• Tidak ada hasil yang ditemukan

Extensions and further approaches

Chapter III: The Mode Decomposition Problem

3.3 Extensions and further approaches

using the second-order synchrosqueezing transform [11, 94]. In this extension of SST,π‘Š

𝑑 πœ“

𝑣 is used in conjunction withπ‘Š

πœ“

𝑣 to generate a reassignment of both time and frequency in the synchrosqueezing of the CWT (or analogously for the STFT).

This can be taken further in the higher-order synchrosqueezing transform [107]

whereπ‘Š

π‘‘π‘˜πœ“

𝑣 or𝑉

π‘‘π‘˜π‘”

𝑣 are used to obtain𝑛-th order reallocation estimates.

C h a p t e r 4

ITERATED MICRO-LOCAL KERNEL MODE DECOMPOSITION FOR KNOWN BASE WAVEFORMS

This chapter will introduce iterated micro-local kernel mode decomposition (KMD) [102, Sec. 8], which is a GP-inspired approach to the mode decomposition problem, i.e., Prob.7. We present its adaptability to address generalizations such as possibly unknown, non-trigonometric waveforms and modes with crossing frequencies or vanishing amplitudes. The method borrows the sequential peeling of modes from EMD and uses a variant of the SST to identify mode frequencies. We will present the methodology behind mode identification and estimation by introducing the algorithm in the context of mode recovery with known waveforms as in Problem8.

Problem 8. For π‘š ∈Nβˆ—, letπ‘Ž1, . . . , π‘Žπ‘š be piecewise smooth functions on [βˆ’1,1], let πœƒ1, . . . , πœƒπ‘š be strictly increasing functions on [βˆ’1,1], and let 𝑦 be a square- integrable2πœ‹-periodic function. Assume thatπ‘šand theπ‘Žπ‘–, πœƒπ‘–are unknown and the base waveform 𝑦 is known. We further assume that, for some πœ– > 0, π‘Žπ‘–(𝑑) > πœ– and that πœƒΒ€π‘–(𝑑)/ Β€πœƒπ‘—(𝑑) βˆ‰ [1βˆ’πœ– ,1+πœ–] for all𝑖, 𝑗 , 𝑑. Given the observation 𝑣(𝑑) = Γπ‘š

𝑖=1π‘Žπ‘–(𝑑)𝑦 πœƒπ‘–(𝑑)

(for𝑑 ∈ [βˆ’1,1]) recover the modes𝑣𝑖 :=π‘Žπ‘–(𝑑)𝑦 πœƒπ‘–(𝑑) .

Figure 4.1: [102, Fig. 23], (1) triangle base waveform (2) EKG base waveform.

Figure 4.2: [102, Fig. 24], triangle base waveform: (1) Signal 𝑣 (2) Instantaneous frequenciesπœ”π‘– :=πœƒΒ€π‘–(3) Amplitudesπ‘Žπ‘– (4, 5, 6) Modes𝑣1,𝑣2, 𝑣3.

Figure 4.3: [102, Fig. 25], EKG base waveform: (1) Signal 𝑣 (2) Instantaneous frequenciesπœ”π‘– :=πœƒΒ€π‘–(3) Amplitudesπ‘Žπ‘–(4, 5, 6) Modes𝑣1,𝑣2, 𝑣3.

Example 4.0.1. Figure4.1shows two full periods of two2πœ‹-periodic base waveforms (triangle and EKG), which we will use in our numerical experiments/illustrations.

The EKG (-like) waveform is 𝑦𝐸 𝐾 𝐺(𝑑) βˆ’ (2πœ‹)βˆ’1∫2πœ‹

0 𝑦𝐸 𝐾 𝐺(𝑠)𝑑𝑠

/k𝑦𝐸 𝐾 𝐺k𝐿2( [0,2πœ‹))

with𝑦𝐸 𝐾 𝐺(𝑑)defined on[0,2πœ‹)as (1)0.3βˆ’|π‘‘βˆ’πœ‹|for|π‘‘βˆ’πœ‹| <0.3(2)0.03 cos2( πœ‹

0.6(π‘‘βˆ’ πœ‹ +1))for |𝑑 βˆ’πœ‹+1| < 0.3(3)0.03 cos2( πœ‹

0.6(π‘‘βˆ’πœ‹βˆ’1))for |π‘‘βˆ’πœ‹βˆ’1| < 0.3and (4)0otherwise.

To aid in the exposition, we present the algorithm as a network assembled with elementary modules. Our approach is summarized in Algorithm3 and explained in the following sections. The algorithm iterates modules described in (1) to (3) to estimate each mode, 𝑣𝑖 β‰ˆ 𝑣𝑖,𝑒. We denote 𝑣(𝑖) = 𝑣 βˆ’π‘£1,𝑒 βˆ’ Β· Β· Β· βˆ’π‘£π‘–βˆ’1,𝑒 as signal𝑣 after the firstπ‘–βˆ’1 mode estimates are peeled. Beginning with𝑖 = 0 and𝑣(0) = 𝑣, the algorithm proceeds as follows:

1. Use the max-pool energyS(4.1.6) to obtain an estimate of the instantaneous phase and frequency, πœƒlow(𝑣(𝑖)) and πœ”low(𝑣(𝑖)) associated with the lowest instantaneous frequency (as described in Section4.1).

2. Iterate amicro-localKMD (presented in Section4.2) of the signal𝑣(𝑖)to obtain a highly accurate estimate of the phase/amplitudeπœƒπ‘˜, π‘Žπ‘˜of their corresponding mode π‘£π‘˜ for all π‘˜ ≀ 𝑖 (this iteration can achieve near machine-precision accuracies when the instantaneous frequencies are separated).

3. Peel off the mode𝑣𝑖from𝑣(𝑖), i.e.,𝑣(𝑖+1) =𝑣(𝑖)βˆ’π‘£π‘–and update index𝑖 →𝑖+1.

4. Iterate 1-3 to obtain all the modes.

5. Perform a last micro-local KMD of the signal for higher accuracy.

To illustrate this approach we will apply it to the signals𝑣displayed in Figures4.2 and4.3, where the modes of Figure 4.2 are triangular and those of Figure4.3 are EKG.

4.1 Max-pooling and the lowest instantaneous frequency

We will now present a variant of the SST [24] used for identifying mode frequencies.

It will be applied in a module identifying the phase and instantaneous frequency of the lowest frequency mode [102, Sec. 8.2]. Begin by defining wavelets

πœ’πœ,πœ”,𝑐(𝑑) := 2 πœ‹

14r πœ” 𝛼

cos(πœ”(π‘‘βˆ’πœ))π‘’βˆ’

πœ”2(π‘‘βˆ’πœ)2

𝛼2 , 𝑑 ∈R,

πœ’πœ,πœ”,𝑠(𝑑) :=

2 πœ‹

14r πœ” 𝛼

sin(πœ”(π‘‘βˆ’πœ))π‘’βˆ’

πœ”2(π‘‘βˆ’πœ)2

𝛼2 , 𝑑 ∈R, (4.1.1) as well as complex waveletπœ’πœ,πœ”(𝑑)= πœ’πœ,πœ”,𝑐(𝑑) βˆ’π‘– πœ’πœ,πœ”,𝑠(𝑑). Note that𝜏indicates the time of the center of the wavelet within [βˆ’1,1] while πœ” represents the frequency.

Then the continuous wavelet transform (CWT) as in [24] of signal 𝑓 at (𝜏, πœ”) is defined as

π‘Š(𝜏, πœ”, 𝑓) :=

∫ 1

βˆ’1

πœ’πœ,πœ”(𝑑)𝑓(𝑑)𝑑 𝑑 . (4.1.2)

We further define cosine and sine analogues of the CWT as π‘Šπ‘(𝜏, πœ”, 𝑓) :=

∫ 1 0

πœ’πœ,πœ”,𝑐(𝑑)𝑓(𝑑)𝑑 𝑑 π‘Šπ‘ (𝜏, πœ”, 𝑓) :=

∫ 1 0

πœ’πœ,πœ”,𝑠(𝑑)𝑓(𝑑)𝑑 𝑑 . (4.1.3)

The energy of the signal in (𝜏, πœ”)-space is then defined by

𝐸(𝜏, πœ”, 𝑓) :=|π‘Š(𝜏, πœ”, 𝑓) |2. (4.1.4) Mimicking the instantaneous phase and frequency estimation in SST, we define

πœƒπ‘’(𝜏, πœ”, 𝑓) := phase(π‘Š(𝜏, πœ”, 𝑓)) πœ”π‘’(𝜏, πœ”, 𝑓) := πœ• πœƒπ‘’

πœ• 𝜏

(𝜏, πœ”, 𝑓). (4.1.5)

We introduce the max-pool energy

S (𝜏, πœ”, 𝑓) = max

πœ”0:πœ”π‘’(𝜏,πœ”0)=πœ”

𝐸(𝜏, πœ”0, 𝑓) (4.1.6) as a variant of the SST which avoids the dependence on the choice of measure, as in the remark of [24, Eq. 2.7]. This max-squeezing can also be interpreted in an additive-kernel setting with further details, illustrations, and comparisons to SST in [102, Sec. 4].

This calculation of signal energy in (𝜏, πœ”)-space is then used to design modules which take the signal as input and return an estimate of the instantaneous phase and frequency of the lowest-frequency mode, πœƒlow(𝑓) and πœ”low(𝑓). Note that both of the outputs are[βˆ’1,1] β†’Rfunctions. We restrict our presentation to the situation where the instantaneous frequenciesπœƒΒ€π‘– do not cross each other. The main steps of the computation performed by this module are as follows. Let S (𝜏, πœ”, 𝑓) be the max-pool energy defined as in (4.1.6). Then, let 𝐴low be defined to be a subset of the time-frequency domain(𝜏, πœ”)identified (as in Figure4.4.2) as a narrow sausage band around the lowest instantaneous frequency defined by the local maxima of the S (𝜏, πœ”, 𝑓). If no modes can be detected (above a given threshold) in S (𝜏, πœ”, 𝑓) then we setπœƒlow(𝑓) =βˆ…. Otherwise, we let

πœ”low(𝑓) (𝜏) :=πœ”π‘’ 𝜏,argmaxπœ”:(𝜏,πœ”)∈𝐴lowS (𝜏, πœ”, 𝑓)

(4.1.7) be the estimated instantaneous frequency of the mode having the lowest instanta- neous frequency and, withπœƒπ‘’defined as in (4.1.5), let

πœƒlow(𝑓) (𝜏):=πœƒπ‘’(𝜏, πœ”low(𝑓) (𝜏), 𝑓) (4.1.8)

Figure 4.4: [102, Fig. 26], max-squeezing with the EKG base waveform and deriva- tion of the instantaneous phase estimates πœƒπ‘–,𝑒. (1,2) (𝜏, πœ”) β†’ S (𝜏, πœ”, 𝑣) and identification of𝐴low (3, 4)(𝜏, πœ”) β†’ S (𝜏, πœ”, π‘£βˆ’π‘£1,𝑒)and identification of its 𝐴low (5,6) (𝜏, πœ”) β†’ S (𝜏, πœ”, π‘£βˆ’π‘£1,𝑒 βˆ’π‘£2,𝑒) and identification of its𝐴low.

be the corresponding estimated instantaneous phase. Notationally, we sometimes leave out 𝑓 and writeπœ”low orπœƒlowwhen unambiguous.

4.2 The micro-local KMD module

We will now present the micro-local KMD module [102, Sec. 8.1], which will estimate amplitudes and refine SST phase estimates. As input, it takes a time𝜏, an estimated phase function of a modeπœƒπ‘’, and signal 𝑓. Suppose the lowest frequency mode of 𝑓 is of form 𝑣low(𝑑) = π‘Žlow(𝑑)𝑦(πœƒlow(𝑑)), and its phase is estimated as πœƒlow,𝑒. The module outputs an estimate π‘Ž(𝜏, πœƒlow,𝑒, 𝑓) of the amplitude π‘Žlow(𝜏) of the mode 𝑣𝑖 and a correction π›Ώπœƒ(𝜏, πœƒlow,𝑒, 𝑓) determining an updated estimate πœƒlow,𝑒(𝜏) +π›Ώπœƒ(𝜏, πœƒlow,𝑒, 𝑓) of the estimated mode phase functionπœƒlow,𝑒.

Supposing𝛼 >0,𝜏 ∈ [βˆ’1,1], and𝑛 ∈ {0, . . . , 𝑑}, letπœ’πœ,πœƒπ‘’

𝑛,𝑐 andπœ’πœ,πœƒπ‘’

𝑛,𝑠 be the wavelets defined by

πœ’πœ,πœƒπ‘’

𝑛,𝑐 (𝑑) := cos(πœƒπ‘’(𝑑)) (π‘‘βˆ’πœ)π‘›π‘’βˆ’

πœƒπ‘’Β€(𝜏) (π‘‘βˆ’πœ) 𝛼

2

πœ’πœ,πœƒπ‘’

𝑛,𝑠 (𝑑) := sin(πœƒπ‘’(𝑑)) (π‘‘βˆ’πœ)π‘›π‘’βˆ’

πœƒπ‘’(Β€ 𝜏) (π‘‘βˆ’πœ) 𝛼

2

, (4.2.1)

and letπœ‰πœ,πœƒ

𝑒 be the Gaussian process defined by πœ‰πœ,πœƒ

𝑒(𝑑) :=

𝑑

Γ•

𝑛=0

𝑋𝑛,π‘πœ’πœ,πœƒπ‘’

𝑛,𝑐 (𝑑) +𝑋𝑛,π‘ πœ’πœ,πœƒπ‘’

𝑛,𝑠 (𝑑)

, (4.2.2)

where 𝑋𝑛,𝑐, 𝑋𝑛,𝑠 ∼ N (0,1) are IID random variables. Let π‘“πœ be the Gaussian windowed signal defined by

π‘“πœ(𝑑) =π‘’βˆ’

πœƒπ‘’Β€ (𝜏) (π‘‘βˆ’πœ) 𝛼

2

𝑓(𝑑), 𝑑 ∈ [βˆ’1,1], (4.2.3) and, for(𝑛, 𝑗) ∈ {0, . . . , 𝑑} Γ— {𝑐, 𝑠}, let

𝑍𝑛, 𝑗(𝜏, πœƒπ‘’, 𝑓) :=lim

πœŽβ†“0E 𝑋𝑛, 𝑗

πœ‰πœ,πœƒ

𝑒 +πœ‰πœŽ = π‘“πœ

, (4.2.4)

whereπœ‰πœŽ is white noise, independent ofπœ‰πœ,πœƒ

𝑒, with variance𝜎2. To compute 𝑍𝑛, 𝑗, observe that since bothπœ‰πœ,πœƒ

𝑒 andπœ‰πœŽare Gaussian fields, it follows from (1.4.1) that E

πœ‰πœ,πœƒ

𝑒

πœ‰πœ,πœƒ

𝑒 +πœ‰πœŽ

= 𝐴𝜎(πœ‰πœ,πœƒ

𝑒 +πœ‰πœŽ) for the linear mapping

𝐴𝜎 =π‘„πœ,πœƒ

𝑒 π‘„πœ,πœƒ

𝑒 +𝜎2πΌβˆ’1

, where π‘„πœ,πœƒ

𝑒 : 𝐿2 β†’ 𝐿2 is the covariance operator of the Gaussian field πœ‰πœ,πœƒ

𝑒

and 𝜎2𝐼 is the covariance operator of πœ‰πœŽ. Using the characterization of the limit of Tikhonov regularization as the Moore-Penrose inverse, see, e. g., Barata and Hussein [8, Thm. 4.3], along with the orthogonal projections connected with the Moore-Penrose inverse, we conclude that limπœŽβ†’0𝐴𝜎 = 𝑃

πœ’πœ , πœƒπ‘’, where 𝑃

πœ’πœ , πœƒπ‘’ is the 𝐿2-orthogonal projection onto the span πœ’πœ,πœƒπ‘’ := span{πœ’π‘›,π‘πœ,πœƒπ‘’, πœ’π‘›,π‘ πœ,πœƒπ‘’ : 𝑛 =0, . . . , 𝑑}, and therefore

πœŽβ†’0lim E πœ‰πœ,πœƒ

𝑒

πœ‰πœ,πœƒ

𝑒+πœ‰πœŽ

=𝑃

πœ’πœ , πœƒπ‘’(πœ‰πœ,πœƒ

𝑒 +πœ‰πœŽ). (4.2.5) Since the definition (4.2.2) can be written πœ‰πœ,πœƒ

𝑒 = Í

𝑛, 𝑗 𝑋𝑛, π‘—πœ’πœ,πœƒπ‘’

𝑛, 𝑗 , summing (4.2.4) and using (4.2.5), we obtain

Γ•

𝑛, 𝑗

𝑍𝑛, 𝑗(𝜏, πœƒπ‘’, 𝑓)πœ’πœ,πœƒπ‘’

𝑛, 𝑗 (𝑑) =𝑃

πœ’πœ , πœƒπ‘’ π‘“πœ(𝑑), 𝑑 ∈ [βˆ’1,1]. (4.2.6) Consider the vector function 𝑍(𝜏, πœƒπ‘’, 𝑓) ∈ R2𝑑+2 with components 𝑍𝑛, 𝑗(𝜏, πœƒπ‘’, 𝑓), the 2𝑑+2 dimensional Gaussian random vector 𝑋 with components 𝑋𝑛, 𝑗,(𝑛, 𝑗) ∈ {0, . . . , 𝑑} Γ— {𝑐, 𝑠}, and the(2𝑑+2) Γ— (2𝑑+2) matrix 𝐴𝜏,πœƒπ‘’ defined by

𝐴

𝜏,πœƒπ‘’

(𝑛, 𝑗),(𝑛0, 𝑗0) :=hπœ’

𝜏,πœƒπ‘’ 𝑛, 𝑗 , πœ’

𝜏,πœƒπ‘’

𝑛0, 𝑗0i𝐿2[βˆ’1,1]. (4.2.7) Straightforward linear algebra along with (4.2.6) establish that the vector𝑍(𝜏, πœƒπ‘’, 𝑓) can be computed as the solution of the linear system

𝐴𝜏,πœƒπ‘’π‘(𝜏, πœƒπ‘’, 𝑓) =π‘πœ,πœƒπ‘’(𝑓), (4.2.8)

whereπ‘πœ,πœƒπ‘’(𝑓) is theR2𝑑+2vector with componentsπ‘πœ,πœƒπ‘’

𝑛, 𝑗 (𝑓) := hπœ’πœ,πœƒπ‘’

𝑛, 𝑗 , π‘“πœi𝐿2. See sub-figures (1) and (2) of both the top and bottom of Figure4.5for illustrations of the windowed signal π‘“πœ(𝑑) and of its projection limπœŽβ†“0E

πœ‰πœ,πœƒ

𝑒

πœ‰πœ,πœƒ

𝑒 +πœ‰πœŽ = π‘“πœ

in (4.2.5) corresponding to the signals 𝑓 displayed in Figures4.2and4.3.

To apply these formulations to construct the module, suppose that the signal is a single mode

𝑓(𝑑) =π‘Ž(𝑑)cos(πœƒ(𝑑)), so that

π‘“πœ(𝑑) =π‘’βˆ’

πœƒπ‘’Β€(𝜏) (π‘‘βˆ’πœ) 𝛼

2

π‘Ž(𝑑)cos(πœƒ(𝑑)), (4.2.9) and consider the modified function

Β―

π‘“πœ(𝑑) =π‘’βˆ’

πœƒπ‘’Β€ (𝜏) (π‘‘βˆ’πœ) 𝛼

2 Õ𝑑

𝑛=0

π‘Ž(𝑛)(𝜏)

𝑛! (π‘‘βˆ’πœ)𝑛

!

cos(πœƒ(𝑑)) (4.2.10) obtained by replacing the function π‘Ž with the first𝑑 +1 terms of its Taylor series about 𝜏. In what follows, we will use the expression β‰ˆ to articulate an informal approximation analysis. It is clear that Β―π‘“πœ ∈ πœ’πœ,πœƒπ‘’ and, since €𝛼

πœƒ0(𝜏) is small, that hπœ’πœ,πœƒπ‘’

𝑛, 𝑗 , π‘“πœ βˆ’ π‘“Β―πœi𝐿2 β‰ˆ 0,βˆ€(𝑛, 𝑗) and therefore 𝑃

πœ’πœ , πœƒπ‘’π‘“πœ β‰ˆ π‘“Β―πœ, and therefore (4.2.6) implies that

Γ•

𝑗0

𝑍0, 𝑗0(𝜏, πœƒπ‘’, 𝑓)πœ’

𝜏,πœƒπ‘’

0, 𝑗0 (𝑑) β‰ˆ π‘“Β―πœ(𝑑), 𝑑 ∈ [βˆ’1,1], (4.2.11) which by (4.2.10) implies that

Γ•

𝑗0

𝑍0, 𝑗0(𝜏, πœƒπ‘’, 𝑓)πœ’πœ,πœƒπ‘’

0, 𝑗0(𝑑) β‰ˆπ‘’βˆ’

πœƒπ‘’Β€ (𝜏) (π‘‘βˆ’πœ) 𝛼

2

π‘Ž(𝜏)cos(πœƒ(𝑑)), 𝑑 β‰ˆ 𝜏 , (4.2.12) which implies that

𝑍0,𝑐(𝜏, πœƒπ‘’, 𝑓)cos(πœƒπ‘’(𝑑)) +𝑍0,𝑠(𝜏, πœƒπ‘’, 𝑓)sin(πœƒπ‘’(𝑑)) β‰ˆπ‘Ž(𝜏)cos(πœƒ(𝑑)), 𝑑 β‰ˆ 𝜏 . (4.2.13) Settingπœƒπ›Ώ :=πœƒβˆ’πœƒπ‘’as the approximation error, using the cosine summation formula, we obtain

𝑍0,𝑐(𝜏, πœƒπ‘’, 𝑓)cos(πœƒπ‘’(𝑑)) +𝑍0,𝑠(𝜏, πœƒπ‘’, 𝑓)sin(πœƒπ‘’(𝑑)) β‰ˆ π‘Ž(𝜏) cos(πœƒπ›Ώ(𝑑))cos(πœƒπ‘’(𝑑)) βˆ’sin(πœƒπ›Ώ(𝑑))sin(πœƒπ‘’(𝑑)

.

(4.2.14)

However,𝑑 β‰ˆπœimplies thatπœƒπ›Ώ(𝑑) β‰ˆ πœƒπ›Ώ(𝜏), so that we obtain 𝑍0,𝑐(𝜏, πœƒπ‘’, 𝑓)cos(πœƒπ‘’(𝑑)) +𝑍0,𝑠(𝜏, πœƒπ‘’, 𝑓)sin(πœƒπ‘’(𝑑)) β‰ˆ π‘Ž(𝜏) cos(πœƒπ›Ώ(𝜏))cos(πœƒπ‘’(𝑑)) βˆ’sin(πœƒπ›Ώ(𝜏))sin(πœƒπ‘’(𝑑)

,

(4.2.15)

which, sinceπœƒΒ€π‘’(𝑑)positive and bounded away from 0, implies that 𝑍0,𝑐(𝜏, πœƒπ‘’, 𝑓) β‰ˆ π‘Ž(𝜏)cos(πœƒπ›Ώ(𝜏))

𝑍0,𝑠(𝜏, πœƒπ‘’, 𝑓) β‰ˆ βˆ’π‘Ž(𝜏)sin(πœƒπ›Ώ(𝜏)). Consequently, writing

π‘Ž(𝜏, πœƒπ‘’, 𝑓) :=

q 𝑍2

0,𝑐(𝜏, πœƒπ‘’, 𝑓) +𝑍2

0,𝑠(𝜏, πœƒπ‘’, 𝑓) π›Ώπœƒ(𝜏, πœƒπ‘’, 𝑓) := atan2 βˆ’π‘0,𝑠(𝜏, πœƒπ‘’, 𝑓), 𝑍0,𝑐(𝜏, πœƒπ‘’, 𝑓)

, (4.2.16) we obtain thatπ‘Ž(𝜏, πœƒπ‘’, 𝑓) β‰ˆ π‘Ž(𝜏) and π›Ώπœƒ(𝜏, πœƒπ‘’, 𝑓) β‰ˆ πœƒπ›Ώ(𝜏). We will therefore use π‘Ž(𝜏, πœƒπ‘’, 𝑓)to estimate the amplitudeπ‘Ž(𝜏)of the mode corresponding to the estimate πœƒπ‘’andπ›Ώπœƒ(𝜏, πœƒ , 𝑓)to estimate the true mode phaseπœƒthroughπœƒ(𝜏)=πœƒπ‘’(𝜏) +πœƒπ›Ώ(𝜏) β‰ˆ πœƒπ‘’(𝜏) +π›Ώπœƒ(𝜏, πœƒπ‘’, 𝑓). Unless otherwise specified, Equation (4.2.16) will take𝑑 =2.

Experimental evidence indicates that𝑑 = 2 is a sweet spot in the sense that 𝑑 = 0 or𝑑 =1 yields less fitting power, while larger𝑑 entails less stability. Iterating this refinement process will allow us to achieve near machine-precision accuracies in our phase/amplitude estimates. See sub-figures (1) and (2) of the top and bottom of Figure4.6for illustrations ofπ‘Ž(𝑑),π‘Ž(𝜏, πœƒπ‘’, 𝑣) (𝑑),πœƒ(𝑑) βˆ’πœƒπ‘’(𝑑)andπ›Ώπœƒ(𝜏, πœƒπ‘’, 𝑣) (𝑑) corresponding to the first mode 𝑣1of the signals 𝑣 displayed in Figures 4.2.4 and 4.3.4.

Figure 4.5: [102, Fig. 28], top: 𝑣 is as in Figure 4.2 (the base waveform is trian- gular). Bottom: 𝑣 is as in Figure 4.3 (the base waveform is EKG). Both top and bottom: 𝑑 = 2, (1) The windowed signal π‘£πœ (2) limπœŽβ†“0E

πœ‰πœ,πœƒ

1, 𝑒

πœ‰πœ,πœƒ

1, 𝑒 +πœ‰πœŽ = π‘£πœ (3)(π‘£βˆ’π‘£1,𝑒)𝜏 (4) limπœŽβ†“0E

πœ‰πœ,πœƒ

2, 𝑒

πœ‰πœ,πœƒ

2, 𝑒 +πœ‰πœŽ = (π‘£βˆ’π‘£1,𝑒)𝜏

(5)(π‘£βˆ’π‘£1,π‘’βˆ’π‘£2,𝑒)𝜏 (6) limπœŽβ†“0E

πœ‰πœ,πœƒ

3, 𝑒

πœ‰πœ,πœƒ

3, 𝑒 +πœ‰πœŽ = (π‘£βˆ’π‘£1,𝑒 βˆ’π‘£2,𝑒)𝜏

.

Figure 4.6: [102, Fig. 29], top: 𝑣is as in Figure4.2(the base waveform is triangular).

Bottom: 𝑣 is as in Figure 4.3 (the base waveform is EKG). Both top and bottom:

𝜏 = 0. (1) the amplitude of the first modeπ‘Ž1(𝑑) and its local Gaussian regression estimationπ‘Ž(𝜏, πœƒ1,𝑒, 𝑣) (𝑑)(2) the error in estimated phase of the first modeπœƒ1(𝑑) βˆ’ πœƒ1,𝑒(𝑑) and its local Gaussian regression π›Ώπœƒ(𝜏, πœƒ1,𝑒, 𝑣) (𝑑) (3, 4) are as (1,2) with𝑣 andπœƒ1,𝑒 replaced byπ‘£βˆ’π‘£1,𝑒 andπœƒ2,𝑒 (5,6) are as (1,2) with 𝑣 andπœƒ1,𝑒 replaced by π‘£βˆ’π‘£1,π‘’βˆ’π‘£2,𝑒 andπœƒ3,𝑒.

4.3 The iterated micro-local KMD algorithm.

Figure 4.7: [102, Fig. 27], modular representation of Algorithm 3, described in this section. The blue module represents the estimation of the lowest frequency of signal represented by𝑣 as illustrated in Figure 4.4. The brown module represents the iterative estimation of the mode with lowest instantaneous frequency of steps10 through14of Algorithm3. The yellow module represents the iterative refinement of all the modes in steps 21 through 28. The brown and yellow modules used to refine phase/amplitude estimates use the same code.

The method of estimating the lowest instantaneous frequency, described in Sec- tion 4.1, provides a foundation for the iterated micro-local KMD algorithm [102, Sec. 8.3], Algorithm 3. This algorithm is presented its modular representation in Figure4.7, using Figures4.4,4.5, and4.6. We begin by letting

𝑦(𝑑) =𝑐1cos(𝑑) +

∞

Γ•

𝑛=2

𝑐𝑛cos(𝑛𝑑+𝑑𝑛) (4.3.1) be the Fourier representation of the base waveform𝑦(which, without loss of gener- ality, has been shifted so that the first sine coefficient is zero) and write

Β―

𝑦(𝑑) :=𝑦(𝑑) βˆ’π‘1cos(𝑑) (4.3.2) for its overtones.

Algorithm 3Iterated micro-local KMD.

1: 𝑖 ←1

2: 𝑣(1) ← 𝑣

3: whiletruedo

4: if πœƒlow(𝑣(𝑖)) =βˆ…then

5: break loop

6: else

7: πœƒπ‘–,𝑒 ← πœƒlow(𝑣(𝑖))

8: end if

9: π‘Žπ‘–,𝑒(𝑑) ←0

10: repeat

11: for 𝑗 in{1, ..., 𝑖}do

12: 𝑣𝑗 ,res ← π‘£βˆ’π‘Žπ‘— ,𝑒𝑦¯(πœƒπ‘— ,𝑒) βˆ’Γ

π‘˜β‰ π‘— , π‘˜β‰€π‘–π‘Žπ‘˜ ,𝑒𝑦(πœƒπ‘˜ ,𝑒)

13: π‘Žπ‘— ,𝑒(𝜏)1← π‘Ž 𝜏, πœƒπ‘— ,𝑒, 𝑣𝑗 ,res /𝑐1

14: πœƒπ‘— ,𝑒(𝜏) ← πœƒπ‘— ,𝑒(𝜏) +1

2π›Ώπœƒ 𝜏, πœƒπ‘— ,𝑒, 𝑣𝑗 ,res

15: end for

16: untilsup𝑖,𝜏

π›Ώπœƒ 𝜏, πœƒπ‘–,𝑒, 𝑣𝑖,res < πœ–1

17: 𝑣(𝑖+1) ← π‘£βˆ’Γ

π‘—β‰€π‘–π‘Žπ‘— ,𝑒𝑦(πœƒπ‘— ,𝑒)

18: 𝑖←𝑖+1

19: end while

20: π‘šβ†π‘–βˆ’1

21: if refine_final=True then

22: repeat

23: for𝑖in{1, ..., π‘š}do

24: 𝑣𝑖,res ← π‘£βˆ’π‘Žπ‘–,𝑒𝑦¯(πœƒπ‘–,𝑒) βˆ’Γ

π‘—β‰ π‘–π‘Žπ‘— ,𝑒𝑦(πœƒπ‘— ,𝑒)

25: π‘Žπ‘–,𝑒(𝜏) β†π‘Ž 𝜏, πœƒπ‘–,𝑒, 𝑣𝑖,res

26: πœƒπ‘–,𝑒(𝜏) β†πœƒπ‘–,𝑒(𝜏) + 1

2π›Ώπœƒ 𝜏, πœƒπ‘–,𝑒, 𝑣𝑖,res

27: end for

28: untilsup𝑗 ,𝜏

π›Ώπœƒ 𝜏, πœƒπ‘— ,𝑒, 𝑣𝑗 ,res < πœ–2

29: end if

30: Return the modes 𝑣𝑖,𝑒 β†π‘Žπ‘–,𝑒(𝑑)𝑦(πœƒπ‘–,𝑒(𝑑))for𝑖=1, ..., π‘š

Let us describe how steps1to19provide refined estimates for the amplitude and the phase of each mode𝑣𝑖, 𝑖 ∈ {1, . . . , π‘š} of the signal𝑣. Although the overtones of𝑦 prevent us from simultaneously approximating all the instantaneous frequencies πœƒΒ€π‘– from the max-pool energy of the signal𝑣, since the lowest mode𝑣low =π‘Žlow𝑦(πœƒlow) can be decomposed into the sum𝑣low = π‘Žlow𝑐1cos(πœƒlow) +π‘Žlow𝑦¯(πœƒlow) of a signal π‘Žlow𝑐1cos(πœƒlow) with a cosine waveform plus the signal π‘Žlow𝑦¯(πœƒlow) containing its higher frequency overtones, the method of Section4.1can be applied to obtain an

1 All statements in Algorithms with dummy variable𝜏or𝑑 imply a loop over all values of𝜏in the meshT.

estimate πœƒlow,𝑒 of πœƒlow and (4.2.16) can be applied to obtain an estimate π‘Žlow,𝑒𝑐1 of π‘Žlow𝑐1, producing an estimate π‘Žlow,𝑒𝑐1cos(πœƒlow,𝑒) of the primary component π‘Žlow𝑐1cos(πœƒlow) of the first mode. Since 𝑐1 is known, this estimate produces the estimateπ‘Žlow,𝑒𝑦¯(πœƒlow,𝑒)for the overtones of the lowest mode. Recall that we calculate all quantities over the interval[βˆ’1,1]in this setting. Estimates near the borders,βˆ’1 and 1, will be less precise but will be refined in the following loops. To improve the accuracy of this estimate, in steps 13and14 the micro-local KMD of Section 4.2 is iteratively applied to the residual signal of every previously identified mode 𝑣𝑗 ,res ← π‘£βˆ’ π‘Žπ‘— ,𝑒𝑦¯(πœƒπ‘— ,𝑒) βˆ’Γ

π‘˜β‰ π‘— , π‘˜β‰€π‘–π‘Žπ‘˜ ,𝑒𝑦(πœƒπ‘˜ ,𝑒), consisting of the signal 𝑣 with the estimated modesπ‘˜ β‰  𝑗as well as the overtones of estimated mode 𝑗 removed. This residual is the sum of the estimation of the isolated base frequency component of 𝑣𝑗 and Í

𝑗 >𝑖𝑣𝑗. The rate parameter 1/2 in line 14 is to avoid overcorrecting the phase estimates, while the parametersπœ–1andπœ–2in steps10and21are pre-specified accuracy thresholds. The resulting estimated lower modes are then removed from the signal to determine the residual𝑣(𝑖+1) :=π‘£βˆ’Γ

π‘—β‰€π‘–π‘Žπ‘— ,𝑒𝑦(πœƒπ‘— ,𝑒)in line17.

Iterating this process, we peel off an estimateπ‘Žπ‘–,𝑒𝑦(πœƒπ‘–,𝑒)of the mode corresponding to the lowest instantaneous frequency of the residual𝑣(𝑖) :=π‘£βˆ’Γ

π‘—β‰€π‘–βˆ’1π‘Žπ‘— ,𝑒𝑦(πœƒπ‘— ,𝑒) of the signal 𝑣 obtained in line 17, removing the interference of the first 𝑖 βˆ’ 1 modes, including their overtones, in our estimate of the instantaneous frequency and phase of the𝑖-th mode. See Figure 4.4 for the evolution of the 𝐴𝑙 π‘œπ‘€ sausage as these modes are peeled off. See sub-figures (3) and (5) of the top and bottom of Figure4.5for the results of peeling off the first two estimated modes of the signal𝑣 corresponding to both Figures4.2and4.3and sub-figures (4) and (6) for the results of the corresponding projections in (4.2.5). See sub-figures (3) and (4) of the top and bottom of Figure4.6for amplitude and its estimate of the results of peeling off the first estimated mode and sub-figures (5) and (6) corresponding to peeling off the first two estimated modes of the signal𝑣corresponding to both Figures4.2and4.3.

After the amplitude/phase estimatesπ‘Žπ‘–,𝑒, πœƒπ‘–,𝑒, 𝑖 ∈ {1, . . . , π‘š}, have been obtained in steps1 to 19, we have the option to further improve our estimates in a final opti- mization loop in steps21to28. This choice is symbolized by variable β€œrefine_final”

which isTrueif we wish to run this final refinement, which enables us to achieve even higher accuracies by iterating the micro local KMD of Section 4.2 on the residual signals𝑣𝑖,res ← π‘£βˆ’π‘Žπ‘–,𝑒𝑦¯(πœƒπ‘–,𝑒) βˆ’Γ

π‘—β‰ π‘–π‘Žπ‘— ,𝑒𝑦(πœƒπ‘— ,𝑒), consisting of the signal𝑣 with all the estimated modes 𝑗 ≠𝑖 and estimated overtones of the mode𝑖removed.

The proposed algorithm can be further improved by (1) applying a Savitsky-Golay

filter to locally smooth (denoise) the curves corresponding to each estimate πœƒπ‘–,𝑒 (which corresponds to refining our phase estimates through GPR filtering) (2) start- ing with a larger𝛼(to decrease interference from other modes/overtones) and slowly reducing its value in the optional final refinement loop (to further localize our esti- mates after other components, and hence interference, have been mostly eliminated).

4.4 Numerical experiments

Here, we present results for both the triangle and EKG base waveform examples [102, Sec. 8.4]. As discussed in the previous section, these results are visually displayed in Figures4.5and4.6.

Triangle wave example

The base waveform is the triangle wave displayed in Figure 4.1. We observe the signal𝑣 on a mesh spanning [βˆ’1,1] spaced at intervals of 50001 and aim to recover each mode 𝑣𝑖 over this time mesh. We take 𝛼 = 25 within the first refinement loop corresponding to steps 1 to19 and slowly decreased it to 6 in the final loop corresponding to steps 22 to 28. The amplitudes and frequencies of each of the modes are shown in Figure4.2. The recovery errors of each mode as well as their amplitude and phase functions over the whole interval [βˆ’1,1]and the interior third [βˆ’13, 1

3] are displayed in Tables4.1and4.2, respectively. In the interior third of the interval, errors were found to be on the order of 10βˆ’9for the first signal component and approximately 10βˆ’7 for the higher two. However, over the full interval, the corresponding figures are in the 10βˆ’4 and 10βˆ’3 ranges due to recovery errors near the boundaries, βˆ’1 and 1, of the interval. Still, a plot superimposing 𝑣𝑖 and 𝑣𝑖,𝑒 would visually appear to be one curve over [βˆ’1,1] due to the negligible recovery errors.

Mode k𝑣𝑖 , 𝑒kπ‘£βˆ’π‘£π‘–k𝐿2

𝑖k𝐿2

k𝑣𝑖 , π‘’βˆ’π‘£π‘–k𝐿∞

k𝑣𝑖k𝐿∞

kπ‘Žπ‘– , π‘’βˆ’π‘Žπ‘–k𝐿2

kπ‘Žπ‘–k𝐿2 kπœƒπ‘–,π‘’βˆ’πœƒπ‘–k𝐿2

𝑖 =1 5.47Γ—10βˆ’4 3.85Γ—10βˆ’3 2.80Γ—10βˆ’4 4.14Γ—10βˆ’5 𝑖 =2 6.42Γ—10βˆ’4 2.58Γ—10βˆ’3 3.80Γ—10βˆ’5 1.85Γ—10βˆ’4 𝑖 =3 5.83Γ—10βˆ’4 6.29Γ—10βˆ’3 2.19Γ—10βˆ’4 6.30Γ—10βˆ’5 Table 4.1: Signal component recovery errors in the triangle base waveform example over[βˆ’1,1].

Mode k𝑣𝑖 , 𝑒kπ‘£βˆ’π‘£π‘–k𝐿2

𝑖k𝐿2

k𝑣𝑖 , π‘’βˆ’π‘£π‘–k𝐿∞

k𝑣𝑖k𝐿∞

kπ‘Žπ‘– , π‘’βˆ’π‘Žπ‘–k𝐿2

kπ‘Žπ‘–k𝐿2 kπœƒπ‘–,π‘’βˆ’πœƒπ‘–k𝐿2

𝑖 =1 1.00Γ—10βˆ’8 2.40Γ—10βˆ’8 7.08Γ—10βˆ’9 6.52Γ—10βˆ’9 𝑖 =2 2.74Γ—10βˆ’7 2.55Γ—10βˆ’7 1.87Γ—10βˆ’8 2.43Γ—10βˆ’7 𝑖 =3 2.37Γ—10βˆ’7 3.67Γ—10βˆ’7 1.48Γ—10βˆ’7 1.48Γ—10βˆ’7 Table 4.2: Signal component recovery errors in the triangle base waveform example over[βˆ’1

3, 1

3].

EKG wave example

The base waveform is the EKG wave displayed in Figure 4.1. We use the same discrete mesh as in the triangle case. Here, we took𝛼=25 in the loop corresponding to steps1to19and slowly decreased it to 15 in the final loop corresponding to steps 22 to 28. The amplitudes and frequencies of each of the modes are shown in Figure4.3, while the recovery error of each mode as well as their amplitude and phase functions are shown both over the whole interval[βˆ’1,1]and the interior third [βˆ’1

3, 1

3] in Tables4.3and4.4, respectively. Within the interior third of the interval, amplitude and phase relative errors are found to be on the order of 10βˆ’4 to 10βˆ’5 in this setting. However, over [βˆ’1,1], the mean errors are more substantial, with amplitude and phase estimates in the 10βˆ’1to 10βˆ’3range. Note the high error rates in 𝐿∞stemming from errors in placement of the tallest peak (the region around which is known as the R wave in the EKG community). In the center third of the interval, 𝑣𝑖,𝑒and𝑣𝑖are visually indistinguishable due to the small recovery errors.

Mode k𝑣𝑖 , 𝑒kπ‘£βˆ’π‘£π‘–k𝐿2

𝑖k𝐿2

k𝑣𝑖 , π‘’βˆ’π‘£π‘–k𝐿∞

k𝑣𝑖k𝐿∞

kπ‘Žπ‘– , π‘’βˆ’π‘Žπ‘–k𝐿2

kπ‘Žπ‘–k𝐿2 kπœƒπ‘–,π‘’βˆ’πœƒπ‘–k𝐿2

𝑖 =1 5.66Γ—10βˆ’2 1.45Γ—10βˆ’1 4.96Γ—10βˆ’3 8.43Γ—10βˆ’3 𝑖 =2 4.61Γ—10βˆ’2 2.39Γ—10βˆ’1 2.35Γ—10βˆ’2 1.15Γ—10βˆ’2 𝑖 =3 1.34Γ—10βˆ’1 9.39Γ—10βˆ’1 9.31Γ—10βˆ’3 2.69Γ—10βˆ’2 Table 4.3: Signal component recovery errors on [βˆ’1,1]in the EKG base waveform example.

Mode k𝑣𝑖 , 𝑒kπ‘£βˆ’π‘£π‘–k𝐿2

𝑖k𝐿2

k𝑣𝑖 , π‘’βˆ’π‘£π‘–k𝐿∞

k𝑣𝑖k𝐿∞

kπ‘Žπ‘– , π‘’βˆ’π‘Žπ‘–k𝐿2

kπ‘Žπ‘–k𝐿2 kπœƒπ‘–,π‘’βˆ’πœƒπ‘–k𝐿2

𝑖 =1 1.80Γ—10βˆ’4 3.32Γ—10βˆ’4 3.52Γ—10βˆ’5 2.85Γ—10βˆ’5 𝑖 =2 4.35Γ—10βˆ’4 5.09Γ—10βˆ’4 3.35Γ—10βˆ’5 7.18Γ—10βˆ’5 𝑖 =3 3.63Γ—10βˆ’4 1.08Γ—10βˆ’3 7.23Γ—10βˆ’5 6.26Γ—10βˆ’5 Table 4.4: Signal component recovery errors on[βˆ’1

3, 1

3]in the EKG base waveform example.

C h a p t e r 5

ITERATED MICRO-LOCAL KERNEL MODE

DECOMPOSITION FOR UNKNOWN BASE WAVEFORMS

We continue our discussion of KMD techniques by examining its application to an extension of original mode recovery problem, Problem7. We generalize the problem to the case where base waveforms of each mode are unknown [102, Sec. 9] and is formally stated below in Problem 9. Previously, in Section 4, we discussed how GPR can be applied to learn the instantaneous amplitudes and phases of each mode.

In the context of the unknown waveform problem, we will introduce micro-local waveform KMD in Section 5.1, which again utilizes GPR and is able to estimate waveforms of modes.

Problem 9. For π‘š ∈Nβˆ—, letπ‘Ž1, . . . , π‘Žπ‘š be piecewise smooth functions on [βˆ’1,1], letπœƒ1, . . . , πœƒπ‘š be piecewise smooth functions on[βˆ’1,1]such that the instantaneous frequenciesπœƒΒ€π‘–are strictly positive and well separated, and let𝑦1, . . . , π‘¦π‘š be square- integrable2πœ‹-periodic functions. Assume thatπ‘šand theπ‘Žπ‘–, πœƒπ‘–, 𝑦𝑖 are all unknown.

Given the observation 𝑣(𝑑)=

π‘š

Γ•

𝑖=1

π‘Žπ‘–(𝑑)𝑦𝑖 πœƒπ‘–(𝑑)

, 𝑑 ∈ [βˆ’1,1], (5.0.1) recover the modes𝑣𝑖(𝑑) :=π‘Žπ‘–(𝑑)𝑦𝑖 πœƒπ‘–(𝑑)

.

To avoid ambiguities caused by overtones with the unknown waveforms𝑦𝑖, we will assume that the corresponding functions(π‘˜πœƒΒ€π‘–)π‘‘βˆˆ[βˆ’1,1] and (π‘˜0πœƒΒ€π‘–0)π‘‘βˆˆ[βˆ’1,1] are distinct for𝑖 ≠𝑖0andπ‘˜ , π‘˜0 ∈Nβˆ—, that is, they may be equal for some𝑑 but not for all𝑑. We represent the𝑖-th base waveform 𝑦𝑖through its Fourier series

𝑦𝑖(𝑑)=cos(𝑑) +

π‘˜max

Γ•

π‘˜=2

𝑐𝑖,(π‘˜ ,𝑐)cos(π‘˜ 𝑑) +𝑐𝑖,(π‘˜ ,𝑠)sin(π‘˜ 𝑑)

, (5.0.2)

that, without loss of generality, has been scaled and translated. Moreover, since we operate in a discrete setting, we also truncate the series at a finite levelπ‘˜max, which is naturally bounded by the inverse of the resolution of the discretization in time. To

Figure 5.1: [102, Fig. 30], (1) signal 𝑣 (the signal is defined over [βˆ’1,1] but displayed over [0,0.4] for visibility) (2) instantaneous frequencies πœ”π‘– := πœƒΒ€π‘– (3) amplitudes π‘Žπ‘– (4, 5, 6) Modes 𝑣1, 𝑣2, 𝑣3 over [0,0.4] (mode plots have also been zoomed in for visibility).

Figure 5.2: [102, Fig. 31], illustrations showing (1)𝑦1(2)𝑦2(3)𝑦3.

illustrate our approach, we consider the signal𝑣 =𝑣1+𝑣1+𝑣3and its corresponding modes 𝑣𝑖 := π‘Žπ‘–(𝑑)𝑦𝑖 πœƒπ‘–(𝑑)

displayed in Figure5.1, where the corresponding base waveforms𝑦1, 𝑦2and𝑦3are shown in Figure5.2and described in Section5.3.

5.1 Micro-local waveform KMD

We are now describing the micro-localwaveformKMD [102, Sec. 9.1], Algorithm 4, which takes as inputs a time 𝜏, estimated instantaneous amplitude and phase functions𝑑 β†’ π‘Ž(𝑑), πœƒ(𝑑), and a signal𝑣, and outputs an estimate of the waveform 𝑦(𝑑) associated with the phase function πœƒ. The proposed approach is a direct extension of the one presented in Section 4.2 and the shaded part of Figure 5.3 shows the new block which will be added to Algorithm3, the algorithm designed

Dokumen terkait