• Tidak ada hasil yang ditemukan

Proof of the transversality lemma

Chapter VI: Moduli spaces of harmonic surfaces

6.5 Proof of the transversality lemma

where 𝑓𝑑 = 𝑓𝑑(πœ‡

0,𝜈

0)+(1βˆ’π‘‘) (πœ‡,𝜈). Using π‘š β‰₯ 1 we appeal to the Parametric Transver- sality Theorem to find that for a generic point (𝑝, π‘ž, πœ‡, 𝜈) ∈ π‘ˆ, the map πœŒπ‘,π‘ž, πœ‡,𝜈 is transverse to 𝐿. Counting dimensions, we see that𝛿( [0,1] Γ—Ξ£2) does not intersect 𝐿. This implies that the path

πœ‹(πœ‚(𝑑 , π‘Ÿ , 𝑠, 𝑝, π‘ž, πœ‡, 𝜈)) is contained inD \ J and connects (πœ‡

0, 𝜈

0)and (πœ‡, 𝜈). SinceD\ J is open, once (πœ‡, 𝜈) is close enough, we can connect it to (πœ‡

1, 𝜈

1) via a straight line in a model chart contained inD\ J.

Returning to the path𝛾, we do the above procedure over all of the coordinate charts, which perturbs 𝛾 to a new path contained entirely in D\ J and connecting the endpoints. This completes the proof.

Remark 6.4.11. A slightly simpler transversality argument is possible when𝑀has dimensionβ‰₯ 4. We leave this for the reader to understand on their own. The proof of the analogue of Lemma 6.4.10 is essentially the same.

6.5 Proof of the transversality lemma

Here,G ( €𝜈)is the derivative of the tension field in the𝜈€-direction:

G ( €𝜈) = 𝑑 𝑑 𝑑

|𝑑=0𝜏(πœ‡, 𝜈+π‘‘πœˆ, 𝑓€ πœ‡,𝜈). Accordingly,𝑉 is called a harmonic variation. It follows that

π‘‘Ξ˜(0,0,0,0,0,𝜈€)= (𝑉(π‘Ÿ), 𝑉(𝑠), 𝑉(𝑝), 𝑉(π‘ž)).

Suppose Θ(π‘Ÿ , 𝑠, 𝑝, π‘ž, πœ‡, 𝜈) ∈ 𝐿. To simplify notation, we rename the points as 𝑧1= 𝑝,𝑧

2=π‘Ÿ,𝑀

1 =π‘ž,𝑀

2=𝑠. The proof of Lemma 6.4.10 is another contradiction argument. Suppose the lemma is incorrect. Then, there are four vectors 𝑍𝑖 ∈ F𝑧𝑖, π‘Šπ‘– ∈F𝑀𝑖, not all of them zero, such that

β€’ 𝑍𝑖andπ‘Šπ‘–are either zero or normal to the surface 𝑓(Ξ£)at the points 𝑓(𝑧𝑖)and 𝑓(𝑀𝑖) respectively and

β€’ for every𝑉 such thatJ𝑉 =G ( €𝜈), the following holds:

βˆ‘οΈ2

𝑖=1

(βŸ¨π‘‰(𝑧𝑖), π‘π‘–βŸ© + βŸ¨π‘‰(𝑀𝑖), π‘Šπ‘–βŸ©) =0. (6.8)

We now invoke reproducing formulas for the zeroth derivative. We showed the existence of reproducing kernels in Section 6.3. Adding up the four zeroth or- der reproducing kernels associated to the points 𝑧𝑖, 𝑀𝑖, we find a section 𝑋 : Ξ£\{𝑧

1, 𝑧

2, 𝑀

1, 𝑀

2} β†’Fwith maximum regularity and such that

βˆ‘οΈ2

𝑖=1

(βŸ¨π‘Š(𝑧𝑖), π‘π‘–βŸ© + βŸ¨π‘Š(𝑀𝑖), π‘Šπ‘–βŸ©) =

∫

Ξ£

⟨Jπ‘Š , π‘‹βŸ©π‘‘π΄

for allπ‘Š ∈ Ξ“(F). We also record here thatJ𝑋(𝑝) =0 for every 𝑝 β‰  𝑧

1, 𝑧

2, 𝑀

1, 𝑀

2

and 𝑋 ∈ 𝐿𝑝(F) for every 𝑝 β‰₯ 1. 𝑋 is not identically equal to zero as we can certainly find sectionsπ‘Š ∈ Ξ“(F) such that the left-hand side above is not zero. On the other hand, from (6.8) we conclude that

∫

Ξ£

⟨J𝑉 , π‘‹βŸ©π‘‘π΄ =0 for every harmonic variation𝑉.

Stepping back for a moment, if 𝜈€ has support near 𝑓(𝑧

1), then the associated J𝑉 is supported near all preimages of 𝑓(𝑧

1). The kernel 𝑋 may have singularities at 𝑧1 and𝑧

2, while 𝑋 is smooth at the other preimages of 𝑓(𝑧

1). The tangent planes

𝑑 𝑓(𝑇𝑧

1Ξ£)and𝑑 𝑓(𝑇𝑧

2Ξ£)are either tangential or span aπ‘˜-plane forπ‘˜ =3 or 4, and we find it convenient to treat the cases separately. In both cases, it is possible to choose

Β€

𝜈 so that G ( €𝜈) is negligible at 𝑧

2 but not so at 𝑧

1. In the tangential case, we use the argument from [Mar18, Section 7]. This is where the super-regular condition comes into play (and this is the only place it does). In this way, we can eliminate the singularity of 𝑋 at𝑧

1. Repeating the procedure, but interchanging the roles of 𝑧1and𝑧

2, we’re able to show that 𝑋is a global Jacobi field, which means 𝑋 ≑0.

The time derivative of the tension field

We compute⟨J𝑉 , π‘‹βŸ©in coordinates for a general variation𝜈€. We let(π‘₯

1, π‘₯

2)and(𝑒

1, . . . , 𝑒𝑛)denote local coordinates near𝑧

1 ∈Ωand 𝑓(𝑧

1) ∈ 𝑀 such that𝑧

1= (0,0), 𝑓(𝑧

1) = (0, . . . ,0). Near𝑧

1, the reproducing kernel 𝑋 can be expressed as a linear combination of the sections πœ• π‘“πœ•π‘—

= π‘“βˆ— πœ•

πœ• 𝑒𝑗, 𝑗 =1, . . . , 𝑛. We let 𝑋𝑗 denote the real valued functions onΞ©such that

π‘‹π‘˜ =

𝑛

βˆ‘οΈ

𝑗=1

𝑋𝑗

πœ•

πœ• 𝑓𝑗 .

In local coordinates onΣ(not necessarily holomorphic), the tension field𝜏is given by

πœπ›Ύ =πœπ›Ύ(𝑓 , πœ‡, 𝜈) = πœ‡π‘– 𝑗

πœ•2𝑓𝛾

πœ• π‘₯π‘–πœ• π‘₯𝑗

βˆ’πœ‡Ξ“π‘– π‘—π‘˜ πœ• 𝑓𝛾

πœ• π‘₯π‘˜ +πœˆΞ“π›Ύ

𝛼 𝛽(𝑓)πœ• 𝑓𝛼

πœ• π‘₯𝑖

πœ• 𝑓𝛽

πœ• π‘₯𝑗

,

where𝛾 =1, . . . , 𝑛, and we’re using the Einstein summation convention. Hereπœ‡π‘– 𝑗 are the components of the inverse of the metric tensor πœ‡. Let𝜈€ be a variation of 𝜈 and set πœˆπ‘‘ = 𝜈+π‘‘πœˆΒ€. Recall we have defined G ( €𝜈) = πœ• π‘‘πœ•πœ(π‘“πœ‡,𝜈, πœ‡, πœˆπ‘‘) |𝑑=0. Since 𝜏(𝑓 , πœ‡, 𝜈) =0, we see

⟨G ( €𝜈), π‘‹βŸ©= 𝑑 𝑑 𝑑

|𝑑=0⟨𝜏(𝑓 , πœ‡, πœˆπ‘‘), π‘‹βŸ©.

The only term that does not die upon taking the derivative is the term involving

πœˆΞ“π›Ύ

𝛼 𝛽(𝑓). Thus,

⟨G ( €𝜈), π‘‹βŸ©= 𝑑 𝑑 𝑑

|𝑑=0

βˆ‘οΈ

𝛼, 𝛽

πœˆπ›Ό π›½πœ‡π‘– 𝑗 πœˆπ‘‘Ξ“π›Ύ 𝛿𝛼 (𝑓)πœ• 𝑓𝛾

πœ• π‘₯𝑖

πœ• 𝑓𝛿

πœ• π‘₯𝑗

𝑋𝛽. (6.9)

Set

πœˆπ‘‘

Γ𝛾 ,𝛼 𝛽 = 1 2

(πœˆπ‘‘

𝛼𝛾 , 𝛽+πœˆπ‘‘

𝛾 𝛽,π›Όβˆ’πœˆπ‘‘

𝛼 𝛽,𝛾), whereπœˆπ‘‘

𝛼 𝛽,𝛿 =

πœ• πœˆπ‘‘

𝛼 𝛽

πœ• 𝑒𝛿 and𝜈

𝛾 𝛿

𝑑 denote inverse components ofπœˆπ‘‘. Under this notation, the Christoffel symbols are computed by the well-known formula

πœˆπ‘‘

Γ𝛾

𝛼 𝛽=βˆ‘οΈ

𝛿

𝜈

𝛾 𝛿

𝑑 Β·πœˆπ‘‘Ξ“π›Ώ,𝛼 𝛽.

Inserting back into (6.9) yields

⟨G ( €𝜈), π‘‹βŸ© = 𝑑 𝑑 𝑑

|𝑑=0

βˆ‘οΈ

𝛼

πœ‡π‘– 𝑗 πœˆπ‘‘Ξ“π›Ύ 𝛿,𝛼(𝑓)πœ• 𝑓𝛾

πœ• π‘₯𝑖

πœ• 𝑓𝛿

πœ• π‘₯𝑗

𝑋𝛼 =βˆ‘οΈ

𝛾

πœ‡π‘– 𝑗Γ€𝛼 𝛽,𝛾

πœ• 𝑓𝛼

πœ• π‘₯𝑖

πœ• 𝑓𝛽

πœ• π‘₯𝑗 𝑋𝛾.

(6.10) Here we are using the notation

Γ€𝛼 𝛽𝛾 =lim

𝑑→0

πœ•πœˆπ‘‘Ξ“π›Ύ

𝛼 𝛽

πœ• 𝑑 . We also record that

Γ€𝛾 ,𝛼 𝛽 = 1 2

( Β€πœˆπ›Όπ›Ύ , 𝛽+ Β€πœˆπ›Ύ 𝛽,π›Όβˆ’ Β€πœˆπ›Ό 𝛽,𝛾). Tangential harmonic disks

LetΞ©be a small neighbourhood of𝑧

1such that 𝑓 :Ξ© β†’ 𝑀 is an embedding. We let (π‘₯

1, π‘₯

2) be conformal coordinates near 𝑧

1 and (𝑒

1, . . . , 𝑒𝑛) normal coordinates centered at 𝑓(𝑧

1) ∈ 𝑀 such that

β€’ 𝑓(𝑧

1) =(0, . . . ,0),

β€’ the (regular) surface 𝑓(Ξ©) is tangent to the plane𝑃= {𝑒

3 =Β· Β· Β·=𝑒𝑛=0}at 𝑓(𝑧

1), and 𝑓(π‘₯𝑖) =𝑒𝑖for𝑖=1,2, and

β€’ πœˆπ‘— π‘˜ =πœˆπ‘— π‘˜ =0 andπœˆπ‘— 𝑗 =1 for π‘˜ =1,2 and 𝑗 =3, . . . , 𝑛when restricted to 𝑃 at 𝑓(𝑧

1).

Note that, as observed in Section 6.4, the set π‘“βˆ’1(𝑓(𝑧

1))is finite. Set π‘“βˆ’1(𝑓(𝑧

1)) ={𝑧

1, 𝑧

2, . . . , π‘§π‘š}.

Forπœ– ∈ (0,1) small enough, we let 𝐷(πœ–) denote the disk of radiusπœ– in the plane 𝑃, and let π·πœ– be the ball of radiusπœ– in the (𝑒

1, . . . , 𝑒𝑛)-coordinates centered at 0.

Sinceπ‘§π‘˜ βˆˆΞ£π‘Ÿ 𝑒𝑔(𝑓), we may chooseπœ– so that π‘“βˆ’1(π·πœ–)=

π‘š

Ø

π‘˜=1

Ξ©π‘˜,

where Ξ©π‘˜ = Ξ©π‘˜(πœ–) is the corresponding neighbourhood of π‘§π‘˜. If we choose a variation 𝜈€ with support in π·πœ–, then the induced variation of the pullback metric π‘“βˆ—πœˆ is supported in π‘“βˆ’1(π·πœ–). If J𝑉 = G ( €𝜈), we will see that this implies J𝑉 is supported there as well, and we obtain

∫

Ξ£

⟨J𝑉 , π‘‹βŸ©π‘‘π΄=

π‘š

βˆ‘οΈ

π‘˜=1

∫

Ξ©π‘˜

⟨J𝑉 , π‘‹βŸ©π‘‘π΄=0. (6.11)

Our proof of transversality ofΘinvolves analyzing each integral in the sum above.

We split into cases: (i) the harmonic surfaces 𝑓(Ξ©1) and 𝑓(Ξ©2) are tangential at 𝑓(𝑧

1) and (ii) they are not tangential. In each case, we pick a different variation of the target metric to find our contradiction.

We first treat case (i). Forπœ– > 0 small enough, 1 ≲ |𝑑 𝑓| ≲ 1

on eachΞ©π‘˜. Here | Β· |is the operator norm. Since the surface 𝑓(Ξ©π‘˜)is regular and proper, it follows that

πœ–2≲

∫

Ξ©π‘˜

𝑑𝐴 ≲ πœ–2 (6.12)

for allπ‘˜.

We now specify our variation. We letπœ‘π›Ό 𝛽 =πœ‘π›½π›Ό denote a set of real numbers such thatπœ‘π›Ό 𝛽=0 if at least one𝛼, 𝛽is greater than two. Letπœ’be a non-negative function of (𝑒

1, . . . , 𝑒𝑛) with support in 𝐷

2, equal to 1 on 𝐷

1/2, and such that it has total integral 1 with respect to the induced Euclidean area form on 𝑃. These conditions guarantee that, restricted to this plane, πœ’πœ–(𝑒) = πœ–βˆ’2πœ’(𝑒/πœ–) converges in the sense of distributions to the Dirac delta function as πœ– β†’ 0. πœ’πœ– has compact support in 𝐷(2πœ–), and the productπœ’πœ–πœ‘π›Ό 𝛽is equal toπœ‘π›Ό 𝛽on𝐷(πœ–/2). Define𝜈€ =𝜈€(πœ–) by

Β€

πœˆπ›Ό 𝛽(𝑒) =

𝑛

βˆ‘οΈ

𝑗=3

βˆ’2π‘’π‘—πœ’πœ–(𝑒)πœ‘π›Ό 𝛽.

We suppress theπœ– from our notation wherever possible. Referring back to (6.10), we are interested in the variation ofΓ𝛼 𝛽,𝛾. For𝛾 β‰₯ 3,

Γ€𝛼 𝛽,𝛾 =βˆ’1 2

Β€

πœˆπ›Ό 𝛽,𝛾 =πœ‘π›Ό π›½πœ’πœ–(𝑒) +π‘’π›Ύπœ‘π›Ό π›½πœ’πœ–

𝛾(𝑒) and hence, on(βˆ’πœ–/2, πœ–/2), this is

Γ€𝛼 𝛽,𝛾 =πœˆΒ€π›Ό 𝛽,𝛾 =πœ‘π›Ό π›½πœ’πœ–(𝑒). For𝛾 =1,2,

| €Γ𝛼 𝛽,𝛾|≲ max

𝛼 𝛽,𝛿

| Β€πœˆπ›Ό 𝛽,𝛿|≲ πœ–|βˆ‡πœ’πœ–| ≲ πœ–βˆ’2. In any case, we always have a𝑂(πœ–βˆ’2)bound.

The local coordinates (π‘₯1

1, π‘₯1

2) near𝑧

1satisfy

πœ• 𝑓𝛼

πœ• π‘₯1 𝑖

(𝑧) =𝛿𝑖 𝛼.

Since 𝑓(Ξ©2) is tangent to{𝑒

3 = 0} at 𝑧

2, we can choose coordinates (π‘₯2

1, π‘₯2

2) near 𝑧2such that

πœ• 𝑓𝛼

πœ• π‘₯2

𝑖

(𝑧) =𝛿𝑖 𝛼+𝑂(πœ–). (6.13) Note that, by our restrictions on πœ‡, πœ‡is no longer conformal in these coordinates.

Remark 6.5.1. When the two harmonic disks are equal, the𝑂(πœ–)term is identically zero.

Inserting these expressions into (6.9) gives, near𝑧

1,

⟨G ( €𝜈), π‘‹βŸ©=βˆ‘οΈ

𝛾

πœ‡π‘– 𝑗Γ€𝑖 𝑗 ,𝛾𝑋𝛾 (6.14)

and near𝑧

2,

⟨G ( €𝜈), π‘‹βŸ©=βˆ‘οΈ

𝛾

πœ‡π‘– 𝑗Γ€𝛼 𝛽,𝛾(𝛿𝑖 𝛼𝛿𝑗 𝛽+𝑂(πœ–))𝑋𝛾 =βˆ‘οΈ

𝛾

πœ‡π‘– 𝑗Γ€𝑖 𝑗 ,𝛾𝑋𝛾+𝑂(πœ–) βˆ‘οΈ

𝛼, 𝛽,𝛾

Γ€𝛼 𝛽,𝛾𝑋𝛾. (6.15) Incompatible asymptotics

The reproducing kernel 𝑋 is regular near each point π‘§π‘˜ when π‘˜ > 2. Trivially,

|J𝑉|≲ 1 near π‘§π‘˜. Recalling (6.12), we deduce

∫

Ξ©π‘˜

⟨J𝑉 , π‘‹βŸ©π‘‘π΄ ≲ πœ–βˆ’2

for π‘˜ > 1,2. For π‘˜ = 1,2, it may be the case that 𝑋 has a singularity near𝑧

1or𝑧

2

(or both). We computed this singularity in Proposition 6.3.7, the result being that in a trivialization near𝑧

1,

𝑋(𝑧) = 1 2πœ‹

log 1

|𝑧|

π‘π‘˜ +𝐡

1(𝑧), where𝐡

1(𝑧) is a𝐢0,𝛼 local section ofFnear𝑧

1, andπ‘π‘˜ ∈Fπ‘§π‘˜ is the vector normal to the surface 𝑓(Ξ£)at 𝑓(𝑧

1), defined above. Our coordinate is not conformal around 𝑧2.

Here we are considering the zero vector to be normal. Recall we are assuming that forπ‘˜ =1,2, the patches 𝑓(Ξ©π‘˜)are tangent to the plane𝑃at 𝑓(π‘§π‘˜). π‘π‘˜ is normal to 𝑃because𝜈

1𝛾 =𝜈

2𝛾 =0 for𝛾 β‰₯ 3. Incorporating these asymptotics into (6.14) and (6.15), we isolate that at𝑧

1,

⟨G ( €𝜈), π‘‹βŸ©=βˆ‘οΈ

𝛾β‰₯3

πœ‡π‘– 𝑗Γ€𝑖 𝑗 ,𝛾𝑋𝛾+ βˆ‘οΈ

𝛿=1,2

πœ‡π‘– 𝑗Γ€𝑖 𝑗 ,𝛿𝑋𝛿 =βˆ‘οΈ

𝛾β‰₯3

πœ‡π‘– 𝑗Γ€𝑖 𝑗 ,𝛾𝑋𝛾+𝑂(πœ–βˆ’2) (6.16)

and at𝑧

2,

⟨G ( €𝜈), π‘‹βŸ©=βˆ‘οΈ

𝛾β‰₯3

πœ‡π‘– 𝑗Γ€𝑖 𝑗 ,𝛾𝑋𝛾(1+𝑂(πœ–)) +𝑂(πœ–βˆ’2). We now use the fact that the restrictions of the metric πœ‡at the points𝑧

1and𝑧

2are not conformal to each other via 𝑓. By the choice of local coordinates, this means the matrix πœ‡π‘– 𝑗(𝑧

1) is not a multiple of the matrix πœ‡π‘– 𝑗(𝑧

2), where both matrices are found by trivializing the pullback bundle Fover π‘“βˆ’1(π·πœ–) using a trivialization of π·πœ–. Furthermore, the two spaces of 2Γ—2 matrices orthogonal toπœ‡π‘– 𝑗(𝑧

1)andπœ‡π‘– 𝑗(𝑧

2) respectively (with respect to the Frobenius inner product) do not coincide. Thus, we can chooseπœ‘π‘– 𝑗 uniformly bounded above and such that

βˆ‘οΈ2

𝑖, 𝑗=1

πœ‡π‘– 𝑗(𝑧

1)πœ‘π‘– 𝑗(𝑓(𝑧

1))=1 and

βˆ‘οΈ2 𝑖, 𝑗=1

πœ‡π‘– 𝑗(𝑧

2)πœ‘π‘– 𝑗(𝑓(𝑧

2)) =0. Taylor expanding (6.16), we see that near𝑧

1,

⟨G ( €𝜈), π‘‹βŸ©=βˆ‘οΈ

𝛾β‰₯3

πœ–βˆ’2πœ’(𝑧/πœ–) 1 2πœ‹

log 1

|π‘₯|

𝑍

𝛾

1(π‘₯) +𝐡𝛾(π‘₯)

+𝑂(πœ–βˆ’2)

=βˆ‘οΈ

𝛾β‰₯3

πœ–βˆ’2log|π‘₯|βˆ’1πœ’(𝑧/πœ–) 2πœ‹

𝑍

𝛾

1(0) +𝑂(πœ–βˆ’2). As for𝑧

2,

βˆ‘οΈ2 𝑖, 𝑗=1

πœ‡π‘– 𝑗(𝑧

2)πœ‘π‘– 𝑗 ≲ πœ– follows by Taylor expansion, and therefore

⟨G ( €𝜈), π‘‹βŸ©=βˆ‘οΈ

𝛾β‰₯3

πœ‡π‘– 𝑗(πœ‘π‘– π‘—πœ’πœ–(𝑒) +π‘’π›Ύπœ‘π‘– π‘—πœ’πœ–

𝛾(𝑒))𝑋𝛾(1+𝑂(πœ–)) +𝑂(πœ–βˆ’2)

≲ βˆ‘οΈ

𝛾β‰₯3

πœ–(πœ’πœ–(𝑒) +π‘’π›Ύπœ’πœ–

𝛾(𝑒)) (1+𝑂(πœ–)) log 1

|π‘₯|

𝑍

𝛾

2(π‘₯) +𝐡𝛾(π‘₯)

+𝑂(πœ–βˆ’2)

≲ βˆ‘οΈ

𝛾β‰₯3

πœ–βˆ’1logπœ–βˆ’1|𝑍

𝛾

2(0) | +𝑂(πœ–βˆ’2). Taking integrals yields

∫

Ξ©1

⟨J𝑉 , π‘‹βŸ©π‘‘π΄= πœ–βˆ’2

2πœ‹

βˆ‘οΈ

𝛾β‰₯3

∫

Ξ©1

log 1

|π‘₯|

πœ’(𝑧/πœ–)𝑍

𝛾

1(0)𝑑𝐴(π‘₯1

1, π‘₯1

2) +𝑂(1)

∫

Ξ©2

⟨J𝑉 , π‘‹βŸ©π‘‘π΄ ≲ πœ–logπœ–βˆ’1|𝑍

2(0) | +𝑂(1) ≲ 1,

and replacing back into (6.11) gives

∫

Ξ£

⟨J𝑉 , π‘‹βŸ©π‘‘π΄= πœ–βˆ’2 2πœ‹

βˆ‘οΈ

𝛾β‰₯3

∫

Ξ©1

log 1

|π‘₯|

πœ’(𝑧/πœ–)𝑍

𝛾

1(0)𝑑𝐴(π‘₯1

1, π‘₯1

2) +𝑂(1). Our standing assumption is that for all πœ– > 0, the left-hand side is equal to 0.

Therefore,

βˆ‘οΈ

𝛾β‰₯3

|𝑍

𝛾 1(0) | 1

2πœ‹

∫

Ξ©1

log 1

|π‘₯|

πœ’(𝑧/πœ–)𝑑𝐴(π‘₯1

1, π‘₯1

2)

=

βˆ‘οΈ

𝛾β‰₯3

∫

Ξ©1

1 2πœ‹

∫

Ξ©1

log 1

|π‘₯|

πœ’(𝑧/πœ–)𝑍

𝛾

1(0)𝑑𝐴(π‘₯1

1, π‘₯1

2) ≲ 1.

In coordinates, Ξ©1 is contains a ball of radius πœ–/2 with respect to the Euclidean metric, and in such a ball πœ’(𝑧/πœ–) =1. Thus,

πœ–βˆ’2 2πœ‹

∫

Ξ©1

πœ’(𝑧/πœ–)log 1

|π‘₯|

𝑑𝐴(π‘₯1

1, π‘₯1

2) ≳ πœ–βˆ’2

∫

Ξ©1

log 1

|π‘₯|

𝑑π‘₯1

1𝑑π‘₯1

2 ≳ log(πœ–βˆ’1). If there exists𝛾 β‰₯ 3 such that 𝑍

𝛾

1(0) β‰ 0, this implies logπœ–βˆ’1 ≲ 1, which is nonsensical. This forces 𝑍

𝛾

1(0) =0 for all 𝛾 β‰₯ 3. Furthermore, recalling that 𝑍

1 is normal to 𝑓(Ξ©1) at 𝑧

1, we must have that 𝑍

1(𝑧

1) = 0 identically. This proves the following lemma.

Lemma 6.5.2. Suppose 𝑓(Ξ©1)and 𝑓(Ξ©2)are tangential at 𝑓(𝑧

1). Then𝑋extends smoothly over𝑧

1.

Non-tangential harmonic disks

We have essentially proved transversalityΘ, if we assume the images of the harmonic map are tangential at 𝑧

1, 𝑧

2, and at 𝑀

1, 𝑀

2. In this subsection, we consider other intersections. Namely, we prove the following.

Lemma 6.5.3. Suppose 𝑓(Ξ©1) and 𝑓(Ξ©2) are not tangential at 𝑓(𝑧

1). Then 𝑋 extends smoothly over𝑧

1.

Equipped with this lemma, we can prove transversality with ease.

Proof of transversality ofΘ. AssumeΘis not transverse, so that we have the section 𝑋 as in the work above. Applying Lemma 6.5.2 or Lemma 6.5.3, depending on the