• Tidak ada hasil yang ditemukan

Summary of operator-adapted wavelets

Chapter II: Denoising

2.2 Summary of operator-adapted wavelets

We proceed by reviewingoperator-adapted waveletsas in [153, Sec. 2], also named gambletsin reference to their game theoretic interpretation, and their main properties [99,101,104,119]. They are constructed with a hierarchy of measurement functions and an operator. Theorem2.2.4shows these gamblets are simultaneously associated with Gaussian conditioning, optimal recovery, and game theory. By selecting these measurement functions to bepre-Haar wavelets, the gamblets are localized both in space and in the eigenspace of the operator.

Hierarchy of measurement functions

Letπ‘ž ∈ Nβˆ— (used to represent a number of scales). Let(I(π‘˜))1β‰€π‘˜β‰€π‘ž be a hierarchy of labels defined as follows. I(π‘ž) is a set of π‘ž-tuples consisting of elements 𝑖 = (𝑖1, . . . , π‘–π‘ž). For 1 ≀ π‘˜ ≀ π‘ž and𝑖 ∈ I(π‘ž),𝑖(π‘˜) := (𝑖1, . . . , π‘–π‘˜) andI(π‘˜) is the set of

π‘˜-tuplesI(π‘˜) = {𝑖(π‘˜)|𝑖 ∈ I(π‘ž)}. For 1 ≀ π‘Ÿ ≀ π‘˜ ≀ π‘ž and 𝑗 = (𝑗1, . . . , π‘—π‘˜) ∈ I(π‘˜), we write 𝑗(π‘Ÿ) = (𝑗1, . . . , π‘—π‘Ÿ). We say that 𝑀 is aI(π‘˜) Γ— I(𝑙) matrix if its rows and columns are indexed by elements ofI(π‘˜) andI(𝑙), respectively.

Let {πœ™(π‘˜)

𝑖 |π‘˜ ∈ {1, . . . , π‘ž}, 𝑖 ∈ I(π‘˜)} be a nested hierarchy of elements of Hβˆ’π‘ (Ξ©) such that(πœ™(π‘ž)

𝑖 )π‘–βˆˆI(π‘ž) are linearly independent and πœ™(π‘˜)

𝑖 = Γ•

π‘—βˆˆI(π‘˜+1)

πœ‹(π‘˜ , π‘˜+1)

𝑖, 𝑗 πœ™(π‘˜+1)

𝑗 (2.2.1)

for𝑖 ∈ I(π‘˜),π‘˜ ∈ {1, . . . , π‘žβˆ’1}, whereπœ‹(π‘˜ , π‘˜+1) is anI(π‘˜) Γ— I(π‘˜+1) matrix and

πœ‹(π‘˜ , π‘˜+1)πœ‹(π‘˜+1, π‘˜) = 𝐼(π‘˜). (2.2.2)

In (2.2.2), πœ‹(π‘˜+1, π‘˜) is the transpose of πœ‹(π‘˜ , π‘˜+1) and 𝐼(π‘˜) is the I(π‘˜) Γ— I(π‘˜) identity matrix.

Hierarchy of operator-adapted pre-wavelets Let(πœ“(

π‘˜)

𝑖 )π‘–βˆˆI(π‘˜)be the hierarchy of optimal recovery splines associated with(πœ™(

π‘˜) 𝑖 )π‘–βˆˆI(π‘˜), i.e., forπ‘˜ ∈ {1, . . . , π‘ž}and𝑖 ∈ I(π‘˜),

πœ“(

π‘˜)

𝑖 = Γ•

π‘—βˆˆI(π‘˜)

𝐴(

π‘˜) 𝑖, 𝑗 Lβˆ’1πœ™(

π‘˜)

𝑗 , (2.2.3)

where

𝐴(π‘˜) :=(Θ(π‘˜))βˆ’1 (2.2.4)

andΘ(π‘˜) is theI(π‘˜)Γ— I(π‘˜) symmetric positive definite Gramian matrix with entries (writing [πœ™, 𝑣] for the duality pairing betweenπœ™ ∈ Hβˆ’π‘ (Ξ©) and𝑣 ∈ H𝑠

0(Ξ©)) Ξ˜π‘–, 𝑗(π‘˜) =[πœ™(

π‘˜)

𝑖 ,Lβˆ’1πœ™(

π‘˜)

𝑗 ]. (2.2.5)

Note that 𝐴(π‘˜) is the stiffness matrix of the elements(πœ“(

π‘˜)

𝑖 )π‘–βˆˆI(π‘˜) in the sense that 𝐴(

π‘˜) 𝑖, 𝑗 =

πœ“(

π‘˜) 𝑖 , πœ“(

π‘˜) 𝑗

. (2.2.6)

Writing Ξ¦(π‘˜) :=span{πœ™(π‘˜)

𝑖 | 𝑖 ∈ I(π‘˜)} and𝔙(π‘˜) := span{πœ“(π‘˜)

𝑖 | 𝑖 ∈ I(π‘˜)}, Ξ¦(π‘˜) βŠ‚ Ξ¦(π‘˜+1) and Ξ¨(π‘˜) = Lβˆ’1Ξ¦(π‘˜) imply Ξ¨(π‘˜) βŠ‚ Ξ¨(π‘˜+1). We further write [πœ™(π‘˜), 𝑒] =

[πœ™(π‘˜)

𝑖 , 𝑒]

π‘–βˆˆI(π‘˜) ∈RI

(π‘˜). The(πœ™(π‘˜)

𝑖 )π‘–βˆˆI(π‘˜) and (πœ“(π‘˜)

𝑖 )π‘–βˆˆI(π‘˜) form a bi-orthogonal system in the sense that [πœ™(π‘˜)

𝑖 , πœ“(π‘˜)

𝑗 ] =𝛿𝑖, 𝑗 for𝑖, 𝑗 ∈ I(π‘˜) (2.2.7) and the

Β·,Β·

-orthogonal projection of𝑒 ∈ H𝑠

0(Ξ©)onΞ¨(π‘˜) is 𝑒(π‘˜) := Γ•

π‘–βˆˆI(π‘˜)

[πœ™(

π‘˜) 𝑖 , 𝑒]πœ“(

π‘˜)

𝑖 . (2.2.8)

Multiple interpretations of operator adapted pre-wavelets Using operator-adapted pre-wavelets,πœ“(π‘˜)

𝑖 , we summarize the connections between optimal recovery, game theory, and Gaussian conditioning. First, we define Gaussian fields, a generalization of Gaussian processes.

Definition 2.2.1. The canonical Gaussian field πœ‰ associated with operator L : H𝑠

0(Ξ©) β†’ Hβˆ’π‘ (Ξ©) is defined such that πœ™ ↦→ [πœ™, πœ‰] is the linear isometry from Hβˆ’π‘ (Ξ©) to a Gaussian space characterized by





ο£²



ο£³

[πœ™, πœ‰] ∼ N (0,kπœ™kβˆ—2) Cov [πœ™, πœ‰],[πœ‘, πœ‰]

= hπœ™, πœ‘iβˆ—,

(2.2.9)

where kπœ™kβˆ— =supπ‘’βˆˆH𝑠

0(Ξ©)

∫

Ξ©πœ™π‘’

k𝑒k is the dual norm ofk Β· k.

Remark 2.2.2. When𝑠 > 𝑑/2, the evaluation functional𝛿π‘₯(𝑓) = 𝑓(π‘₯) is continu- ous. Hence,πœ‰|𝛿π‘₯,π‘₯∈Ωis naturally isomorphic to a Gaussian process with covariance functionπ‘˜(π‘₯ , π‘₯0) =h𝛿π‘₯, 𝛿π‘₯0iβˆ—.

Several notable properties of these pre-wavelets are summarized in the following result. Recall we write[πœ™(π‘˜), 𝑒] = [πœ™(π‘˜)

𝑖 , 𝑒]

π‘–βˆˆI(π‘˜) ∈RI

(π‘˜). Theorem 2.2.3. Consider pre-wavelets πœ“(

π‘˜)

𝑖 adapted to operator L constructed with measurement functions πœ™(π‘˜)

𝑖 . Further, suppose that for 𝑒 ∈ H𝑠

0(Ξ©) we define 𝑣†(𝑒) =𝑒(π‘˜) =Í

π‘–βˆˆI(π‘˜)[πœ™(π‘˜)

𝑖 , 𝑒]πœ“(π‘˜)

𝑖 . 1. For fixed𝑒 ∈ H𝑠

0(Ξ©),𝑣†(𝑒) is the minimizer of





ο£²



ο£³

Minimizekπœ“k Subject toπœ“ ∈ H𝑠

0(Ξ©)and [πœ™(π‘˜), πœ“] =[πœ™(π‘˜), 𝑒].

(2.2.10)

2. For fixed𝑒 ∈ H𝑠

0(Ξ©),𝑣†(𝑒) is the minimizer of





ο£²



ο£³

Minimizekπ‘’βˆ’πœ“k Subject toπœ“ ∈span{πœ“(π‘˜)

𝑖 :𝑖 ∈ I(π‘˜)}.

(2.2.11)

3. For canonical Gaussian fieldπœ‰ ∼ N (0,Lβˆ’1), 𝑣†(𝑒) =E

πœ‰

[πœ™(π‘˜), πœ‰] = [πœ™(π‘˜), 𝑒]

. (2.2.12)

4. It is true that2

π‘£β€ βˆˆargminπ‘£βˆˆπΏ(Ξ¦,H𝑠

0(Ξ©)) sup

π‘’βˆˆH𝑠

0(Ξ©)

kπ‘’βˆ’π‘£(𝑒) k

k𝑒k (2.2.13)

Proof. (1) is a result of [101, Cor. 3.4] (2) is equivalent to [101, Thm. 12.2] (3) and

(4) are results in [101, Sec. 8.5].

This result shows that the operator-adapted pre-wavelets transform defined by 𝑣†(𝑒) = 𝑒(π‘˜) is an optimal recovery in the sense of Theorem 2.2.3.1-2. Simul- taneously, 𝑣†(𝑒) are conditional expectations of the canonical Gaussian field with respect to the measurements [πœ™(π‘˜),Β·] as in Theorem 2.2.3.3. Another interpreta- tion of the transform is game theoretic as expressed in Theorem2.2.13.4. Equation (2.2.13) represents the adversarial two player game where player I selects𝑒 ∈ H𝑠

0(Ξ©) and player II approximates𝑒 with𝑣(𝑒) with measurements [πœ™(π‘˜), 𝑒]. Player I and II aim to maximize and minimize the recovery error of𝑣(𝑒). This game theoretic interpretation inspires the name gamblets, referring to operator-adapted wavelets.

Note that the pre-waveletsπœ“(π‘˜)

𝑖 lie on only one level of the hierarchy. The following addresses the construction of a wavelet decomposition ofH𝑠

0(Ξ©)on all hierarchical levels.

Operator-adapted wavelets

Let(J(π‘˜))2β‰€π‘˜β‰€π‘žbe a hierarchy of labels such that, writing|J(π‘˜)|for the cardinal of J(π‘˜),

|J(π‘˜)|=|I(π‘˜)| βˆ’ |I(π‘˜βˆ’1)|. (2.2.14) Forπ‘˜ ∈ {2, . . . , π‘ž}, letπ‘Š(π‘˜) be a J(π‘˜) Γ— I(π‘˜) matrix such that3

Ker(πœ‹(π‘˜βˆ’1, π‘˜)) =Im(π‘Š(π‘˜),𝑇). (2.2.15)

Forπ‘˜ ∈ {2, . . . , π‘ž}and𝑖 ∈ J(π‘˜) define πœ’(π‘˜)

𝑖 := Γ•

π‘—βˆˆI(π‘˜)

π‘Š(π‘˜)

𝑖, 𝑗 πœ“(π‘˜)

𝑗 , (2.2.16)

and write π”š(π‘˜) := span{πœ’(π‘˜)

𝑖 | 𝑖 ∈ J(π‘˜)}. Then π”š(π‘˜) is the

Β·,Β·

-orthogonal complement of𝔙(π‘˜βˆ’1) in𝔙(π‘˜), i.e. 𝔙(π‘˜) = 𝔙(π‘˜βˆ’1) βŠ•π”š(π‘˜),and

𝔙(π‘ž) = 𝔙(1) βŠ•π”š(2) βŠ• Β· Β· Β· βŠ•π”š(π‘ž). (2.2.17)

2𝐿(Ξ¦,H𝑠

0(Ξ©)) is defined as the set ofH𝑠

0(Ξ©) β†’ H𝑠

0(Ξ©) functions that are of form 𝑣(𝑒) = Ξ¨ [πœ™(π‘˜), 𝑒])

with measureableΨ:RI

(π‘˜) β†’ H0𝑠(Ξ©).

3We write𝑀(π‘˜),𝑇 and𝑀(π‘˜),βˆ’1for the transpose and inverse of a matrix𝑀(π‘˜).

Forπ‘˜ ∈ {2, . . . , π‘ž}write

𝐡(π‘˜) :=π‘Š(π‘˜)𝐴(π‘˜)π‘Š(π‘˜),𝑇 . (2.2.18) Note that𝐡(π‘˜) is the stiffness matrix of the elements(πœ’(π‘˜)

𝑗 )π‘—βˆˆJ(π‘˜), i.e., 𝐡(π‘˜)

𝑖, 𝑗 = πœ’(π‘˜)

𝑖 , πœ’(π‘˜)

𝑗

. (2.2.19)

Further, forπ‘˜ ∈ {2, . . . , π‘ž}, define

𝑁(π‘˜) := 𝐴(π‘˜)π‘Š(π‘˜),𝑇𝐡(π‘˜),βˆ’1 (2.2.20)

and, for𝑖 ∈ J(π‘˜),

πœ™(π‘˜), πœ’

𝑖 := Γ•

π‘—βˆˆI(π‘˜)

𝑁(π‘˜),𝑇

𝑖, 𝑗 πœ™(π‘˜)

𝑗 . (2.2.21)

Then defining𝑒(π‘˜) as in (2.2.8), it holds true that forπ‘˜ ∈ {2, . . . , π‘ž},𝑒(π‘˜)βˆ’π‘’(π‘˜βˆ’1) is the

Β·,Β·

-orthogonal projection of𝑒 onπ”š(π‘˜) and 𝑒(π‘˜) βˆ’π‘’(π‘˜βˆ’1) = Γ•

π‘–βˆˆJ(π‘˜)

[πœ™(

π‘˜), πœ’ 𝑖 , 𝑒]πœ’(

π‘˜)

𝑖 . (2.2.22)

To simplify notations, write J(1) :=I(1), 𝐡(1) := 𝐴(1), 𝑁(1) := 𝐼(1), πœ™(1)

, πœ’

𝑖 := πœ™(1)

𝑖

for𝑖 ∈ J(1),J := J(1)βˆͺ Β· Β· Β· βˆͺ J(π‘ž), πœ’π‘– := πœ’(

π‘˜)

𝑖 andπœ™

πœ’ 𝑖 :=πœ™(

π‘˜), πœ’

𝑖 for𝑖 ∈ J(π‘˜) and4 1≀ π‘˜ ≀ π‘ž. Then theπœ™

πœ’

𝑖 and πœ’π‘– form a bi-orthogonal system, i.e., [πœ™

πœ’

𝑖 , πœ’π‘—] =𝛿𝑖, 𝑗 for𝑖, 𝑗 ∈ J (2.2.23) and

𝑒(π‘ž) =Γ•

π‘–βˆˆJ

[πœ™

πœ’

𝑖 , 𝑒]πœ’π‘–. (2.2.24)

Simplifying notations further, we will write [πœ™πœ’, 𝑒] for the J vector with entries [πœ™

πœ’

𝑖 , 𝑒]and πœ’for theJ vector with entries πœ’π‘–so that (2.2.24) can be written 𝑒(π‘ž) = [πœ™πœ’, 𝑒] Β·πœ’ . (2.2.25) Further, define the J by J block-diagonal matrix 𝐡 defined as 𝐡𝑖, 𝑗 = 𝐡(π‘˜)

𝑖, 𝑗 if 𝑖, 𝑗 ∈ J(π‘˜) and 𝐡𝑖, 𝑗 = 0 otherwise. Note that it holds that 𝐡𝑖, 𝑗 =

πœ’π‘–, πœ’π‘—

. When π‘ž =∞andβˆͺ∞

π‘˜=1Ξ¦(π‘˜) is dense inHβˆ’π‘ (Ξ©), then, writingπ”š(1) := 𝔙(1), H𝑠

0(Ξ©) =βŠ•βˆž

π‘˜=1π”š(π‘˜), (2.2.26)

4The dependence onπ‘˜is left implicit to simplify notation, for𝑖 ∈ Jthere exists a uniqueπ‘˜such thatπ‘–βˆˆ J(π‘˜).

𝑒(π‘ž) = 𝑒, and (2.2.24) is the corresponding multi-resolution decomposition of 𝑒. When π‘ž < ∞, 𝑒(π‘ž) is the projection of 𝑒 on βŠ•π‘ž

π‘˜=1π”š(π‘˜) and (2.2.25) is the corresponding multi-resolution decomposition. Note that the optimal recovery, game theory, and Gaussian conditioning results in Theorem 2.2.3 also holds for wavelets.

Theorem 2.2.4. Consider pre-wavelets πœ’π‘– adapted to operatorL constructed with measurement functionsπœ™πœ’. Further, suppose that for𝑒 ∈ H𝑠

0(Ξ©), we define𝑣†(𝑒)= 𝑒(π‘ž) = [πœ™πœ’, 𝑒] Β·πœ’.

1. For fixed𝑒 ∈ H𝑠

0(Ξ©),𝑣†(𝑒) is the minimizer of





ο£²



ο£³

Minimizekπœ“k Subject toπœ“ ∈ H𝑠

0(Ξ©) and[πœ™πœ’, πœ“] =[πœ™πœ’, 𝑒].

(2.2.27)

2. For fixed𝑒 ∈ H𝑠

0(Ξ©),𝑣†(𝑒) is the minimizer of





ο£²



ο£³

Minimizekπ‘’βˆ’πœ“k

Subject toπœ“ ∈span{πœ’π‘– :𝑖 ∈ J }.

(2.2.28)

3. For canonical Gaussian fieldπœ‰ ∼ N (0,Lβˆ’1), 𝑣†(𝑒) =E

πœ‰

[πœ™πœ’, πœ‰] = [πœ™πœ’, 𝑒]

. (2.2.29)

4. It is true that5

𝑣† ∈argminπ‘£βˆˆπΏ(Ξ¦,H0𝑠(Ξ©)) sup

π‘’βˆˆH𝑠

0(Ξ©)

kπ‘’βˆ’π‘£(𝑒) k

k𝑒k . (2.2.30)

Pre-Haar wavelet measurement functions

The gamblets used in the subsequent developments will use pre-Haar wavelets (as defined below) as measurement functionsπœ™(

π‘˜)

𝑖 and our main near-optimal denoising estimates will be derived from their properties (summarized in Thm.2.2.5).

Let𝛿, β„Ž ∈ (0,1). Let(𝜏(

π‘˜)

𝑖 )π‘–βˆˆI(π‘˜)be uniformly Lipschitz convex sets forming a nested partition of Ξ©, i.e., such that Ξ© = βˆͺπ‘–βˆˆI(π‘˜)𝜏(π‘˜)

𝑖 , π‘˜ ∈ {1, . . . , π‘ž} is a disjoint union except for the boundaries, and 𝜏(π‘˜)

𝑖 = βˆͺπ‘—βˆˆI(π‘˜+1):𝑗(π‘˜)=π‘–πœ(π‘˜+1)

𝑗 , π‘˜ ∈ {1, . . . , π‘žβˆ’1}.

5Here 𝐿(Ξ¦,H0𝑠(Ξ©)) is defined as the set ofH0𝑠(Ξ©) β†’ H0𝑠(Ξ©) functions that are of form 𝑣(𝑒)= Ξ¨ [πœ™πœ’, 𝑒])

with measureableΞ¨:RJ β†’ H0𝑠(Ξ©).

Assume that each𝜏(π‘˜)

𝑖 , contains a ball of radius𝛿 β„Žπ‘˜, and is contained in the ball of radiusπ›Ώβˆ’1β„Žπ‘˜. Writing |𝜏(

π‘˜)

𝑖 |for the volume of𝜏(

π‘˜) 𝑖 , take πœ™(

π‘˜)

𝑖 :=1

𝜏(π‘˜)

𝑖

|𝜏(

π‘˜)

𝑖 |βˆ’12 . (2.2.31)

The nesting relation (2.2.1) is then satisfied with πœ‹(π‘˜ , π‘˜+1)

𝑖, 𝑗 := |𝜏(π‘˜+1)

𝑗 |12|𝜏(π‘˜)

𝑖 |βˆ’12 for 𝑗(π‘˜) =𝑖andπœ‹(

π‘˜ , π‘˜+1)

𝑖, 𝑗 :=0 otherwise.

Forπ‘˜ ∈ {2, . . . , π‘ž}, let J(π‘˜) be a finite set of π‘˜-tuples of the form 𝑗 = (𝑗1, . . . , π‘—π‘˜) such that{𝑗(π‘˜βˆ’1) | 𝑗 ∈ J(π‘˜)} =I(π‘˜βˆ’1), and for𝑖 ∈ I(π‘˜βˆ’1), Card{𝑗 ∈ J(π‘˜) | 𝑗(π‘˜βˆ’1) = 𝑖} =Card{𝑠 ∈ I(π‘˜) |𝑠(π‘˜βˆ’1) =𝑖} βˆ’1. Note that the cardinalities of these sets satisfy (2.2.14).

Write 𝐽(π‘˜) for the J(π‘˜) Γ— J(π‘˜) identity matrix. For π‘˜ = 2, . . . , π‘ž, let π‘Š(π‘˜) be a J(π‘˜) Γ— I(π‘˜) matrix such that Im(π‘Š(π‘˜),𝑇) =Ker(πœ‹(π‘˜βˆ’1, π‘˜)),π‘Š(π‘˜)(π‘Š(π‘˜))𝑇 =𝐽(π‘˜) and π‘Š(π‘˜)

𝑖, 𝑗 =0 for𝑖(π‘˜βˆ’1) β‰  𝑗(π‘˜βˆ’1).

Theorem 2.2.5. With pre-Haar wavelet measurement functions, it holds true that 1. Forπ‘˜ ∈ {1, . . . , π‘ž} and𝑒 ∈ Lβˆ’1𝐿2(Ξ©),

kπ‘’βˆ’π‘’(π‘˜)k ≀𝐢 β„Žπ‘˜ 𝑠kL𝑒k𝐿2(Ξ©). (2.2.32) 2. Writing Cond(𝑀) for the condition number of a matrix 𝑀, we have for

π‘˜ ∈ {1,Β· Β· Β· , π‘ž}

πΆβˆ’1β„Žβˆ’2(π‘˜βˆ’1)𝑠𝐽(π‘˜) ≀ 𝐡(π‘˜) ≀ 𝐢 β„Žβˆ’2π‘˜ 𝑠𝐽(π‘˜) (2.2.33) andCond(𝐡(π‘˜)) ≀𝐢 β„Žβˆ’2𝑠.

3. For𝑖 ∈ I(π‘˜) andπ‘₯(

π‘˜)

𝑖 ∈𝜏(

π‘˜)

𝑖 ,

kπœ“π‘–kH𝑠(Ξ©\𝐡(π‘₯(π‘˜)

𝑖 ,𝑛 β„Ž)) ≀ 𝐢 β„Žβˆ’π‘ π‘’βˆ’π‘›/𝐢. (2.2.34)

4. The waveletsπœ“(

π‘˜) 𝑖 , πœ’(

π‘˜)

𝑖 and stiffness matrices 𝐴(π‘˜), 𝐡(π‘˜) can be computed to precision πœ– (in k Β· k-energy norm for elements of H𝑠

0(Ξ©) and in Frobenius norm for matrices) inO(𝑁log3𝑑 π‘πœ–) complexity.

Furthermore the constant𝐢 depends only on𝛿,Ξ©, 𝑑 , 𝑠, kL k := sup

π‘’βˆˆH0𝑠(Ξ©)

kL𝑒kHβˆ’π‘ (Ξ©) k𝑒kH𝑠

0(Ξ©)

and kLβˆ’1k := sup

π‘’βˆˆH0𝑠(Ξ©)

k𝑒kH𝑠

0(Ξ©)

kL𝑒kHβˆ’π‘ (Ξ©) .

(2.2.35)

Proof. (1) and (2) follows from an application of Prop. 4.17 and Theorems 4.14 and 3.19 from [100]. (3) follows from Thm. 2.23 of [100]. 4 follows from the complexity analysis of Alg. 6 of [100]. See [101] for detailed proofs.

Remark 2.2.6. The wavelets πœ“(

π‘˜) 𝑖 , πœ’(

π‘˜)

𝑖 and stiffness matrices 𝐴(π‘˜), 𝐡(π‘˜) can also be computed in O(𝑁log2𝑁log2𝑑 π‘πœ–) complexity using the incomplete Cholesky factorization approach of [119].

Theorem 2.2.5.2-3 implies that the gamblets are localized both in the eigenspace of operator L and inΞ©space. Further, Theorem2.2.5.1 shows the accuracy of the recovery,𝑒(π‘˜), in L norm is bounded by𝐿2norm of L𝑒. This result is used in the proofs of the denoising result shown in the following section.

2.3 Denoising by truncating the gamblet transform

Dokumen terkait