Chapter VI: Moduli spaces of harmonic surfaces
6.5 Proof of the transversality lemma
where ππ‘ = ππ‘(π
0,π
0)+(1βπ‘) (π,π). Using π β₯ 1 we appeal to the Parametric Transver- sality Theorem to find that for a generic point (π, π, π, π) β π, the map ππ,π, π,π is transverse to πΏ. Counting dimensions, we see thatπΏ( [0,1] ΓΞ£2) does not intersect πΏ. This implies that the path
π(π(π‘ , π , π , π, π, π, π)) is contained inD \ J and connects (π
0, π
0)and (π, π). SinceD\ J is open, once (π, π) is close enough, we can connect it to (π
1, π
1) via a straight line in a model chart contained inD\ J.
Returning to the pathπΎ, we do the above procedure over all of the coordinate charts, which perturbs πΎ to a new path contained entirely in D\ J and connecting the endpoints. This completes the proof.
Remark 6.4.11. A slightly simpler transversality argument is possible whenπhas dimensionβ₯ 4. We leave this for the reader to understand on their own. The proof of the analogue of Lemma 6.4.10 is essentially the same.
6.5 Proof of the transversality lemma
Here,G ( Β€π)is the derivative of the tension field in theπΒ€-direction:
G ( Β€π) = π π π‘
|π‘=0π(π, π+π‘π, πΒ€ π,π). Accordingly,π is called a harmonic variation. It follows that
πΞ(0,0,0,0,0,πΒ€)= (π(π), π(π ), π(π), π(π)).
Suppose Ξ(π , π , π, π, π, π) β πΏ. To simplify notation, we rename the points as π§1= π,π§
2=π,π€
1 =π,π€
2=π . The proof of Lemma 6.4.10 is another contradiction argument. Suppose the lemma is incorrect. Then, there are four vectors ππ β Fπ§π, ππ βFπ€π, not all of them zero, such that
β’ ππandππare either zero or normal to the surface π(Ξ£)at the points π(π§π)and π(π€π) respectively and
β’ for everyπ such thatJπ =G ( Β€π), the following holds:
βοΈ2
π=1
(β¨π(π§π), ππβ© + β¨π(π€π), ππβ©) =0. (6.8)
We now invoke reproducing formulas for the zeroth derivative. We showed the existence of reproducing kernels in Section 6.3. Adding up the four zeroth or- der reproducing kernels associated to the points π§π, π€π, we find a section π : Ξ£\{π§
1, π§
2, π€
1, π€
2} βFwith maximum regularity and such that
βοΈ2
π=1
(β¨π(π§π), ππβ© + β¨π(π€π), ππβ©) =
β«
Ξ£
β¨Jπ , πβ©ππ΄
for allπ β Ξ(F). We also record here thatJπ(π) =0 for every π β π§
1, π§
2, π€
1, π€
2
and π β πΏπ(F) for every π β₯ 1. π is not identically equal to zero as we can certainly find sectionsπ β Ξ(F) such that the left-hand side above is not zero. On the other hand, from (6.8) we conclude that
β«
Ξ£
β¨Jπ , πβ©ππ΄ =0 for every harmonic variationπ.
Stepping back for a moment, if πΒ€ has support near π(π§
1), then the associated Jπ is supported near all preimages of π(π§
1). The kernel π may have singularities at π§1 andπ§
2, while π is smooth at the other preimages of π(π§
1). The tangent planes
π π(ππ§
1Ξ£)andπ π(ππ§
2Ξ£)are either tangential or span aπ-plane forπ =3 or 4, and we find it convenient to treat the cases separately. In both cases, it is possible to choose
Β€
π so that G ( Β€π) is negligible at π§
2 but not so at π§
1. In the tangential case, we use the argument from [Mar18, Section 7]. This is where the super-regular condition comes into play (and this is the only place it does). In this way, we can eliminate the singularity of π atπ§
1. Repeating the procedure, but interchanging the roles of π§1andπ§
2, weβre able to show that πis a global Jacobi field, which means π β‘0.
The time derivative of the tension field
We computeβ¨Jπ , πβ©in coordinates for a general variationπΒ€. We let(π₯
1, π₯
2)and(π’
1, . . . , π’π)denote local coordinates nearπ§
1 βΞ©and π(π§
1) β π such thatπ§
1= (0,0), π(π§
1) = (0, . . . ,0). Nearπ§
1, the reproducing kernel π can be expressed as a linear combination of the sections π πππ
= πβ π
π π’π, π =1, . . . , π. We let ππ denote the real valued functions onΞ©such that
ππ =
π
βοΈ
π=1
ππ
π
π ππ .
In local coordinates onΞ£(not necessarily holomorphic), the tension fieldπis given by
ππΎ =ππΎ(π , π, π) = ππ π
π2ππΎ
π π₯ππ π₯π
βπΞπ ππ π ππΎ
π π₯π +πΞπΎ
πΌ π½(π)π ππΌ
π π₯π
π ππ½
π π₯π
,
whereπΎ =1, . . . , π, and weβre using the Einstein summation convention. Hereππ π are the components of the inverse of the metric tensor π. LetπΒ€ be a variation of π and set ππ‘ = π+π‘πΒ€. Recall we have defined G ( Β€π) = π π‘ππ(ππ,π, π, ππ‘) |π‘=0. Since π(π , π, π) =0, we see
β¨G ( Β€π), πβ©= π π π‘
|π‘=0β¨π(π , π, ππ‘), πβ©.
The only term that does not die upon taking the derivative is the term involving
πΞπΎ
πΌ π½(π). Thus,
β¨G ( Β€π), πβ©= π π π‘
|π‘=0
βοΈ
πΌ, π½
ππΌ π½ππ π ππ‘ΞπΎ πΏπΌ (π)π ππΎ
π π₯π
π ππΏ
π π₯π
ππ½. (6.9)
Set
ππ‘
ΞπΎ ,πΌ π½ = 1 2
(ππ‘
πΌπΎ , π½+ππ‘
πΎ π½,πΌβππ‘
πΌ π½,πΎ), whereππ‘
πΌ π½,πΏ =
π ππ‘
πΌ π½
π π’πΏ andπ
πΎ πΏ
π‘ denote inverse components ofππ‘. Under this notation, the Christoffel symbols are computed by the well-known formula
ππ‘
ΞπΎ
πΌ π½=βοΈ
πΏ
π
πΎ πΏ
π‘ Β·ππ‘ΞπΏ,πΌ π½.
Inserting back into (6.9) yields
β¨G ( Β€π), πβ© = π π π‘
|π‘=0
βοΈ
πΌ
ππ π ππ‘ΞπΎ πΏ,πΌ(π)π ππΎ
π π₯π
π ππΏ
π π₯π
ππΌ =βοΈ
πΎ
ππ πΞΒ€πΌ π½,πΎ
π ππΌ
π π₯π
π ππ½
π π₯π ππΎ.
(6.10) Here we are using the notation
ΞΒ€πΌ π½πΎ =lim
π‘β0
πππ‘ΞπΎ
πΌ π½
π π‘ . We also record that
ΞΒ€πΎ ,πΌ π½ = 1 2
( Β€ππΌπΎ , π½+ Β€ππΎ π½,πΌβ Β€ππΌ π½,πΎ). Tangential harmonic disks
LetΞ©be a small neighbourhood ofπ§
1such that π :Ξ© β π is an embedding. We let (π₯
1, π₯
2) be conformal coordinates near π§
1 and (π’
1, . . . , π’π) normal coordinates centered at π(π§
1) β π such that
β’ π(π§
1) =(0, . . . ,0),
β’ the (regular) surface π(Ξ©) is tangent to the planeπ= {π’
3 =Β· Β· Β·=π’π=0}at π(π§
1), and π(π₯π) =π’πforπ=1,2, and
β’ ππ π =ππ π =0 andππ π =1 for π =1,2 and π =3, . . . , πwhen restricted to π at π(π§
1).
Note that, as observed in Section 6.4, the set πβ1(π(π§
1))is finite. Set πβ1(π(π§
1)) ={π§
1, π§
2, . . . , π§π}.
Forπ β (0,1) small enough, we let π·(π) denote the disk of radiusπ in the plane π, and let π·π be the ball of radiusπ in the (π’
1, . . . , π’π)-coordinates centered at 0.
Sinceπ§π βΞ£π ππ(π), we may chooseπ so that πβ1(π·π)=
π
Γ
π=1
Ξ©π,
where Ξ©π = Ξ©π(π) is the corresponding neighbourhood of π§π. If we choose a variation πΒ€ with support in π·π, then the induced variation of the pullback metric πβπ is supported in πβ1(π·π). If Jπ = G ( Β€π), we will see that this implies Jπ is supported there as well, and we obtain
β«
Ξ£
β¨Jπ , πβ©ππ΄=
π
βοΈ
π=1
β«
Ξ©π
β¨Jπ , πβ©ππ΄=0. (6.11)
Our proof of transversality ofΞinvolves analyzing each integral in the sum above.
We split into cases: (i) the harmonic surfaces π(Ξ©1) and π(Ξ©2) are tangential at π(π§
1) and (ii) they are not tangential. In each case, we pick a different variation of the target metric to find our contradiction.
We first treat case (i). Forπ > 0 small enough, 1 β² |π π| β² 1
on eachΞ©π. Here | Β· |is the operator norm. Since the surface π(Ξ©π)is regular and proper, it follows that
π2β²
β«
Ξ©π
ππ΄ β² π2 (6.12)
for allπ.
We now specify our variation. We letππΌ π½ =ππ½πΌ denote a set of real numbers such thatππΌ π½=0 if at least oneπΌ, π½is greater than two. Letπbe a non-negative function of (π’
1, . . . , π’π) with support in π·
2, equal to 1 on π·
1/2, and such that it has total integral 1 with respect to the induced Euclidean area form on π. These conditions guarantee that, restricted to this plane, ππ(π’) = πβ2π(π’/π) converges in the sense of distributions to the Dirac delta function as π β 0. ππ has compact support in π·(2π), and the productππππΌ π½is equal toππΌ π½onπ·(π/2). DefineπΒ€ =πΒ€(π) by
Β€
ππΌ π½(π’) =
π
βοΈ
π=3
β2π’πππ(π’)ππΌ π½.
We suppress theπ from our notation wherever possible. Referring back to (6.10), we are interested in the variation ofΞπΌ π½,πΎ. ForπΎ β₯ 3,
ΞΒ€πΌ π½,πΎ =β1 2
Β€
ππΌ π½,πΎ =ππΌ π½ππ(π’) +π’πΎππΌ π½ππ
πΎ(π’) and hence, on(βπ/2, π/2), this is
ΞΒ€πΌ π½,πΎ =πΒ€πΌ π½,πΎ =ππΌ π½ππ(π’). ForπΎ =1,2,
| Β€ΞπΌ π½,πΎ|β² max
πΌ π½,πΏ
| Β€ππΌ π½,πΏ|β² π|βππ| β² πβ2. In any case, we always have aπ(πβ2)bound.
The local coordinates (π₯1
1, π₯1
2) nearπ§
1satisfy
π ππΌ
π π₯1 π
(π§) =πΏπ πΌ.
Since π(Ξ©2) is tangent to{π’
3 = 0} at π§
2, we can choose coordinates (π₯2
1, π₯2
2) near π§2such that
π ππΌ
π π₯2
π
(π§) =πΏπ πΌ+π(π). (6.13) Note that, by our restrictions on π, πis no longer conformal in these coordinates.
Remark 6.5.1. When the two harmonic disks are equal, theπ(π)term is identically zero.
Inserting these expressions into (6.9) gives, nearπ§
1,
β¨G ( Β€π), πβ©=βοΈ
πΎ
ππ πΞΒ€π π ,πΎππΎ (6.14)
and nearπ§
2,
β¨G ( Β€π), πβ©=βοΈ
πΎ
ππ πΞΒ€πΌ π½,πΎ(πΏπ πΌπΏπ π½+π(π))ππΎ =βοΈ
πΎ
ππ πΞΒ€π π ,πΎππΎ+π(π) βοΈ
πΌ, π½,πΎ
ΞΒ€πΌ π½,πΎππΎ. (6.15) Incompatible asymptotics
The reproducing kernel π is regular near each point π§π when π > 2. Trivially,
|Jπ|β² 1 near π§π. Recalling (6.12), we deduce
β«
Ξ©π
β¨Jπ , πβ©ππ΄ β² πβ2
for π > 1,2. For π = 1,2, it may be the case that π has a singularity nearπ§
1orπ§
2
(or both). We computed this singularity in Proposition 6.3.7, the result being that in a trivialization nearπ§
1,
π(π§) = 1 2π
log 1
|π§|
ππ +π΅
1(π§), whereπ΅
1(π§) is aπΆ0,πΌ local section ofFnearπ§
1, andππ βFπ§π is the vector normal to the surface π(Ξ£)at π(π§
1), defined above. Our coordinate is not conformal around π§2.
Here we are considering the zero vector to be normal. Recall we are assuming that forπ =1,2, the patches π(Ξ©π)are tangent to the planeπat π(π§π). ππ is normal to πbecauseπ
1πΎ =π
2πΎ =0 forπΎ β₯ 3. Incorporating these asymptotics into (6.14) and (6.15), we isolate that atπ§
1,
β¨G ( Β€π), πβ©=βοΈ
πΎβ₯3
ππ πΞΒ€π π ,πΎππΎ+ βοΈ
πΏ=1,2
ππ πΞΒ€π π ,πΏππΏ =βοΈ
πΎβ₯3
ππ πΞΒ€π π ,πΎππΎ+π(πβ2) (6.16)
and atπ§
2,
β¨G ( Β€π), πβ©=βοΈ
πΎβ₯3
ππ πΞΒ€π π ,πΎππΎ(1+π(π)) +π(πβ2). We now use the fact that the restrictions of the metric πat the pointsπ§
1andπ§
2are not conformal to each other via π. By the choice of local coordinates, this means the matrix ππ π(π§
1) is not a multiple of the matrix ππ π(π§
2), where both matrices are found by trivializing the pullback bundle Fover πβ1(π·π) using a trivialization of π·π. Furthermore, the two spaces of 2Γ2 matrices orthogonal toππ π(π§
1)andππ π(π§
2) respectively (with respect to the Frobenius inner product) do not coincide. Thus, we can chooseππ π uniformly bounded above and such that
βοΈ2
π, π=1
ππ π(π§
1)ππ π(π(π§
1))=1 and
βοΈ2 π, π=1
ππ π(π§
2)ππ π(π(π§
2)) =0. Taylor expanding (6.16), we see that nearπ§
1,
β¨G ( Β€π), πβ©=βοΈ
πΎβ₯3
πβ2π(π§/π) 1 2π
log 1
|π₯|
π
πΎ
1(π₯) +π΅πΎ(π₯)
+π(πβ2)
=βοΈ
πΎβ₯3
πβ2log|π₯|β1π(π§/π) 2π
π
πΎ
1(0) +π(πβ2). As forπ§
2,
βοΈ2 π, π=1
ππ π(π§
2)ππ π β² π follows by Taylor expansion, and therefore
β¨G ( Β€π), πβ©=βοΈ
πΎβ₯3
ππ π(ππ πππ(π’) +π’πΎππ πππ
πΎ(π’))ππΎ(1+π(π)) +π(πβ2)
β² βοΈ
πΎβ₯3
π(ππ(π’) +π’πΎππ
πΎ(π’)) (1+π(π)) log 1
|π₯|
π
πΎ
2(π₯) +π΅πΎ(π₯)
+π(πβ2)
β² βοΈ
πΎβ₯3
πβ1logπβ1|π
πΎ
2(0) | +π(πβ2). Taking integrals yields
β«
Ξ©1
β¨Jπ , πβ©ππ΄= πβ2
2π
βοΈ
πΎβ₯3
β«
Ξ©1
log 1
|π₯|
π(π§/π)π
πΎ
1(0)ππ΄(π₯1
1, π₯1
2) +π(1)
β«
Ξ©2
β¨Jπ , πβ©ππ΄ β² πlogπβ1|π
2(0) | +π(1) β² 1,
and replacing back into (6.11) gives
β«
Ξ£
β¨Jπ , πβ©ππ΄= πβ2 2π
βοΈ
πΎβ₯3
β«
Ξ©1
log 1
|π₯|
π(π§/π)π
πΎ
1(0)ππ΄(π₯1
1, π₯1
2) +π(1). Our standing assumption is that for all π > 0, the left-hand side is equal to 0.
Therefore,
βοΈ
πΎβ₯3
|π
πΎ 1(0) | 1
2π
β«
Ξ©1
log 1
|π₯|
π(π§/π)ππ΄(π₯1
1, π₯1
2)
=
βοΈ
πΎβ₯3
β«
Ξ©1
1 2π
β«
Ξ©1
log 1
|π₯|
π(π§/π)π
πΎ
1(0)ππ΄(π₯1
1, π₯1
2) β² 1.
In coordinates, Ξ©1 is contains a ball of radius π/2 with respect to the Euclidean metric, and in such a ball π(π§/π) =1. Thus,
πβ2 2π
β«
Ξ©1
π(π§/π)log 1
|π₯|
ππ΄(π₯1
1, π₯1
2) β³ πβ2
β«
Ξ©1
log 1
|π₯|
ππ₯1
1ππ₯1
2 β³ log(πβ1). If there existsπΎ β₯ 3 such that π
πΎ
1(0) β 0, this implies logπβ1 β² 1, which is nonsensical. This forces π
πΎ
1(0) =0 for all πΎ β₯ 3. Furthermore, recalling that π
1 is normal to π(Ξ©1) at π§
1, we must have that π
1(π§
1) = 0 identically. This proves the following lemma.
Lemma 6.5.2. Suppose π(Ξ©1)and π(Ξ©2)are tangential at π(π§
1). Thenπextends smoothly overπ§
1.
Non-tangential harmonic disks
We have essentially proved transversalityΞ, if we assume the images of the harmonic map are tangential at π§
1, π§
2, and at π€
1, π€
2. In this subsection, we consider other intersections. Namely, we prove the following.
Lemma 6.5.3. Suppose π(Ξ©1) and π(Ξ©2) are not tangential at π(π§
1). Then π extends smoothly overπ§
1.
Equipped with this lemma, we can prove transversality with ease.
Proof of transversality ofΞ. AssumeΞis not transverse, so that we have the section π as in the work above. Applying Lemma 6.5.2 or Lemma 6.5.3, depending on the