• Tidak ada hasil yang ditemukan

Field-Responsive Materials

Appendix A: Future Directions

A.7.3 Example for the Interaction of Structural, Aerodynamic,

10.1 Chitosan-Based Gels

10.1.3 Applications

10.1.3.5 Field-Responsive Materials

Chitosan-based gels consist of a positive charged network and a fl uid (e.g., water) that fi lls the interstitial space of the network.

Th e gels exhibit a variety of unique fi eld-responsive behaviors, such as electromechanical (EMC) phenomena.

EMC behavior deals with the contraction of polymers in an electric fi eld. Th e eff ect of an electric fi eld on polyelectrolyte hydrogels relates to the proton action of its alkaline amino groups

and the redistribution of mobile counter ions. Th e EMC behavior of chitosan and poly(hydroxyethyl methacrylate) in a 1.0 wt % NaCl solution in a 10 V electric fi eld is shown in Figure 10.13 [21].

Th e fi gure also shows that the reversible bending behavior of chitosan–PAN semi-IPN hydrogel depends on the application of the electric fi eld [82].

References

1. J.-K.F. Sub and H.W.K. Matthew, Application of chitosan- based polysaccharide biomaterials in cartilage tissue engi- neering: A review, Biomaterials 21, 2589–2598, 2000.

2. G.A.F. Robert and K.E. Taylor, Th e formation of gels by reaction of chitosan with glutaraldehyde. Makromol. Chem.

190, 995–960, 1989.

3. M. Ruiza, A.M. Sastreb, and E. Guibal, Palladium sorption on glutaraldehyde-crosslinked chitosan, React. Funct. Polym.

45, 155–173, 2000.

4. M.N. Khalid, L. Ho, J.L. Agnely, J.L. Grossiord, and G. Couarraze, Swelling properties and mechanical charac- terization of a semiinterpenetrating chitosan/polyethylene oxide network; Comparison with a chitosan reference gel, STP Pharm. Sci. 9, 359–364, 1999.

5. S. Kim, M.E. Nimni, Z. Yang, and B. Han, Chitosan/gelatin–

based fi lms crosslinked by proanthocyanidin. J. Biomed.

Mater. Res. Part B: Appl. Biomater. 75B, 442–450, 2005.

6. Y.-C. Kuo and C.-Y. Lin, Eff ect of genipin-crosslinked chitin–chitosan scaff olds with hydroxyapatite modifi cations on the cultivation of bovine knee chondrocytes, Biotechnol.

Bio Eng. 95(1), 132–144, 2006.

7. W.F. Lee and Y.J. Chen, Studies on preparation and swell- ing properties of the nisopropylacrylamide/chitosan

semi-IPN and IPN hydrogels, J. Appl. Polym. Sci. 82, 2487–2496, 2001.

8. X. Qu, A. Wirsen, and A.C. Albertsson, Novel pH-sensitive chitosan hydrogels: Swelling behavior and states of water, Polymer 41, 4589–4598, 2000.

9. S.C. Chen, Y.C. Wu, F.L. Mi, Y.H. Lin, L.C. Yu, and H.W. Sung, A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery, J. Control. Release 96, 285–300, 2004.

10. K.D. Yao, T. Peng, M.F.A. Goosen, J.M. Min, and Y.Y. He, pH-sensitivity of hydrogels based on complex forming chitosan–polyether interpenetrating polymer network, J.

Appl. Polym. Sci. 48(2), 354–353, 1993.

11. T. Peng, K.D. Yao, C. Yuan, and M.F.A. Goosen, Structural changes of pH-sensitive chitosan/polyether hydrogels in diff er- ent pH solution, J. Polym. Sci., Part A. 32(3), 591–593, 1994.

12. T. Wang and S. Gunasekaran, State of water in chitosan–

PVA hydrogel, J. Appl. Polym. Sci. 101, 3227–3232, 2006.

13. T. Wang, M. Turhan, and S. Gunasekaran, Selected proper- ties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel, Polym. Int. 53, 911–918, 2004.

14. Y. Lin, Q. Chen, and H. Luo, Preparation and characteri- zation of N-(2-carboxybenzyl)chitosan as a potential pH- sensitive hydrogel for drug delivery, Carbohyd. Res. 342, 87–95, 2007.

15. E.K. Sarkyt and B.S. Vladimir, Swelling, shrinking, deforma- tion, and oscillation of polyampholyte gels based on vinyl 2-aminoethyl ether and sodium acrylate, Langmuir 15, 4230–4235, 1999.

16. A. Sionkowska, M. Wisniewski, J. Skopinska, C.J. Kennedy, and T.J. Wess, Molecular interactions in collagen and chitosan blends, Biomaterials 25, 795–801, 2004.

0 0 5 10 15 20 25 30 35 40 45

4 8 12 16 20 24

Time (s)

Degree of bending (%)

On Off

28 32 36 40 44

FIGURE 10.13 Bending kinetics of the chitosan/PHEMA semi-IPN, in a 1.0 wt % NaCl solution, voltage (10 V), at T = 35°C.

17. Z. Chen, X. Mo, and F. Qing, Electrospinning of collagen–

chitosan complex, Mater. Lett. 61, 3490–3494, 2007.

18. K.D. Yao, Y.J. Yin, M.X. Xu, and Y.F. Wang, Investigation of pH-sensitive drug delivery system of chitosan/gelatin hybrid polymer network, Polym. Int. 38(1), 77–82, 1995.

19. G. Ivarez-Lorenzo, A. Concheiro, A.S. Dubovik, N.V.

Grinberg, T.V. Burova, and V.Ya. Grinberg, Temperature- sensitive chitosan-poly(N-isopropylacrylamide) interpene- trated networks with enhanced loading capacity and controlled release properties, J. Control. Release 102, 629–641, 2005.

20. S.J. Kim, K.J. Lee, I.Y. Kim, D.I. Shin, and S. Kim, Temperature and pH-response swelling behavior of poly(2-ethyl-2- oxazoline)/chitosan interpenetrating polymer network hydrogels, J. Appl. Polym. Sci. 99, 1100–1103, 2006.

21. S.J. Kim, S.R. Shin, S.M. Lee, I.Y. Kim, and S.I. Kim, Electromechanical properties of hydrogels based on chito- san and poly(hydroxyethyl methacrylate) in NaCl solution, Smart. Mater. Struct. 13, 1036–1039, 2004.

22. S.J. Kim, S.J. Park, M.-S. Shin, and S.I. Kim, Characteristics of electrical responsive chitosan/polyallylamine interpene- trating polymer network hydrogel, J. Appl..Polym. Sci. 86, 2290–2295, 2002.

23. Y. Yin, Z. Li, Y. Sun, and K. Yao, A preliminary study on chi- tosan/gelatin polyelectrolyte complex formation, J. Mater.

Sci. 40, 4649–4652, 2005.

24. K.D. Yao, H.L. Tu, F. Chang, J.W. Zhang, and J. Liu, pH sensi- tivity of the swelling of a chitosan–pectin polyelectrolyte complex, Angew. Makromol. Chem. 245, 63–72, 1997.

25. K.Y. Lee, W.H. Park, and W.S. Ha, Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for micro- capsules, J. Appl. Polym. Sci. 63(4), 425–432, 1997.

26. L. Becherán-Marón, C. Peniche, and W. Argüelles-Monal, Study of the interpolyelectrolyte reaction between chitosan and alginate: Infl uence of alginate composition and chitosan molecular weight, Int. J. Biol. Macromol. 34, 127–133, 2004.

27. T. Yoshizawa, Y. Shin-ya, K.-J. Hong, and T. Kajiuchi, pH- and temperature-sensitive permeation through polyelectrolyte complex fi lms composed of chitosan and polyalkylene- oxide–maleic acid copolymer, J. Membrane Sci. 241, 347–354, 2004.

28. T. Yoshizawa, Y. Shin-ya, K.-J. Hong, and T. Kajiuchi, pH- and temperature-sensitive release behaviors from polyelec- trolyte complex fi lms composed of chitosan and PAOMA copolymer, Eur. J. Pharm. Biopharm. 59, 307–313, 2005.

29. E. Fernandez-Megia, R. Novoa-Carballal, E. Quiñoá, and R. Riguera, Conjugation of bioactive ligands to PEG-graft ed chitosan at the distal end of PEG, Biomacromolecules 8, 833–842, 2007.

30. C. Prego, D. Torres, E. Fernandez-Megia, R. Novoa- Carballal, E. Quiñoá, and M.J. Alonso, Chitosan–PEG nanocapsules as new carriers for oral peptide delivery eff ect of chitosan pegylation degree, J. Control. Release, 111, 299–308, 2006.

31. P. Chan, M. Kurisawa, J.E. Chung, and Y.-Y. Yang, Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as

a non-viral carrier for tumor-targeted gene delivery, Biomaterials 28, 540–549, 2007.

32. M.S. Beena, T. Chandy, and C.P. Sharma, Heparin immobili- zed chitosan–poly(ethylene glycol) interpenetrating network:

Antithrombogenicity. Art. Cells Blood Subst. Immobil. Biotech.

23(2), 175–192, 1995.

33. Y. Hu, H. Jiang, C. Xu, Y. Wang, and K. Zhu, Preparation and characterization of poly(ethylene glycol)-g-chitosan with water and organosolubility, Carbohyd. Polym. 61, 472–479, 2005.

34. C.A. Landes and S. Kriener, Resorbable plate osteosynthesis of sagittal split osteotomies with major bone movement, Plast. Reconstr. Surg. 111, 1828–1840, 2003.

35. F. Yao, W. Chen, H. Wang, H. Liu, K. Yao, P. Sun, and H. Lin, A study on cytocompatible poly(chitosan-g-l-lactic acid), Polymer 44, 6435–6441, 2003.

36. Y. Fanglian, L. Chang, C. Wei, B. Yun, T. Zhiyuan, and Y. Kangde. Synthesis and characterization of chitosan graft ed oligo(l-lactic acid), Macromol. Biosci., 3, 653–656, 2003.

37. A.R. Esker, C. Mengel, G. Wegner, Ultrathin fi lms of a polyelec- trolyte with layered architecture, Science 280, 892–895, 1998.

38. P.T. Hammond, Recent explorations in electrostatic multi- layer thin fi lm assembly, Curr. Opin. Colloid Interf. Sci. 4, 430–442, 2000.

39. Q. Feng, G. Zeng, P. Yanga, C. Wang, and J. Caia, Self-assembly and characterization of polyelectrolyte complex fi lms of hyaluronic acid/chitosan, Colloid. Surface A 257–258, 85–88, 2005.

40. C.-Y. Chen, J.-W. Wang, and M.-H. Hon, Polyion complex nanofi brous structure formed by self-assembly of chitosan and poly(acrylic acid), Macromol. Mater. Eng. 291, 123–127, 2006.

41. S. Ichikawa, S. Iwamoto, and J. Watanabe, Formation of bio- compatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose, Biosci.

Biotechnol. Biochem., 69(9), 1637–1642, 2005.

42. G. Huai-min and C. Xian-su, Study of cobalt(II)–chitosan coordination polymer and its catalytic activity and selectivity for vinyl monomer polymerization, Polym. Adv. Technol. 15, 89–92, 2004.

43. N. Kobota, Permeability properties of chitosan–transition metal complex membrane, J. Appl. Polym. Sci. 64, 819–822, 1997.

44. R. Terreux, M. Domard, C. Viton, and A. Domard, Interactions study between the copper II ion and constitu- tive elements of chitosan structure by DFT calculation, Biomacromolecules 7, 31–37, 2006.

45. D. Th acharodi and K.P. Ruo, Propranolol hydrochloride release behavior of cross-linked chitosan membranes, J. Chem.

Technol. Biotechnol. 58, 177–181, 1993.

46. K.C. Gupta and F.H. Jabrail, Eff ects of degree of deacetyla- tion and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres, Carbohyd.

Polym. 66, 43–54, 2006.

47. Y. Yuan, B.M. Chesnutt, G. Utturkar, W.O. Haggard, Y. Yang, J.L. Ong, and J.D. Bumgardner, Th e eff ect of cross-linking of

chitosan microspheres with genipin on protein release, Carbohyd. Polym. 68, 561–567, 2007.

48. K.D. Yao, M.X. Xu, Y.J. Yin, J.Y. Zhao, and X.L. Chen, pH- sensitive chitosan/gelatin hybrid polymer network micro- spheres for delivery of cimetidine, Polym. Int. 39, 333–337, 1996.

49. Q. Wang, N. Zhang, X. Hu, J. Yang, and Y. Du, Chitosan/

starch fi bers and their properties for drug controlled release.

Eur. J. Pharm. Biopharm. 66, 39–404, 2007.

50. Q. Wang, Y.M. Du, and L.H. Fan, Properties of chitosan/poly (vinyl alcohol) fi lms for drug controlled release, J. Appl.

Polym. Sci. 96(3), 808–813, 2005.

51. Y. Zhang and M. Zhang, Calcium phosphate/chitosan composite scaff olds controlled in vitro antibiotic drug release, J. Biomed. Mater. Res. 62, 378–386, 2002.

52. C. Prego, M. García, D. Torres, and M.J. Alonso, Transmuco- sal macromolecular drug delivery, J. Control. Release, 101, 151–162, 2005.

53. C. Prego, M. Fabre, D. Torres, and M.J. Alonso, Effi cacy and mechanism of action of chitosan nanocapsules for oral peptide delivery, Pharm. Res. 23(3), 549–556, 2006.

54. F.C. MacLaughlin, R.J. Mumper, J. Wang, J.M. Tagliaferri, I. Gill, M. Hinchcliff e, et al., Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plas- mid delivery, J. Control. Release 56, 259–272, 1998.

55. S. Mao, X. Shuai, F. Unger, M. Simon, D. Bi, and T. Kissel, Th e depolymerization of chitosan: Eff ects on physicochemical and biological properties, Int. J. Pharm. 281, 45–54, 2004.

56. W.G. Liu and K.D. Yao, Chitosan and its derivatives—a promising nonviral vector for gene transfection, J. Control.

Release 83, 1–11, 2002.

57. M. Prabaharan and J.F. Mano, Chitosan-based particles as con- trolled drug delivery systems, Drug Deliv. 12(1), 41–57, 2005.

58. W.G. Liu, K.D. Yao, and Q.G. Liu, Formation of a DNA/

N-dodecylated chitosan complex and salt-induced gene delivery, J. Appl. Polym. Sci. 82, 3391–3395, 2001.

59. W.G. Liu and K.D. Yao, Chitosan and its derivatives—a promising non-viral vector for gene transfection, J. Control.

Release 83, 1–11, 2002.

60. P. Chan, M. Kurisawa, J.E. Chung, and Y.-Y. Yang, Synthesis and characterization of chitosan-g-poly(ethylene glycol)- folate as a non-viral carrier for tumor-targeted gene delivery, Biomaterials, 28, 540–549, 2007.

61. X. Jiang, H. Dai, K.W. Leong, H.Q. Hao, and Y.Y. Yang, PEG- g-chitosan complexes for liver targets gene delivery, Abstract for International Conference on Materials For Advanced Technologies, P12, Singapore, 2003.

62. Y.J. Ming, S.W. Su, L.T. Lang, and Y.M. Chen, Evaluation of chitosan/PVA blended hydrogel membranes, J. Membr. Sci.

236, 39–51, 2004.

63. S.B. Bahrami, S.S. Kordestani, H. Mirzadeh, and P. Mansoon, Poly(vinyl alcohol)–chitosan blends: Preparation, mecha nical and physical properties, Iranian Polym. J. 12, 139–146, 2003.

64. K.S.V. Krishna Rao, M.C.S. Subha, M. Sairam, N.N.

Mallikarjuna, and T.M. Aminabhavi, Blend membranes of

chitosan and poly(vinyl alcohol) in pervaporation dehydra- tion of isopropanol and tetrahydrofuran, J. Appl. Polym. Sci.

103, 1918–1926, 2007.

65. D. Anjali Devi, B. Smitha, S. Sridhar, T.M. Aminabhavi, Dehydration of 1,4-dioxane through blend membranes of poly(vinyl alcohol) and chitosan by pervaporation, J. Membrane Sci. 280, 138–147, 2006.

66. I.Y. Galaev, M.N. Gupta, and B. Mattiasson, Use smart poly- mers for bioseparations, Chemtech, 26(12), 19–25, 1996.

67. Y.-L. Liu, Y.-H. Su, K.-R. Lee, and J.-Y. Lai, Crosslinked organic–inorganic hybrid chitosan membranes for pervap- oration dehydration of isopropanol–water mixtures with a long-term stability, J. Membrane. Sci. 251, 233–238, 2005.

68. J. Li, Y.P. Chen, Y. Yin, F. Yao, and K. Yao, Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network fi lm in situ, Biomaterials, 28(5), 781–790, 2007.

69. V.M. Rusua, C.-H. Ng, M. Wilke, B. Tiersch, P. Fratzl, and M.G. Pete, Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials, Biomaterials, 26, 5414–5421, 2005.

70. Y. Wan, K.A.M. Creber, B. Peppley, and V.T. Bui, Ionic conduc- tivity of chitosan membranes, Polymer 44, 1057–1065, 2003.

71. Y. Wan, K.A.M. Creber, B. Peppley, and V. Tam Bui, Ionic conductivity and related properties of crosslinked chitosan membranes, J. Appl. Polym. Sci. 89, 306–317, 2003.

72. Y. Wan, K.A.M. Creber, B. Peppley, and V. Tam Bui, Ionic conductivity and tensile properties of hydroxyethyl and hydroxypropyl chitosan membranes, J. Polym. Sci. Part B:

Polym. Phys. 42, 1379–1397, 2004.

73. T. Winie, S.R. Majid, A.S.A. Khiar, and A.K. Arof, Ionic con- ductivity of chitosan membranes and application for electro- chemical devices, Polym. Adv. Technol. 17, 523–527, 2006.

74. J. Lalonde and A. Margolin, Immobilization of enzymes. In:

Drauz, K. and Waldmann, H., editors. Enzyme Catalysis in Organic Synthesis. Weinheim: Wiley–VCH, pp. 163–184, 2002.

75. N. Ha and S.P. Meyers, Preparation and characterization of chitin and chitosan, a review, J. Aquat. Food. Prod. Tech. 4, 27–52, 1995.

76. G.D. Altun and S.A. Cetinus, Immobilization of pepsin on chitosan beads, Food Chem. 100, 964–971, 2007.

77. T. Klotzbach, M. Watt, Y. Ansari, and S.D. Minteer, Eff ects of hydrophobic modifi cation of chitosan and Nafi on on trans- port properties, ion-exchange capacities, and enzyme immobilization, J. Membrane. Sci. 282, 276–283, 2006.

78. M. Mochizuki, N. Yamagata, D. Philp, K. Hozumi, T. Watanabe, Y. Kikkawa, Y. Kadoya, H.K. Kleinman, and M. Nomizu, Integrin-dependent cell behavior on ECM peptide-conjugated chitosan membranes, Biopolymers (Pept.

Sci.), 88(2), 122–130, 2007.

79. J.S. Mao, H.F. Liu, Y.J. Yin, and K.D. Yao, Th e properties of chitosan–gelatin membranes and scaff olds modifi ed with hyaluronic acid by diff erent methods, Biomaterials, 24, 1621–1629, 2003.

80. H. Liu, J. Mao, K. Yao, G. Yang, L. Cui, and Y. Cao, A study on a chitosan–gelatin–hyaluronic acid scaff old as artifi cial skin

in vitro and its tissue engineering applications, J. Biomater.

Sci. Polymer Edn. 15(1), 25–40, 2004.

81. F. Zhao, W.L. Graysona, T. Maa, B. Bunnellb, W.W. Lu, Eff ects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development, Biomaterials, 27, 1859–1867, 2006.

82. S.J. Kim, S.R. Shin, J.H. Lee, S.H. Lee, and S.I. Kim, Electrical response characterization of chitosan/polyacrylonitrile hydro- gel in NaCl solutions, J. Appl. Polym. Sci. 90, 91–96, 2003.

10.2 Chitosan-Based Hydrogels