• Tidak ada hasil yang ditemukan

Equations Whose Kernels Contain Trigonometric Functions

Dalam dokumen HANDBOOK OF INTEGRAL EQUATIONS (Halaman 167-177)

Linear Equations of the Second Kind With Variable Limit of Integration

2.5. Equations Whose Kernels Contain Trigonometric Functions

2.5-1. Kernels Containing Cosine 1. y(x)–A

x

a

cos(λx)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Acos(λx) andh(t) = 1.

Solution:

y(x) =f(x) +A x

a

cos(λx) exp A

λ

sin(λx)–sin(λt) f(t)dt.

2. y(x)–A x

a

cos(λt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Aandh(t) = cos(λt).

Solution:

y(x) =f(x) +A x

a

cos(λt) exp A

λ

sin(λx)–sin(λt) f(t)dt.

3. y(x) +A x

a

cos[λ(xt)]y(t)dt=f(x).

This is a special case of equation 2.9.34 with g(t) = A. Therefore, solving this integral equation is reduced to solving the following second-order linear nonhomogeneous ordinary differential equation with constant coefficients:

yxx+Ayx+λ2y=fxx +λ2f, f =f(x), with the initial conditions

y(a) =f(a), yx(a) =fx(a)–Af(a).

1. Solution with|A|> 2|λ|:

y(x) =f(x) + x

a

R(xt)f(t)dt, R(x) = exp

12AxA2

2k sinh(kx)–Acosh(kx)

, k= 14A2λ2. 2. Solution with|A|< 2|λ|:

y(x) =f(x) + x

a

R(xt)f(t)dt, R(x) = exp

12AxA2

2k sin(kx)–Acos(kx)

, k= λ214A2. 3. Solution withλ=±12A:

y(x) =f(x) + x

a

R(xt)f(t)dt, R(x) = exp

12Ax1

2A2xA .

4. y(x) + x

a

n k=1

Akcos[λk(xt)]

y(t)dt=f(x).

This integral equation is reduced to a linear nonhomogeneous ordinary differential equation of order 2nwith constant coefficients. Set

Ik(x) = x

a

cos[λk(xt)]y(t)dt. (1)

Differentiating (1) with respect toxtwice yields Ik =y(x)–λk

x a

sin[λk(xt)]y(t)dt, Ik=yx(x)–λ2k

x a

cos[λk(xt)]y(t)dt,

(2)

where the primes stand for differentiation with respect tox. Comparing (1) and (2), we see that

Ik=yx(x)–λ2kIk, Ik =Ik(x). (3)

With the aid of (1), the integral equation can be rewritten in the form y(x) +

n k=1

AkIk =f(x). (4)

Differentiating (4) with respect toxtwice taking into account (3) yields yxx (x) +σnyx(x)–

n k=1

Akλ2kIk=fxx(x), σn= n

k=1

Ak. (5)

Eliminating the integralInfrom (4) and (5), we obtain yxx(x) +σnyx(x) +λ2ny(x) +

n–1 k=1

Ak(λ2nλ2k)Ik =fxx (x) +λ2nf(x). (6)

Differentiating (6) with respect toxtwice followed by eliminatingIn–1 from the resulting expression with the aid of (6) yields a similar equation whose left-hand side is a fourth- order differential operator (acting on y) with constant coefficients plus the sum

n–2

k=1

BkIk. Successively eliminating the termsIn–2,In–3,. . . using double differentiation and formula (3), wefinally arrive at a linear nonhomogeneous ordinary differential equation of order 2nwith constant coefficients.

The initial conditions fory(x) can be obtained by settingx=ain the integral equation and all its derivative equations.

5. y(x)–A x

a

cos(λx)

cos(λt)y(t)dt=f(x).

Solution:

y(x) =f(x) +A x

a

eA(xt)cos(λx) cos(λt)f(t)dt.

6. y(x)–A x

a

cos(λt)

cos(λx)y(t)dt=f(x).

Solution:

y(x) =f(x) +A x

a

eA(xt) cos(λt) cos(λx)f(t)dt.

7. y(x)–A x

a

cosk(λx) cosm(µt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Acosk(λx) andh(t) = cosm(µt).

8. y(x) +A x

a

tcos[λ(xt)]y(t)dt=f(x).

This is a special case of equation 2.9.34 withg(t) =At.

9. y(x) +A x

a

tkcosm(λx)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =–Acosm(λx) andh(t) =tk.

10. y(x) +A x

a

xkcosm(λt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =–Axkandh(t) = cosm(λt).

11. y(x)– x

a

Acos(kx) +BAB(xt) cos(kx)

y(t)dt=f(x).

This is a special case of equation 2.9.7 withλ=Bandg(x) =Acos(kx).

Solution:

y(x) =f(x) + x

a

R(x,t)f(t)dt, R(x,t) = [Acos(kx) +B]G(x)

G(t) + B2 G(t)

x t

eB(xs)G(s)ds, G(x) = exp A

k sin(kx)

.

12. y(x) + x

a

Acos(kt) +B+AB(xt) cos(kt)

y(t)dt =f(x).

This is a special case of equation 2.9.8 withλ=Bandg(t) =Acos(kt).

Solution:

y(x) =f(x) + x

a

R(x,t)f(t)dt, R(x,t) =–[Acos(kt) +B]G(t)

G(x) + B2 G(x)

x

t

eB(ts)G(s)ds, G(x) = exp A

k sin(kx)

.

13. y(x) +A

x

cos λ

tx

y(t)dt =f(x).

This is a special case of equation 2.9.62 withK(x) =Acos λ√

x .

2.5-2. Kernels Containing Sine

14. y(x)–A x

a

sin(λx)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Asin(λx) andh(t) = 1.

Solution:

y(x) =f(x) +A x

a

sin(λx) exp A

λ

cos(λt)–cos(λx) f(t)dt.

15. y(x)–A x

a

sin(λt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Aandh(t) = sin(λt).

Solution:

y(x) =f(x) +A x

a

sin(λt) exp A

λ

cos(λt)–cos(λx) f(t)dt.

16. y(x) +A x

a

sin[λ(xt)]y(t)dt=f(x).

This is a special case of equation 2.9.36 withg(t) =A.

1. Solution withλ(A+λ) > 0:

y(x) =f(x)– k

x a

sin[k(xt)]f(t)dt, where k=

λ(A+λ).

2. Solution withλ(A+λ) < 0:

y(x) =f(x)– k

x a

sinh[k(xt)]f(t)dt, where k=

λ(λ+A).

3. Solution withA=–λ:

y(x) =f(x) +λ2 x

a

(xt)f(t)dt.

17. y(x) +A x

a

sin3[λ(xt)]y(t)dt=f(x).

Using the formula sin3β=–14 sin 3β+ 34sinβ, we arrive at an equation of the form 2.5.18:

y(x) + x

a

14Asin[3λ(xt)] + 34Asin[λ(xt)]

y(t)dt=f(x).

18. y(x) + x

a

A1sin[λ1(xt)] +A2sin[λ2(xt)]

y(t)dt=f(x).

This equation can be solved by the same method as equation 2.3.18, by reducing it to a fourth-order linear ordinary differential equation with constant coefficients.

Consider the characteristic equation

z2+ (λ21+λ22+A1λ1+A2λ2)z+λ21λ22+A1λ1λ22+A2λ21λ2= 0, (1) whose roots,z1andz2, determine the solution structure of the integral equation.

Assume that the discriminant of equation (1) is positive:

D≡(A1λ1A2λ2+λ21λ22)2+ 4A1A2λ1λ2> 0.

In this case, the quadratic equation (1) has the real (different) roots z1=–12(λ21+λ22+A1λ1+A2λ2) + 12

D, z2=–12(λ21+λ22+A1λ1+A2λ2)– 12 D.

Depending on the signs ofz1andz2the following three cases are possible.

Case 1. Ifz1 > 0 andz2 > 0, then the solution of the integral equation has the form (i= 1, 2):

y(x) =f(x) + x

a

{B1sinh[µ1(xt)] +B2sinh

µ2(xt)

f(t)dt, µi = zi, where the coefficientsB1andB2are determined from the following system of linear algebraic equations:

B1µ1

λ21+µ21 + B2µ2

λ21+µ22 –1 = 0, B1µ1

λ22+µ21 + B2µ2

λ22+µ22 –1 = 0.

Case 2. Ifz1< 0 andz2< 0, then the solution of the integral equation has the form y(x) =f(x) +

x a

{B1sin[µ1(xt)] +B2sin

µ2(xt)

f(t)dt, µi=

|zi|,

whereB1andB2are determined from the system B1µ1

λ21µ21 + B2µ2

λ21µ22 –1 = 0, B1µ1

λ22µ21 + B2µ2

λ22µ22 –1 = 0.

Case 3. Ifz1> 0 andz2< 0, then the solution of the integral equation has the form y(x) =f(x) +

x a

{B1sinh[µ1(xt)] +B2sin

µ2(xt)

f(t)dt, µi=

|zi|,

whereB1andB2are determined from the system B1µ1

λ21+µ21 + B2µ2

λ21µ22 –1 = 0, B1µ1

λ22+µ21 + B2µ2

λ22µ22 –1 = 0.

Remark. The solution of the original integral equation can be obtained from the solution of equation 2.3.18 by performing the following change of parameters:

λk→iλk, µk→iµk, Ak iAk, Bk iBk, i2=–1 (k= 1, 2).

19. y(x) + x

a

n k=1

Aksin[λk(xt)]

y(t)dt=f(x).

1. This integral equation can be reduced to a linear nonhomogeneous ordinary differential equation of order 2nwith constant coefficients. Set

Ik(x) = x

a

sin[λk(xt)]y(t)dt. (1)

Differentiating (1) with respect toxtwice yields Ik =λk

x

a

cos[λk(xt)]y(t)dt, Ik=λky(x)–λ2k x

a

sin[λk(xt)]y(t)dt, (2) where the primes stand for differentiation with respect tox. Comparing (1) and (2), we see that

Ik=λky(x)–λ2kIk, Ik =Ik(x). (3) With aid of (1), the integral equation can be rewritten in the form

y(x) + n

k=1

AkIk =f(x). (4)

Differentiating (4) with respect toxtwice taking into account (3) yields yxx(x) +σny(x)–

n k=1

Akλ2kIk =fxx (x), σn= n

k=1

Akλk. (5)

Eliminating the integralInfrom (4) and (5), we obtain yxx (x) + (σn+λ2n)y(x) +

n–1 k=1

Ak(λ2nλ2k)Ik=fxx(x) +λ2nf(x). (6) Differentiating (6) with respect toxtwice followed by eliminatingIn–1 from the resulting expression with the aid of (6) yields a similar equation whose left-hand side is a fourth- order differential operator (acting on y) with constant coefficients plus the sum

n–2

k=1

BkIk. Successively eliminating the termsIn–2,In–3,. . . using double differentiation and formula (3), wefinally arrive at a linear nonhomogeneous ordinary differential equation of order 2nwith constant coefficients.

The initial conditions fory(x) can be obtained by settingx=ain the integral equation and all its derivative equations.

2. Let usfind the rootszkof the algebraic equation n

k=1

λkAk

z+λ2k + 1 = 0. (7)

By reducing it to a common denominator, we arrive at the problem of determining the roots of annth-degree characteristic polynomial.

Assume that allzkare real, different, and nonzero. Let us divide the roots into two groups z1 > 0, z2> 0, . . ., zs > 0 (positive roots);

zs+1< 0, zs+2< 0, . . ., zn< 0 (negative roots).

Then the solution of the integral equation can be written in the form y(x) =f(x)+

x a

s k=1

Bksinh

µk(xt) +

n k=s+1

Cksin

µk(xt)

f(t)dt, µk=

|zk|. (8) The coefficients Bk andCk are determined from the following system of linear algebraic equations:

s k=0

Bkµk

λ2m+µ2k + n k=s+1

Ckµk

λ2mµ2k –1 = 0, µk =

|zk| m= 1, 2,. . .,n. (9) In the case of a nonzero rootzs = 0, we can introduce the new constantD= Bsµs and proceed to the limitµs 0. As a result, the termD(xt) appears in solution (8) instead of Bssinh

µs(xt)

and the corresponding terms–2mappear in system (9).

20. y(x)–A x

a

sin(λx)

sin(λt)y(t)dt=f(x).

Solution:

y(x) =f(x) +A x

a

eA(xt)sin(λx) sin(λt)f(t)dt.

21. y(x)–A x

a

sin(λt)

sin(λx)y(t)dt=f(x).

Solution:

y(x) =f(x) +A x

a

eA(xt)sin(λt) sin(λx)f(t)dt.

22. y(x)–A x

a

sink(λx) sinm(µt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Asink(λx) andh(t) = sinm(µt).

23. y(x) +A x

a

tsin[λ(xt)]y(t)dt=f(x).

This is a special case of equation 2.9.36 withg(t) =At.

Solution:

y(x) =f(x) + W

x

a

t

u1(x)u2(t)–u2(x)u1(t) f(t)dt,

whereu1(x),u2(x) is a fundamental system of solutions of the second-order linear ordinary differential equationuxx+λ(Ax+λ)u= 0, andW is the Wronskian.

Depending on the sign of, the functionsu1(x) andu2(x) are expressed in terms of Bessel functions or modified Bessel functions as follows:

if> 0, then

u1(x) =ξ1/2J1/32

3

√Aλ ξ3/2

, u2(x) =ξ1/2Y1/32

3

√Aλ ξ3/2 , W = 3, ξ=x+ (λ/A);

if< 0, then

u1(x) =ξ1/2I1/32

3

Aλ ξ3/2

, u2(x) =ξ1/2K1/32

3

Aλ ξ3/2 , W =–32, ξ=x+ (λ/A).

24. y(x) +A x

a

xsin[λ(xt)]y(t)dt=f(x).

This is a special case of equation 2.9.37 withg(x) =Axandh(t) = 1.

Solution:

y(x) =f(x) + W

x a

x

u1(x)u2(t)–u2(x)u1(t) f(t)dt,

whereu1(x),u2(x) is a fundamental system of solutions of the second-order linear ordinary differential equationuxx+λ(Ax+λ)u= 0, andW is the Wronskian.

The functionsu1(x),u2(x), andW are specified in 2.5.23.

25. y(x) +A x

a

tksinm(λx)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =–Asinm(λx) andh(t) =tk. 26. y(x) +A

x a

xksinm(λt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =–Axkandh(t) = sinm(λt).

27. y(x)– x

a

Asin(kx) +BAB(xt) sin(kx)

y(t)dt=f(x).

This is a special case of equation 2.9.7 withλ=Bandg(x) =Asin(kx).

Solution:

y(x) =f(x) + x

a

R(x,t)f(t)dt, R(x,t) = [Asin(kx) +B]G(x)

G(t) + B2 G(t)

x t

eB(xs)G(s)ds, G(x) = exp

A

k cos(kx)

.

28. y(x) + x

a

Asin(kt) +B+AB(xt) sin(kt)

y(t)dt=f(x).

This is a special case of equation 2.9.8 withλ=Bandg(t) =Asin(kt).

Solution:

y(x) =f(x) + x

a

R(x,t)f(t)dt, R(x,t) =–[Asin(kt) +B]G(t)

G(x) + B2 G(x)

x t

eB(ts)G(s)ds, G(x) = exp

A

k cos(kx)

.

29. y(x) +A

x

sin λ

tx

y(t)dt=f(x).

This is a special case of equation 2.9.62 withK(x) =Asin λ√

x .

2.5-3. Kernels Containing Tangent

30. y(x)–A x

a

tan(λx)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Atan(λx) andh(t) = 1.

Solution:

y(x) =f(x) +A x

a

tan(λx) cos(λt) cos(λx)

A/λf(t)dt.

31. y(x)–A x

a

tan(λt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Aandh(t) = tan(λt).

Solution:

y(x) =f(x) +A x

a

tanh(λt) cos(λt) cos(λx)

A/λf(t)dt.

32. y(x) +A x

a

tan(λx)–tan(λt)

y(t)dt=f(x).

This is a special case of equation 2.9.5 withg(x) =Atan(λx).

Solution:

y(x) =f(x) + 1 W

x a

Y1(x)Y2(t)–Y2(x)Y1(t) f(t)dt,

whereY1(x),Y2(x) is a fundamental system of solutions of the second-order linear ordinary differential equation cos2(λx)Yxx +AλY = 0,W is the Wronskian, and the primes stand for the differentiation with respect to the argument specified in the parentheses.

As shown in A. D. Polyanin and V. F. Zaitsev (1995, 1996), the functionsY1(x) andY2(x) can be expressed via the hypergeometric function.

33. y(x)–A x

a

tan(λx)

tan(λt)y(t)dt=f(x).

Solution:

y(x) =f(x) +A x

a

eA(xt)tan(λx) tan(λt)f(t)dt.

34. y(x)–A x

a

tan(λt)

tan(λx)y(t)dt=f(x).

Solution:

y(x) =f(x) +A x

a

eA(xt) tan(λt) tan(λx)f(t)dt.

35. y(x)–A x

a

tank(λx) tanm(µt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Atank(λx) andh(t) = tanm(µt).

36. y(x) +A x

a

tktanm(λx)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =–Atanm(λx) andh(t) =tk. 37. y(x) +A

x a

xktanm(λt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =–Axkandh(t) = tanm(λt).

38. y(x)– x

a

Atan(kx) +BAB(xt) tan(kx)

y(t)dt=f(x).

This is a special case of equation 2.9.7 withλ=Bandg(x) =Atan(kx).

39. y(x) + x

a

Atan(kt) +B+AB(xt) tan(kt)

y(t)dt=f(x).

This is a special case of equation 2.9.8 withλ=Bandg(t) =Atan(kt).

2.5-4. Kernels Containing Cotangent

40. y(x)–A x

a

cot(λx)y(t)dt =f(x).

This is a special case of equation 2.9.2 withg(x) =Acot(λx) andh(t) = 1.

Solution:

y(x) =f(x) +A x

a

cot(λx) sin(λx) sin(λt)

A/λf(t)dt.

41. y(x)–A x

a

cot(λt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Aandh(t) = cot(λt).

Solution:

y(x) =f(x) +A x

a

coth(λt) sin(λx) sin(λt)

A/λf(t)dt.

42. y(x)–A x

a

cot(λx)

cot(λt)y(t)dt=f(x).

Solution:

y(x) =f(x) +A x

a

eA(xt)cot(λx) cot(λt)f(t)dt.

43. y(x)–A x

a

cot(λt)

cot(λx)y(t)dt=f(x).

Solution:

y(x) =f(x) +A x

a

eA(xt) cot(λt) cot(λx)f(t)dt.

44. y(x) +A x

a

tkcotm(λx)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =–Acotm(λx) andh(t) =tk. 45. y(x) +A

x a

xkcotm(λt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =–Axkandh(t) = cotm(λt).

46. y(x)– x

a

Acot(kx) +BAB(xt) cot(kx)

y(t)dt=f(x).

This is a special case of equation 2.9.7 withλ=Bandg(x) =Acot(kx).

47. y(x) + x

a

Acot(kt) +B+AB(xt) cot(kt)

y(t)dt=f(x).

This is a special case of equation 2.9.8 withλ=Bandg(t) =Acot(kt).

2.5-5. Kernels Containing Combinations of Trigonometric Functions 48. y(x)–A

x

a

cosk(λx) sinm(µt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Acosk(λx) andh(t) = sinm(µt).

49. y(x)– x

a

A+Bcos(λx)–B(xt)[λsin(λx) +Acos(λx)]

y(t)dt=f(x).

This is a special case of equation 2.9.38 withb=Bandg(x) =A.

50. y(x)– x

a

A+Bsin(λx) +B(xt)[λcos(λx)–Asin(λx)]

y(t)dt=f(x).

This is a special case of equation 2.9.39 withb=Bandg(x) =A.

51. y(x)–A x

a

tank(λx) cotm(µt)y(t)dt=f(x).

This is a special case of equation 2.9.2 withg(x) =Atank(λx) andh(t) = cotm(µt).

2.6. Equations Whose Kernels Contain Inverse

Dalam dokumen HANDBOOK OF INTEGRAL EQUATIONS (Halaman 167-177)