dt, F(t) = d2

dt2λ2 n

f(t).

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

58.

x

a

(xt)ν+1Iν[λ(xt)]y(t)dt=f(x).

Solution:

y(x) = x

a

g(t)dt,

where

g(t) =A d2

dt2λ2 n t

a

(tτ)nν–2Inν–2[λ(tτ)]f(τ), A= 2

λ

n–2 Γ(ν+ 1)Γ(nν–1) Γ(2ν+ 2)Γ(2n–2ν–3), where–1 <ν < n2 –1 andn= 1, 2,. . .

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the functiong(t) defining the solution can be written in the form

g(t) =A t

a

(tτ)nν–2Inν–2[λ(tτ)]F(τ), F(τ) = d2

2λ2 n

f(τ).

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

59.

x

a

I0

λ xt

y(t)dt=f(x).

Solution:

y(x) = d2 dx2

x

a

J0 λ√

xt f(t)dt.

60.

x a

AIν

λ x

+BIν

λ t

y(t)dt =f(x).

Solution withB≠–A:

y(x) = 1 A+B

d dx

Iν

λ√

xA+BA x a

Iν

λ√

tA+BB ft(t)dt

.

61.

x

a

AIν λ

x

+BIµ β

t

y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =AIν

λ√ x

andh(t) =BIµ

β√ t

. 62.

x a

xt I1

λ xt

y(t)dt=f(x).

Solution:

y(x) = 2 λ

d3 dx3

x a

J0 λ√

xt f(t)dt.

63.

x

a

(xt)1/4I1/2 λ

xt

y(t)dt=f(x).

Solution:

y(x) = 2

πλ d2 dx2

x a

cos λ√

xt

√xt f(t)dt.

64.

x a

(xt)3/4I3/2 λ

xt

y(t)dt=f(x).

Solution:

y(x) = 23/2

√π λ3/2 d3 dx3

x

a

cos λ√

xt

√xt f(t)dt.

65.

x a

(xt)n/2In λ

xt

y(t)dt=f(x), n= 0, 1, 2,. . .

Solution:

y(x) = 2 λ

n dn+2 dxn+2

x a

J0 λ√

xt f(t)dt.

66.

x a

xt2n–3

4 I2n–3 2

λ xt

y(t)dt=f(x), n= 1, 2,. . .

Solution:

y(x) = 1

√π 2

λ 2n–3

2 dn dxn

x a

cos λ√

xt

√xt f(t)dt.

67.

x

a

(xt)–1/4I–1/2 λ

xt

y(t)dt=f(x).

Solution:

y(x) = λ

2π d dx

x

a

cos λ√

xt

√xt f(t)dt.

68.

x a

(xt)ν/2Iν

λ xt

y(t)dt=f(x).

Solution:

y(x) = 2 λ

n–2 dn dxn

x a

xtnν–2

2 Jnν–2

λ√ xt

f(t)dt, where–1 <ν <n–1,n= 1, 2,. . .

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(a) =fx(a) =· · ·=fx(n–1)(a) = 0 are satisfied, then the solution of the integral equation can be written in the form

y(x) = 2 λ

n–2 x

a

xtnν–2

2 Jnν–2 λ√

xt

ft(n)(t)dt.

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

69.

x

0

x2t2–1/4

I–1/2 λ

x2t2

y(t)dt =f(x).

Solution:

y(x) = 2λ

π d dx

x 0

tcos λ√

x2t2

√x2t2 f(t)dt.

70.

x

t2x2–1/4

I–1/2 λ

t2x2

y(t)dt=f(x).

Solution:

y(x) =– 2λ

π d dx

x

tcos λ√

t2x2

√t2x2 f(t)dt.

71.

x 0

x2t2ν/2

Iν

λ

x2t2

y(t)dt=f(x), –1 <ν < 0.

Solution:

y(x) =λ d dx

x 0

t

x2t2–(ν+1)/2

Jν–1

λ√ x2t2

f(t)dt.

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

72.

x

(t2x2)ν/2Iν

λ

t2x2

y(t)dt=f(x), –1 <ν < 0.

Solution:

y(x) =–λ d dx

x

t(t2x2)–(ν+1)/2Jν–1

λ√ t2x2

f(t)dt.

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

73.

x a

[AtkIν(λx) +BxsIµ(λt)]y(t)dt=f(x).

This is a special case of equation 1.9.15 withg1(x) =AIν(λx),h1(t) =tk,g2(x) =Bxs, and h2(t) =Iµ(λt).

74.

x a

[AIν2(λx) +BIν2(λt)]y(t)dt=f(x).

Solution withB≠–A:

y(x) = 1 A+B

d dx

Iν(λx)–A+B2A x

a

Iν(λt)–A+B2B ft(t)dt

.

75.

x

a

[AIνk(λx) +BIµs(βt)]y(t)dt=f(x).

This is a special case of equation 1.9.6 withg(x) =AIνk(λx) andh(t) =BIµs(βt).

76.

x

a

[K0(λx)–K0(λt)]y(t)dt =f(x).

Solution: y(x) =– d dx

fx(x) λK1(λx)

.

77.

x a

[Kν(λx)–Kν(λt)]y(t)dt=f(x).

This is a special case of equation 1.9.2 withg(x) =Kν(λx).

78.

x a

[AKν(λx) +BKν(λt)]y(t)dt=f(x).

Solution withB≠–A:

y(x) = 1 A+B

d dx

Kν(λx)–A+BA x

a

Kν(λt)–A+BB ft(t)dt

.

79.

x

a

[AtkKν(λx) +BxsKµ(λt)]y(t)dt=f(x).

This is a special case of equation 1.9.15 withg1(x) =AKν(λx),h1(t) =tk,g2(x) =Bxs, and h2(t) =Kµ(λt).

80.

x a

[AIν(λx)Kµ(βt) +BIν(λt)Kµ(βx)]y(t)dt=f(x).

This is a special case of equation 1.9.15 with g1(x) = AIν(λx), h1(t) = Kµ(βt), g2(x) = BKµ(βx), andh2(t) =Iν(λt).

1.8-3. Kernels Containing Associated Legendre Functions

81.

x a

(x2t2)µ/2Pνµ x t

y(t)dt=f(x), 0 <a<.

HerePνµ(x) is the associated Legendre function (see Supplement 10).

Solution:

y(x) =xn+µ–1 dn dxn

x1–µ

x a

(x2t2)

n+µ–2

2 tnPν2–nµ t

x

f(t)dt

, whereµ< 1,ν ≥–12, andn= 1, 2,. . .

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

82.

x a

(x2t2)µ/2Pνµ t x

y(t)dt=f(x), 0 <a<.

HerePνµ(x) is the associated Legendre function (see Supplement 10).

Solution:

y(x) = dn dxn

x

a

(x2t2)n+µ–22 Pν2–nµ x t

f(t)dt, whereµ< 1,ν ≥–12, andn= 1, 2,. . .

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

83.

b x

(t2x2)µ/2Pνµ x t

y(t)dt=f(x), 0 <b<.

HerePνµ(x) is the associated Legendre function (see Supplement 10).

Solution:

y(x) = (–1)nxn+µ–1 dn dxn

x1–µ

b x

(t2x2)

n+µ–2

2 tnPν2–nµ t

x

f(t)dt

, whereµ< 1,ν ≥–12, andn= 1, 2,. . .

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

84.

b

x

(t2x2)µ/2Pνµ t x

y(t)dt=f(x), 0 <b<.

HerePνµ(x) is the associated Legendre function (see Supplement 10).

Solution:

y(x) = (–1)n dn dxn

b

x

(t2x2)n+µ–22 Pν2–nµ x t

f(t)dt, whereµ< 1,ν ≥–12, andn= 1, 2,. . .

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

1.8-4. Kernels Containing Hypergeometric Functions

85.

x s

(xt)b–1Φ

a,b;λ(xt)

y(t)dt=f(x).

HereΦ(a,b;z) is the degenerate hypergeometric function (see Supplement 10).

Solution:

y(x) = dn dxn

x

s

(xt)nb–1 Γ(b)Γ(nb

a,nb;λ(xt) f(t)dt, where 0 <b<nandn= 1, 2,. . .

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(s) =fx(s) =· · · =fx(n–1)(s) = 0 are satisfied, then the solution of the integral equation can be written in the form

y(x) = x

s

(xt)nb–1 Γ(b)Γ(nb

a,nb;λ(xt)

ft(n)(t)dt.

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

86.

x

s

(xt)c–1F

a,b,c; 1– x t

y(t)dt=f(x).

HereΦ(a,b,c;z) is the Gaussian hypergeometric function (see Supplement 10).

Solution:

y(x) =xa dn dxn

xa

x s

(xt)nc–1

Γ(c)Γ(nc)Fa,nb,nc; 1– t x

f(t)dt

, where 0 <c<nandn= 1, 2,. . .

If the right-hand side of the equation is differentiable sufficiently many times and the conditionsf(s) =fx(s) =· · · =fx(n–1)(s) = 0 are satisfied, then the solution of the integral equation can be written in the form

y(x) = x

s

(xt)nc–1

Γ(c)Γ(nc)Fa,–b,nc; 1– t x

ft(n)(t)dt.

Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

1.9. Equations Whose Kernels Contain Arbitrary

Dalam dokumen HANDBOOK OF INTEGRAL EQUATIONS (Halaman 99-114)