• Tidak ada hasil yang ditemukan

Existence and classification of tame harmonic maps

Chapter III: Infinite energy harmonic maps and AdS 3-manifolds

3.5 Existence and classification of tame harmonic maps

as π‘˜ β†’ ∞. However, we can uniformly bound β„“(β„Žπ‘“

π‘˜(𝛿′)) from above, so this is impossible.

Now, view the punctures on Ξ£ as nodes and double across all punctures that β€œare opened” to get a noded surfaceΣ𝑑. Likewise double all surfaces (π‘Œ , β„Žπ‘“) ∈ Ξ¨βˆ’1(𝐾) across the boundaries. β„Žπ‘“ extends by reflection and we get a pair (π‘Œπ‘‘, β„Žπ‘‘

𝑓). This provides a map

πœ„:𝑇(Ξ£, β„“

1, . . . , ℓ𝑛) β†’T2𝑔+𝑑

1βˆ’1,2𝑑

2

that is a diffeomorphism onto its image. By [Ham03, Lemma 3.3] on any𝑆𝑔,𝑛there is a collection of simple closed curves𝛿

1, . . . , 𝛿

6π‘”βˆ’5+2𝑛so that the map L𝑔,𝑛 :T𝑔,𝑛 β†’ R6π‘”βˆ’5+2𝑛

given by

[𝑋 , πœ™] := πœ’β†¦β†’ (β„“πœ’(𝛿

1), . . . , β„“πœ’(𝛿

6π‘”βˆ’5+2𝑛)) is a diffeomorphism onto its image. The compositionL2𝑔+𝑑

1βˆ’1,2𝑑

2β—¦πœ„takesΞ¨βˆ’1(𝐾) into a compact set, and henceΞ¨ is proper. As discussed above, this completes the

proof. β–‘

3.5 Existence and classification of tame harmonic maps

Proposition 3.5.1. Given the data Ξ£, 𝑋 , 𝜌 as above, there exists a 𝜌-equivariant harmonic map 𝑓 : ˜Σ β†’ 𝑋.

Proof. Let𝛼: [0, 𝜏] β†’ 𝑋be a constant speed curve with image in the axis of𝜌(𝛾) and so that𝛼(𝜏) = 𝜌(𝛾)𝛼(0). By [Cor92b] there exists a unique harmonic section π‘ π‘Ÿ of the pullback bundleπ‘–βˆ—

π‘Ÿπ‘‹ β†’ Ξ£π‘Ÿ with boundary values𝛼. Extend π‘ π‘Ÿ to Ξ£ via π‘ π‘Ÿ(π‘₯ , 𝑑) = π‘ π‘Ÿ(π‘₯). Theπ‘ π‘Ÿ induce equivariant maps π‘“π‘Ÿ : ˜Σ β†’ 𝑋, that are harmonic on πœ‹βˆ’1(Σ𝑗). We prove the π‘“π‘Ÿ converge along a subsequence in the𝐢∞ topology to an equivariant harmonic map.

Letπœ‘be any non-harmonic equivariant map corresponding to a section ofπ‘–βˆ—

0𝑋 →Σ𝑐 with boundary values𝛼. As with π‘“π‘Ÿ, define πœ‘ on the rest of 𝐷 by πœ‘(π‘₯ , 𝑑) = πœ‘(π‘₯) and then extend equivariantly to ˜Σ. Let𝛽be the image of𝛼on the geodesic axis of 𝜌(𝛾)and set

π›½π‘Ÿ

𝑑 := π‘“π‘Ÿ( [0, 𝜏] Γ— {𝑑}).

Notice that|𝑑 πœ‘|πœŽβ€² =β„“(𝛽)/𝜏on𝐢since it has constant speed. Forπ‘Ÿ > 𝑠, 2𝐸𝐢

π‘Ÿ\𝐢𝑠(πœ‘) =

∫

πΆπ‘Ÿ\𝐢𝑠

|𝑑 πœ‘|2πœŽβ€²π‘‘ π‘£πœŽβ€² =(π‘Ÿβˆ’π‘ )β„“(𝛽)2/𝜏 .

As𝛽is a geodesic arc in a negatively curved space, 𝑠ℓ(𝛽) ≀

∫ 𝑠

0

β„“(π›½π‘Ÿ

𝑑)𝑑 𝑑 , and hence for anyπ‘Ÿ > 𝑠,

𝐸𝐢

π‘Ÿ\𝐢𝑠(πœ‘) ≀ 1 2

∫ π‘Ÿ

𝑠

β„“(π›½π‘Ÿ

𝑑)2/𝜏 𝑑 𝑑 ≀ 1 2

∫ π‘Ÿ

𝑠

∫

𝑆1Γ—{𝑑}

|𝑑 π‘“π‘Ÿ|π‘‘πœƒ 2

πœβˆ’1𝑑 𝑑 ≀ 𝐸𝐢

π‘Ÿ\𝐢𝑠(π‘“π‘Ÿ). From the non-positive curvature hypothesis π‘“π‘Ÿ minimizes energy among maps to 𝑋 with the same equivariant boundary values. In particular,

𝐸Σ

π‘Ÿ(π‘“π‘Ÿ) ≀ 𝐸Σ

π‘Ÿ(πœ‘), and moreover

𝐸Σ

𝑠(π‘“π‘Ÿ) =𝐸Σ

π‘Ÿ(π‘“π‘Ÿ) βˆ’πΈΞ£

π‘Ÿ\Σ𝑠(π‘“π‘Ÿ) ≀ 𝐸Σ

π‘Ÿ(πœ‘) βˆ’πΈΞ£

π‘Ÿ\Σ𝑠(πœ‘) =𝐸Σ

𝑠(πœ‘). By a classical PDE estimate (say, from [SY97, page 171]),

sup

𝐷𝑠

𝑒(π‘“π‘Ÿ) =sup

Σ𝑠

𝑒(π‘“π‘Ÿ) ≀ 𝐴𝑠𝐸Σ

𝑠+1(π‘“π‘Ÿ) ≀ 𝐴𝑠𝐸Σ

𝑠+1(πœ‘),

where 𝐴𝑠 depends on the Ricci curvature ofΣ𝑠+1, the injectivity radius on Σ𝑠, and dist(πœ•Ξ£π‘ , πœ•Ξ£π‘ +1). Since 𝜌 is acting by isometries we get the same bound in all of πœ‹βˆ’1(Ξ£π‘Ÿ). Next, we claim there is a compact set𝑂𝑠 βŠ‚ 𝑋 such that

π‘“π‘Ÿ(𝐷𝑠) βŠ‚π‘‚π‘ 

for allπ‘Ÿ. Appealing to the energy density bound above, it is enough to show that for a fixed pointπ‘₯

0 ∈ 𝐷𝑠, π‘“π‘Ÿ(π‘₯

0)stays within some compact set asπ‘Ÿ β†’ ∞. We find it convenient from here to split cases. Firstly, let us assume that the image of𝜌 does not lie in a parabolic subgroup. Let πœ‰ be a point in the boundary at infinity πœ•βˆžπ‘‹. There is loop𝛾 : [0, 𝐿] β†’ Ξ£parametrized by arclength such that

𝜌(𝛾) (πœ‰) β‰ πœ‰ .

Chooseβ„“so that the image of 𝛾 underπœ‹lies entirely inΞ£β„“ and let 𝐴ℓ be a uniform bound on the derivative inπœ‹βˆ’1(Ξ£β„“). We then have, forπ‘Ÿ > β„“,

𝑑𝑔(𝜌(𝛾)π‘“π‘Ÿ(π‘₯

0), π‘“π‘Ÿ(π‘₯

0)) =𝑑𝑔(π‘“π‘Ÿ(𝛾(π‘₯

0)), π‘“π‘Ÿ(π‘₯

0)) ≀ 𝐴ℓ𝐿 . This is because lifting 𝛾 to the universal cover gives a path between π‘₯

0and 𝛾 Β·π‘₯

0

that remains within lifts ofΞ£β„“. Choose a neighbourhood 𝐡 ofπœ‰ in 𝑋 βˆͺπœ•βˆžπ‘‹ such that

𝑑𝑔(π΅βˆ©π‘‹ , 𝜌(𝛾)π΅βˆ©π‘‹) > 𝐴ℓ𝐿 . Then π‘“π‘Ÿ(π‘₯

0) cannot enter𝐡, no matter how largeπ‘Ÿ grows. Via compactness we find a finite number of neighbourhoods(π΅π‘˜)π‘˜ as above that cover the boundary sphere.

Choosing𝑂𝑠 := 𝑋\(βˆͺπ‘˜π‘π‘˜) the claim follows. Notice then that π‘“π‘Ÿ takes any lift of Σ𝑠to a compact set:

π‘“π‘Ÿ(𝛾 𝐷𝑠) βŠ‚ 𝜌(𝛾)𝑂𝑠

for allπ‘Ÿ , 𝑠. It now follows by a well-known argument, namely an application of the ArzelΓ -Ascoli theorem and a bootstrap, that a subsequence of the(π‘“π‘Ÿ)π‘Ÿ >0converges uniformly on compact subsets of ˜Σto a harmonic map π‘“βˆž. By equivariance of the

π‘“π‘Ÿ onπœ‹βˆ’1(Ξ£π‘Ÿ), π‘“βˆžis necessarily equivariant.

We next treat the case where𝜌stabilizes a totally geodesic flat𝐹. 𝐹 is a symmetric space and identifies isometrically as

𝐺/𝐻 := (𝑂(𝑛)β‹Š R𝑛)/𝑂(𝑛). Fix two points π‘₯

0 ∈ 𝐷𝑠 and 𝑦

0 ∈ 𝐹 and for each π‘Ÿ choose π‘”π‘Ÿ ∈ 𝐺 such that π‘”π‘Ÿπ‘“π‘Ÿ(π‘₯

0) = 𝑦

0. We notice that for any 𝑦 ∈ 𝐹 and 𝛾 ∈ Ξ“, 𝑑(π‘”π‘ŸπœŒ(𝛾)π‘”βˆ’1

π‘Ÿ 𝑦, 𝑦) is

uniformly bounded inπ‘Ÿ. Indeed, 𝑑𝑔(π‘”π‘ŸπœŒ(𝛾)π‘”βˆ’1

π‘Ÿ 𝑦, 𝑦) ≀ 𝑑𝑔(π‘”π‘ŸπœŒ(𝛾)π‘”βˆ’1

π‘Ÿ 𝑦, π‘”π‘ŸπœŒ(𝛾)π‘”βˆ’1

π‘Ÿ 𝑦

0) +𝑑𝑔(π‘”π‘ŸπœŒ(𝛾)π‘”βˆ’1

π‘Ÿ 𝑦

0, 𝑦

0) +𝑑𝑔(𝑦, 𝑦

0)

=2𝑑𝑔(𝑦, 𝑦

0) +𝑑𝑔(π‘”π‘ŸπœŒ(𝛾)π‘”βˆ’1

π‘Ÿ 𝑦

0, 𝑦

0)

=2𝑑𝑔(𝑦, 𝑦

0) +𝑑𝑔(π‘”π‘ŸπœŒ(𝛾)π‘“π‘Ÿ(π‘₯

0), π‘”π‘Ÿπ‘“π‘Ÿ(π‘₯

0))

=2𝑑𝑔(𝑦, 𝑦

0) +𝑑𝑔(π‘”π‘Ÿπ‘“π‘Ÿ(𝛾·π‘₯

0), π‘”π‘Ÿπ‘“π‘Ÿ(π‘₯

0))

=2𝑑𝑔(𝑦, 𝑦

0) +𝑑𝑔(π‘“π‘Ÿ(𝛾·π‘₯

0), π‘“π‘Ÿ(π‘₯

0)),

and we know π‘“π‘Ÿhas a uniform energy density bound on 𝜌(Ξ“) Β·π·π‘Ÿ. By the argument of [JY91, Lemma 2] there is a sequence (π‘Ÿπ‘›)βˆžπ‘›=

1 increasing to ∞ and an element π‘”βˆž ∈𝐺 such that for every𝛾 βˆˆΞ“and𝑦 ∈ 𝐹,

π‘›β†’βˆžlim π‘”π‘Ÿ

π‘›πœŒ(𝛾)π‘”βˆ’1

π‘Ÿπ‘›π‘¦ =π‘”βˆžπœŒ(𝛾)π‘”βˆžβˆ’1𝑦 . The orbit of the pointπ‘₯

0under the family of mapsπ‘”π‘Ÿ

π‘›π‘“π‘Ÿ

𝑛 is a singleton, and by our uniform energy bound we see as above that there is a compact set𝑂𝑠 such that

π‘”π‘Ÿ

𝑛

π‘“π‘Ÿ

𝑛(𝐷𝑠) βŠ‚π‘‚π‘ . Arguing as above there is a subsequence along whichπ‘”π‘Ÿ

π‘›π‘“π‘Ÿ

𝑛converges to a harmonic map π‘“βˆž. Note that π‘”π‘Ÿ

π‘›π‘“π‘Ÿ

𝑛 is π‘”π‘Ÿ

π‘›πœŒ(Ξ“)π‘”βˆ’1

π‘Ÿπ‘›-equivariant, so that π‘“βˆž is π‘”βˆžπœŒ(Ξ“)π‘”βˆ’βˆž1- equivariant. Therefore, we may take 𝑓 :=π‘”βˆ’βˆž1π‘“βˆž as the sought harmonic map. β–‘ We use the ideas above to build a family of harmonic maps, indexed by a real parameterπœƒ ∈ R. We perform afractional Dehn twist on each cylinder𝐢. This is the map given in the cusp coordinates by

π‘₯+𝑖 𝑦 ↦→π‘₯+πœƒ 𝑦+𝑖 𝑦

on𝐢and the identity map on the rest ofΞ£. Lift to a mapπ‘‘πœƒon ˜Σ. The lift commutes with the relevant parabolic isometry. Define π‘“πœƒ

π‘Ÿ to be the equivariant harmonic map onπœ‹βˆ’1(Ξ£π‘Ÿ) with the same equivariant boundary values asπœ‘β—¦π‘‘πœƒ|πœ• π·π‘Ÿ. Then extend to agree withπœ‘β—¦π‘‘πœƒon the complement. The derivative matrix ofπ‘‘πœƒ is

1 πœƒ 0 1

! , so that

||𝑑(πœ‘β—¦π‘‘πœƒ) || ≀ ||𝑑 πœ‘|| (1+πœƒ).

Thus onΣ𝑠,

𝐸Σ

𝑠(π‘“πœƒ

π‘Ÿ) ≀ 𝐸Σ

𝑠(π‘“π‘Ÿ) (1+πœƒ)2.

By the argument of Proposition 3.5.1 there is a subsequence along which the π‘“πœƒ

π‘Ÿ ’s converge to a limiting harmonic map π‘“πœƒ. Of course, 𝑓 = 𝑓0.

We keep the same characters𝛼and𝛽from the proof of the above proposition. Note β„“(𝛽) =β„“(𝜌(𝛾)). Defineπœ‘πœƒ := πœ‘β—¦π‘‘πœƒ. In local Euclidean coordinates,π‘‘πœƒis harmonic on𝐢. Sinceβˆ‡π‘‘ πœ‘ =0 on𝐢, the composition is a harmonic map there (see [EL83, Proposition 2.20]).

Lemma 3.5.2. The function𝑧 ↦→𝑑(π‘“πœƒ, πœ‘πœƒ) (𝑧) is uniformly bounded.

Proof. Letπœ“π‘Ÿ :=𝑑(π‘“πœƒ

π‘Ÿ, πœ‘πœƒ). By equivariance, eachπœ“π‘Ÿ descends to a function onΞ£. πœ“π‘Ÿ =0 onΞ£\Ξ£π‘Ÿ, and sinceπœ“π‘Ÿ > 0 at some point we know it attains a maximum at a point in the interior ofΞ£π‘Ÿ. As πœ“π‘Ÿ is subharmonic onπΆπ‘Ÿ, supπ‘§βˆˆπΆπ‘Ÿ

πœ“π‘Ÿ(𝑧)occurs on

πœ•Ξ£π‘ and moreoverπœ“π‘Ÿ is maximized at a point inΣ𝑐. Meanwhile, πœ“π‘Ÿ β†’ 𝑑2(π‘“πœƒ, πœ‘πœƒ)

uniformly on compacta asπ‘Ÿ β†’ ∞. By smoothness,πœ“is uniformly bounded on Σ𝑐. This implies we have a uniform bound on theπœ“π‘Ÿβ€™s insideΣ𝑐 asπ‘Ÿ β†’ ∞. Since the relevant maximum is attained insideΣ𝑐, this bound holds everywhere. β–‘ LetΞ¦:=Hopf(π‘“πœƒ). The context is clear so we do not include aπœƒin our notation. By equivariance we can viewΞ¦as a holomorphic quadratic differential on any quotient of ˜Σby a subgroup ofΞ“.

Lemma 3.5.3. Ξ¦has a pole of order2at the cusp.

Proof. From the infinite energy phenomena,Ξ¦either has a pole of order at least 2 or an essential singularity. The (2,0)component of the pullback metric by πœ‘πœƒ is a section ofK2that is holomorphic on𝐢. We still denote it by Hopf(πœ‘πœƒ).

We compute this differential in𝐢. Choose a local orthonormal basis πœ•/πœ• π‘₯, πœ•/πœ• 𝑦 of the relevant tangent spaces so thatπœ• πœ‘0/πœ• 𝑦 =0 always. Starting withπœƒ =0, we know that in local coordinates

Hopf(πœ‘0) (𝑧) = 1 4

|πœ• πœ‘0/πœ• π‘₯|2βˆ’ |πœ• πœ‘0/πœ• 𝑦|2βˆ’2π‘–βŸ¨πœ• πœ‘0/πœ• π‘₯ , πœ• πœ‘0/πœ• π‘¦βŸ© 𝑑 𝑧2.

Sinceπœ‘0is constant in the vertical direction Hopf(πœ‘0) (𝑧) = 1

4

|πœ• πœ‘0/πœ• π‘₯|2𝑑 𝑧2=β„“(𝜌(𝛾))2/4𝜏2𝑑 𝑧2. From the chain rule,𝑑 πœ‘0and𝑑 πœ‘πœƒ admit matrix representations with

𝑑 πœ‘0=

𝑣 0

, 𝑑 πœ‘πœƒ =

𝑣 πœƒ 𝑣

, where𝑣 is a 1Γ—dim𝑋 column vector. Thus,

Hopf(πœ‘πœƒ) (𝑧) = 1 4

(|πœ• πœ‘πœƒ/πœ• π‘₯|2βˆ’ |πœ• πœ‘πœƒ/πœ• 𝑦|2βˆ’2π‘–βŸ¨πœ• πœ‘πœƒ/πœ• π‘₯ , πœ• πœ‘πœƒ/πœ• π‘¦βŸ©)𝑑 𝑧2

= 1 4

(1βˆ’πœƒ2βˆ’π‘–2πœƒ) |πœ• πœ‘0/πœ• π‘₯|2𝑑 𝑧2. We take the strip conformally to a punctured disk via

𝑧 ↦→ 𝜁(𝑧)=𝑒

2πœ‹ 𝑖 𝑧 𝜏 ,

taking the point at∞to 0. The transformation law multiplies byβˆ’πœβˆ’2𝜏2/4πœ‹2, and we see that we have a pole of order 2 with residue

βˆ’Ξ›(πœƒ)β„“(𝜌(𝛾))2/16πœ‹2.

We now compareΞ¦to Hopf(πœ‘πœƒ). Asπœ‘πœƒ has rank 1, the formula𝐽 = π»βˆ’πΏimplies 𝐻(πœ‘πœƒ)1/2= 𝐿(πœ‘πœƒ)1/2= 1

2

𝑒(πœ‘πœƒ)1/2,

so that Hopf(πœ‘πœƒ) =𝜎 𝐻(πœ‘πœƒ)1/2𝐿(πœ‘πœƒ)1/2=𝜎 𝑒(πœ‘πœƒ)/4. From Young’s inequlaity,

||Ξ¦||=𝜎 𝐻(𝑓)1/2𝐿(𝑓)1/2 ≀ 1 2

𝜎 𝑒(π‘“πœƒ),

and hence it is enough to bound𝑒(π‘“πœƒ)by a sublinear function of𝑒(πœ‘πœƒ). This is not hard: for anyπ‘₯

0 ∈Σ˜,π‘Ÿ

0 > 0, and𝑦 ∈𝐡(π‘₯

0, π‘Ÿ

0), 𝑑(π‘“πœƒ(π‘₯

0), π‘“πœƒ(𝑦)) ≀ 𝑑(π‘“πœƒ(π‘₯

0), πœ‘πœƒ(π‘₯

0)) +𝑑(π‘“πœƒ(𝑦), πœ‘πœƒ(𝑦)) +𝑑(πœ‘πœƒ(π‘₯

0), πœ‘πœƒ(𝑦))

≀ 𝐴+ sup

𝐡(π‘₯

0,π‘Ÿ

0)

||𝑑 πœ‘πœƒ||𝑑(π‘₯

0, 𝑦).

Working in the flat cylinder metric, Cheng’s lemma then gives

||𝑑 𝑓|| (π‘₯

0) ≲ 1+π‘Ÿ

0

π‘Ÿ0

(1+sup||𝑑 πœ‘πœƒ||π‘Ÿ

0).

In a cusp neighbourhood, the injectivity radius of the flat cylinder metric is uniformly bounded below, and hence we may chooseπ‘Ÿ

0 uniformly bounded below. Squaring

for the energy density gives the desired bound. β–‘

Henceforth, we assume that 𝑋 is CAT(βˆ’1). By equivariance, π‘“πœƒ and πœ‘πœƒ induce quotient maps

𝑓𝛾, πœ‘π›Ύ : ˜Σ/βŸ¨π›ΎβŸ© β†’ 𝑋/⟨𝜌(𝛾)⟩.

We suppress theπœƒfrom our notation for convenience. 𝛽projects in the quotient to a core geodesic 𝛽. From the CAT(βˆ’1)hypothesis, this is the unique geodesic in the homotopy class. Anyπ·π‘Ÿ/βŸ¨π›ΎβŸ©identifies isometrically with the cylinder

{(π‘₯ , 𝑦) =π‘₯+𝑖 𝑦 : 0≀ π‘₯ ≀ 𝜏, π‘Ž ≀ 𝑦 β‰€π‘Ÿ} with the usual identification.

Lemma 3.5.4. There is a translation π‘…Λœ of the geodesic axis of 𝜌(𝛾) such that the mapΞ£ βˆ‹π‘§β†¦β†’ 𝑑(π‘“πœƒ,π‘…Λœβ—¦πœ‘πœƒ) (𝑧)tends to0as we move into the puncture.

Proof. We defineC∞to be the infinite cylinder

{(π‘₯ , 𝑑) ∈ [0,1] Γ— (βˆ’βˆž,∞) : (0, 𝑑) ∼ (1, 𝑑)}

with the flat metric. Let𝑏𝑠 : C∞ β†’ 𝐷/βŸ¨π›ΎβŸ©be the map given by







ο£²







ο£³

(π‘₯ , 𝑑) ↦→ (π‘₯ , 𝑠) βˆ’βˆž ≀𝑑 ≀ βˆ’π‘  (π‘₯ , 𝑑) ↦→ (π‘₯ ,2𝑠+𝑑) βˆ’π‘  ≀ 𝑑 ≀ 𝑠 (π‘₯ , 𝑑) ↦→ (π‘₯ ,3𝑠) 𝑠 ≀ 𝑑 ≀ ∞.

Then set𝐡𝑠 := 𝑓𝛾◦𝑏𝑠andπœ‘π‘  :=πœ‘π›Ύβ—¦π‘π‘ . Both𝐡𝑠andπœ‘π‘ are harmonic onβˆ’π‘  ≀ 𝑑 ≀ 𝑠 because𝑏𝑠 is conformal there. From Lemma 3.5.2 the orbit of any point under 𝐡𝑠 remains in a compact set as𝑠→ ∞. The uniform energy bounds from Lemma 3.5.3 permit us to construct a subsequence along which both 𝐡𝑠 and πœ‘π‘  converge in the 𝐢∞topology to harmonic maps π‘“βˆž andπœ‘βˆžrespectively.

Let β„Ž denote the harmonic diffeomorphism of the disk whose Hopf differential is Ξ¦. By [Wol91b, Lemma 3.6], the Jacobian 𝐽(β„Ž) = 𝐻(β„Ž) βˆ’πΏ(β„Ž) tends to 0 as we approach the puncture. From Proposition 3.3.2, 𝐽(𝑓) β†’ 0 as well. Therefore, 𝐽(π‘“βˆž) =0 and necessarily rank𝑑 π‘“βˆž ≀ 1 at each point. By equivariance this is rank 1 in an open set, and by [Sam78, Theorem 3] the image is contained in a geodesic arc. Again by equivariance, the image must then be a closed geodesic arc. There is only one such arc in the quotient, and hence π‘“βˆžmaps onto the core geodesic. Lifting π‘“βˆž and πœ‘βˆž to maps from R2 to the axis of 𝜌(𝛾), π‘“βˆž and πœ‘ differ by a translation along 𝛽. One can justify that last claim by observing that their distance function is

a bounded subharmonic function onR2β€”hence a constantβ€”and then following the proof of Lemma 3.2.12. Lifting back to ˜Σthis means there is a translation Λœπ‘…of the geodesic axis such that for anyπ‘Ÿ >0,

𝑑(π‘“πœƒ(π‘₯ , π‘ π‘š +2𝑑),π‘…Λœβ—¦πœ‘πœƒ(π‘₯ , π‘ π‘š +2𝑑))=𝑑(𝑏𝑠

π‘š(π‘₯ , 𝑑), π‘…β—¦πœ‘π‘ 

π‘š(π‘₯ , 𝑑)) β†’0 asπ‘š β†’ ∞forβˆ’π‘Ÿ ≀ 𝑑 ≀ π‘Ÿ. In particular, the quantities𝑑(𝑓𝛾(π‘₯ , π‘ π‘š), π‘…β—¦πœ‘π›Ύ(π‘₯ , π‘ π‘š)) and𝑑(𝑓𝛾(π‘₯ , π‘ π‘š+

1), π‘…β—¦πœ‘π›Ύ(π‘₯ , π‘ π‘š+

1))are very close to 0. Since the relevant distance function is subharmonic, its maximum on

{(π‘₯ , 𝑑) ∈ C∞ : π‘ π‘š ≀𝑑 ≀ π‘ π‘š+

1} is achieved on the boundary. It follows that

𝑑(𝑓𝛾(π‘₯ , 𝑑), π‘…β—¦πœ‘π›Ύ(π‘₯ , 𝑑)) β†’0 as𝑑 β†’ ∞. Returning to the universal cover, we conclude that

𝑑(π‘“πœƒ(𝑧),π‘…Λœβ—¦πœ‘πœƒ(𝑧)) β†’0

as we move toward the puncture. β–‘

Proposition 3.5.5. Ξ¦has a pole of order2at the cusp with residueβˆ’Ξ›(πœƒ)β„“(𝜌(𝛾))2/16πœ‹2. Proof. The lemma above shows

𝑠limβ†’βˆž

𝐡𝑠 = π‘…β—¦πœ‘π›Ύ

in the𝐢0topology, and along a subsequence in the𝐢∞ topology. We prove there is no need to pass to a subsequence. Indeed, if we don’t have 𝐢1convergence we can pick a subsequence along which our maps are uniformly far from π‘“βˆžin the𝐢1 norm. One can then use the argument above to pass to a subsequence that converges in the𝐢∞sense toπ‘†β—¦πœ‘π›Ύ for some other rotation𝑆. 𝐢0convergence toπ‘…β—¦πœ‘forces 𝑆 = 𝑅, which is a contradiction. Continuing inductively givesπΆπ‘˜ convergence for any π‘˜. The Hopf differential of 𝑓 then converges to Hopf(πœ‘πœƒ) as we move into the puncture. The result now follows from the computation in Lemma 3.5.3. β–‘ Uniqueness

Let 𝑓

1 and 𝑓

2 be two harmonic maps whose Hopf differentials have second order poles and such that the residues have the same complex argument𝜈 ∈ (βˆ’πœ‹, πœ‹).

Lemma 3.5.6. There exists anπ΄π‘˜ > 0such that as𝑦 β†’ ∞, the image of π‘“π‘˜ remains in an π΄π‘˜-neighbourhood of the geodesic axis of 𝜌(𝛾).

Proof. Letπ›½π‘˜

𝑦 be the curve π‘“π‘˜( [0, 𝜏] Γ— {𝑦}) in the usual coordinates. From Propo- sition 3.3.2 and [Wol91b, page 516], the energy density of π‘“π‘˜ is uniformly bounded onΞ£in the flat-cylinder metric. This implies

β„“(π›½π‘˜

𝑦) ≀ 𝐴 for all 𝑦 >0. We argue each π›½π‘˜

𝑦 becomes trapped close to the geodesic as𝑦 β†’ ∞. If not, there is a subsequence𝑠𝑗 tending to∞and points π‘“π‘˜(𝑧𝑗) ∈ π›½π‘˜

𝑠𝑗 such that the closest-point projection onto the geodesic, say 𝑦𝑗, satisfies

𝑑(π‘“π‘˜(𝑧𝑗), 𝑦𝑗) β†’ ∞. Then

β„“(π›½π‘˜

𝑠𝑗) β‰₯ 𝑑(π‘“π‘˜(𝑧𝑗), π‘“π‘˜(𝛾·𝑧𝑗)) =𝑑(π‘“π‘˜(𝑧𝑗), 𝜌(𝛾)π‘“π‘˜(𝑧𝑗)).

The right most term blows up as 𝑗 β†’ ∞, and this is a clear contradiction. To verify that last statement, note π‘“π‘˜(𝑧𝑗) accumulates along a subsequence to a point πœ‰ ∈ πœ•βˆžπ‘‹, and since the distance from π›½π‘˜

𝑠𝑗 to the geodesic is uniformly bounded below, this is not an endpoint of the geodesic. In particular, the extension of 𝜌(𝛾) toπœ•βˆžπ‘‹ does not fixπœ‰, and hence ifπ΅π‘˜

𝑠𝑗 is a neighbourhood ofπœ‰in 𝑋βˆͺπœ•βˆžπ‘‹, 𝑑(π΅π‘˜

𝑠𝑗 βˆ©π‘‹ , 𝜌(𝛾)π΅π‘˜

𝑠𝑗 βˆ©π‘‹) β†’ ∞

as 𝑗 β†’ ∞. β–‘

Recall the cylinder C∞. Let π‘π‘˜

𝑠 be the map 𝑏𝑠 β—¦ π‘“π‘˜

𝛾 : C∞ β†’ 𝑋/⟨𝜌(𝛾)⟩. Since the energy is controlled and it stays close to the geodesic, π‘π‘˜

𝑠 converges along a subsequence to a harmonic map π‘“βˆžπ‘˜. By the same argument as in the previous subsection π‘“βˆžπ‘˜ has image in a geodesic and from equivariance this must be the core geodesic 𝛽. One can slightly modify an argument as in the previous subsection to check thatπ‘Žπ‘˜

𝑠 limits to π‘“βˆžπ‘˜ along the whole sequence in the𝐢∞topology. Moreover π‘“π‘˜ limits onto the geodesic 𝛽as we go further into the cusp.

Lemma 3.5.7. The residue of 𝑓

1and 𝑓

2is the same.

Proof. LetΞ¦π‘˜ :=Hopf(π‘“π‘˜). In the computations to follow, we use the flat-cylinder metric onΞ£. Let 𝛾𝑦(π‘₯) be the curveπ‘₯ ↦→ π‘₯ +𝑖 𝑦. From the discussion above, the

length of the core geodesic in 𝑋/⟨𝜌(𝛾)⟩ is

𝑦limβ†’βˆž

ℓ𝑔(π‘“π‘˜(𝛾𝑦)). There are differentialsΞ¦β€²

π‘˜ such that

Ξ¦π‘˜ =𝑒𝑖 πœˆΞ¦β€²π‘˜.

That is, a differential that differs from Ξ¦π‘˜ by a rotation and whose residue at the cusp is real. The pullback metrics can thus be written

π‘“βˆ—

π‘˜π‘”=𝑒(π‘“π‘˜)πœŽβ€²π‘‘ 𝑧 𝑑 𝑧+𝑒𝑖 πœˆΞ¦β€²π‘˜+π‘’βˆ’π‘– πœˆΞ¦β€²

π‘˜ =𝑒(π‘“π‘˜)πœŽβ€²π‘‘ 𝑧 𝑑 𝑧+2β„œπ‘’π‘– πœˆΞ¦β€²π‘˜. WritingΞ¦β€²

π‘˜ =πœ™β€²

π‘˜(𝑧)𝑑 𝑧2in a local coordinate we know that in the cylinder

|πœ™β€²

π‘˜|=𝐻(π‘“π‘˜)1/2𝐿(π‘“π‘˜)1/2=𝐻(π‘“π‘˜) Β· 𝐿(π‘“π‘˜)1/2 𝐻(π‘“π‘˜)1/2. From [Wol91b, Proposition 3.8], in the strip we can write

Ξ¦π‘˜ =

𝑒𝑖 πœˆπ‘Žπ‘˜

βˆ’2+𝑒𝑖 πœˆπ‘‚(π‘’βˆ’π΄ 𝑦)

𝑑 𝑧2, whereπ‘Žπ‘˜

βˆ’2> 0. From Proposition 3.3.2 and [Wol91b, Lemma 3.6], we also know 𝐿(π‘“π‘˜)

𝐻(π‘“π‘˜) β†’1

as we move into the puncture. The length of the core geodesic is therefore

π‘¦β†’βˆžlim

ℓ𝑔(π‘“π‘˜(𝛾𝑦)) =π‘¦β†’βˆžlim

∫ 𝜏

0

|| €𝛾𝑦(π‘₯) ||π‘“βˆ—

π‘˜π‘”π‘‘π‘₯

=π‘¦β†’βˆžlim

∫ 𝜏

0

√︁

𝑒(π‘“π‘˜)πœŽβ€²+2β„œπ‘’π‘– πœˆπœ™β€²π‘‘π‘₯

=π‘¦β†’βˆžlim

∫ 𝜏

0

√︁

𝐻(π‘“π‘˜) (1+𝐿(π‘“π‘˜)/𝐻(π‘“π‘˜)) +2β„œπ‘’π‘– πœˆπœ™β€²π‘‘π‘₯

=𝜏

βˆšοΈƒ

2|π‘Žπ‘˜

βˆ’2| (1+cos𝜈)

by the dominated convergence theorem. Meanwhile, passing to the quotientH/βŸ¨π›ΎβŸ© we know the core geodesic has lengthβ„“(𝜌(𝛾)). We deduce

β„“(𝜌(𝛾) =𝜏

βˆšοΈƒ

2|π‘Žπ‘˜

βˆ’2| (1+cos𝜈). Since𝜈is fixed, |π‘Žπ‘˜

βˆ’2|does not depend onπ‘˜. β–‘

Henceforth putπ‘Žβˆ’

2=π‘Žπ‘˜

βˆ’2(π‘˜ =1,2).

Remark 3.5.8. From above we see that the complex argument 𝜈 is related to the twist angleπœƒfrom the previous subsection by

πœƒ= βˆ’sin𝑣 1+cos𝑣

. Lemma 3.5.9. The distance function𝑧 ↦→ 𝑑(𝑓

1, 𝑓

2) (𝑧) is bounded.

Proof. It suffices to bound 𝑑(π‘“βˆž1, π‘“βˆž2) as then it is constant and we can lift to the universal cover. By [Wol91b, Proposition 3.8] we can express

Ξ¦π‘˜ =

π‘Žβˆ’

2𝑒𝑖 𝜈+𝑒𝑖 πœˆπ‘‚(π‘’βˆ’π΄ 𝑦) 𝑑 𝑧2 in the cylinder coordinates, whereπ‘Žβˆ’

2is real. Thus, upon taking𝑠→ ∞, the Hopf differential of π‘“βˆž

π‘˜ isπ‘Žβˆ’

2𝑒𝑖 πœˆπ‘‘ 𝑧2. That is, the Hopf differentials of π‘“βˆž

1 and π‘“βˆž

2 agree.

We denote this differential byΦ0, and highlight that theΦ0-metric is nonsingular.

Set

𝑀0(π‘“π‘˜) = 1 2log𝐻

0(π‘“π‘˜) (𝑧) βˆ’ 1

2log|Ξ¦0(𝑧) |. Here 𝐻

0 denotes the holomorphic energy in the Φ0-metric, and analogously for the other quantities. From above it is clear that 𝐽

0(π‘“π‘˜) = 0 so 𝐻

0(π‘“π‘˜) = 𝐿

0(π‘“π‘˜). From |Ξ¦0| = 𝐻

0(π‘“π‘˜)1/2𝐿

0(π‘“π‘˜)1/2 we see 𝑀

0(π‘“π‘˜) = 0. One can compute 𝑒

0 = 2 cosh 2(𝑀

0(π‘“π‘˜)). In a coordinate𝑧=π‘₯+𝑖 𝑦such thatΞ¦0 =𝑑 𝑧2, π‘“βˆ—

π‘˜π‘”= (𝑒

0+2)𝑑π‘₯2+ (𝑒

0βˆ’2)𝑑𝑦2=2𝑑π‘₯2.

Let π›Ύβ„Ž and 𝛾𝑣 be horizontal and vertical curves for theΞ¦0-metric. Explicitly, we mean the tangent vectors forπ›Ύβ„Ž,𝛾𝑣always evaluate underΞ¦0to positive and negative numbers respectively. Then,

β„“(π‘“π‘˜(π›Ύβ„Ž))=

∫

π›Ύβ„Ž

√︁

𝑒0+2𝑑π‘₯ , β„“(π‘“π‘˜(𝛾𝑣)) =

∫

π›Ύβ„Ž

√︁

𝑒0βˆ’2𝑑𝑦 and we see

β„“(π‘“π‘˜(π›Ύβ„Ž)) =2β„“(π›Ύβ„Ž), β„“(π‘“π‘˜(𝛾𝑣))=0.

Therefore, ifπ‘£π‘Ž is the tangent vector to the geodesic at a pointπ‘Ž then for all points 𝑧,(𝑑 π‘“π‘˜)𝑧(πœ•π‘₯) =2𝑣𝑓

π‘˜(𝑧) and(𝑑 π‘“π‘˜)𝑧(πœ•π‘¦) =0. In particular, π‘“π‘˜ is a constant speed map onto the geodesic in the horizontal direction and constant in the vertical direction.

Any two such maps differ by a translation. This establishes the result. β–‘ We apply Lemma 3.2.12 to obtain the uniqueness portion of Theorem 3A. If 𝑓

1 β‰  𝑓

2, which is only possible if 𝜌 stabilizes a geodesic, then 𝑓

2may be obtained from 𝑓

1

by precomposing with a lift of the translation found in Lemma 3.5.9. The results in this section constitute the proof of Theorem 3A.

3.6 Domination and AdS3-manifolds