• Tidak ada hasil yang ditemukan

Indeterminate Truss Problems: Method of Consistent Deformationsof Consistent Deformations

1 2 3 4

5 6

1 2 3

4 5 6

7 8

9

4 m

3@4 m = 12 m Problem.3.2.

PROBLEM 3.3

The.lower.chord.members.1,.2,.and.3.of.the.truss.shown.next.are.hav- ing. a. 20°C. increase. in. temperature.. Find. the. horizontal. displacement.

of.node.5,.given.E =.10.GPa.and.A =.100.cm2.for.all.bars.and.the.linear.

thermal.expansion.coefficient.is.α =.5(10–6)/°C.

1 2 3 4

5 6

1 2 3

4 5 6

7 8

9

4 m

3@4 m = 12 m Problem.3.3

3.2 Indeterminate Truss Problems: Method

We.notice.that.if.the.vertical.reaction.at.the.central.support.is.known,.then.

the.number.of.force.unknowns.becomes.18.and.the.problem.can.be.solved.

by.the.18.equilibrium.equations.from.the.nine.nodes..The.key.to.the.solution.

is.then.to.find.the.central.support.reaction,.which.is.called.the.redundant.

force..Denoting.the.vertical.reaction.of.the.central.support.by.Rc,.the.original.

problem.is.equivalent.to.the.problem.shown.next.as.far.as.force.equilibrium.

is.concerned.

P Rc

c

Statically.equivalent.problem.with.the.redundant.force.Rc.as.unknown.

The.truss.above,.with.the.central.support.removed,.is.called.the.primary structure..Note.that.the.primary.structure.is.statically.determinate..The.mag- nitude.of.Rc.is.determined.by.the.condition.that.the.vertical.displacement.

of.node.c.of.the.primary.structure,.due.to.(1).the.applied.load.P.and.(2).the.

redundant.force.Rc,.is.zero..This.condition.is.consistent.with.the.geometric.

constraint.imposed.by.the.central.support.on.the.original.structure..The.ver- tical.displacement.at.node.c.due.to.the.applied.load.P.can.be.determined.by.

solving.the.problem.associated.with.the.primary.structure.as.shown.next.

c

P ∆c

Displacement.of.node.c.of.the.primary.structure.due.to.the.applied.load.

The.displacement.of.node.c.due.to.the.redundant.force.Rc.cannot.be.com- puted.directly.because.Rc.itself.is.unknown..We.can.compute,.however,.the.

displacement.of.node.c.of.the.primary.structure.due.to.a.unit.load.in.the.direc- tion.of.Rc..This.displacement.is.denoted.by.δcc,.the.double.subscript.cc.signifies.

displacement.at.c.(first.subscript).due.to.a.unit.load.at.c.(second.subscript).

c 1 kN δcc

Displacement.at.c due.to.a.unit.load.at.c.

The.vertical.displacement.at.c.due.to.the.redundant.force.Rc.is.then.Rcδcc,.as.

shown.in.the.following.figure.

c Rc Rcδcc

Displacement.at.c.due.to.the.redundant.force.Rc.

The.condition.that.the.total.vertical.displacement.at.node.c,.Δc,.be.zero.is.

expressed.as

Δc.=.Δ ′c.+.Rcδcc.=.0. (3.11) This.is.the.additional.equation.needed.to.solve.for.the.redundant.force.Rc..

Once.Rc.is.obtained,.the.rest.of.the.force.unknowns.can.be.computed.from.

the.regular.joint.equilibrium.equations..Equation.3.11.is.called.the.condition of compatibility.

We.may.summarize.the.concept.behind.the.aforementioned.procedures.

by.pointing.out.that.the.original.problem.is.solved.by.replacing.the.inde- terminate.truss.with.a.determinate.primary.structure.and.superposing.the.

solutions.of.two.problems,.each.determinate,.as.shown.next.

c

P ∆c

c Rc Rcδcc

+

The.superposition.of.two.solutions.

And,.the.key.equation.is.the.condition.that.the.total.vertical.displacement.at.

node.c.must.be.zero,.consistent.with.the.support.condition.at.node.c.in.the.

original.problem..This.method.of.analysis.for.statically.indeterminate.struc- tures.is.called.the.method of consistent deformations.

EXAMPLE 3.5

Find the force in bar 6 of the truss shown next, given E = 10 GPa and A = 100 cm2 for all bars.

1 kN 0.5 kN

1 4

2 3

4 m

3 m 6 3 1

2

4 5

Example of an indeterminate truss with one redundant force.

Solution

The primary structure is obtained by introducing a cut at bar 6 as shown in the left panel of the following figure. The original problem is replaced by that of the left panel and that of the middle panel.

1 kN

1 4

2 3

1 2

3

4 5

1 4

2 3

1 2

3

4 5 F6

F6δ

∆

1 kN 0.5 kN

1 4

2 3

1 2

3

4

5 6

0.5 kN

+ =

Superposition of two solutions.

The condition of compatibility in this case requires that the total relative displacement across the cut obtained from the superposition of the two solutions be zero:

Δ = Δ′ + F6 δ = 0

where Δ′ is the overlap length (opposite of a gap) at the cut due to the applied load and δ is, as defined in the following figure, the overlap length across the cut due to a pair of unit loads applied at the cut.

1 4 3 2

1

2

3

4 5

1 1

Overlap displacement at the cut due to the unit-force pair.

The computation needed to find Δ′ and δ is tabulated next.

Computing.for.Δ′.and.δ Member

Real Load For Δ′ For δ

Fi EA/L Vi fi fi Vi vi fi vi

(kN) (kN/m) (mm) (kN/kN) (mm) (mm/kN) (mm/kN)

1 –0.33 25,000 –0.013 –0.8 0.010 –0.032 0.026

2 0 33,333 0 –0.6 0 –0.018 0.011

3 0 25,000 0 –0.8 0 –0.032 0.026

4 0.50 33,333 0.015 –0.6 –0.009 –0.018 0.011

5 –0.83 20,000 –0.042 1.0 –0.042 .0.050 0.050

6 0 20,000 0 1.0 0 .0.050 0.050

Σ –0.040 0.174

Note:. Fi =.ith.member.force.due.to.the.real.applied.load;.Vi =.Fi/(EA/L)i.=.ith.member.

elongation.due.to.the.real.applied.load;.fi =.ith.member.force.due.to.the.virtual.

unit.load.pair.at.the.cut;.vi.=.fi/(EA/L)i.is.the.ith.member.elongation.due.to.the.

virtual.unit.load.pair.at.the.cut;.Δ′.=.−0.040.mm;.δ.=.0.174.mm/kN.

0.040 mm, 0.174 mm/kN

= − δ =

From the condition of compatibility:

∆′ + F6 δ = 0 F6 = – 0.174

–0.040 = 0.23 kN

EXAMPLE 3.6

Formulate the conditions of compatibility for the truss problem shown.

P

c d

Statically indeterminate truss with two degrees of redundancy.

Solution

The primary structure can be obtained by removing the supports at node c and node d. Denoting the reaction at node c and node d as Rc and Rd, respectively, the original problem is equivalent to the superposition of the three problems as shown in the following figure.

c

P ∆c ∆d

c Rc Rcδcc

c

Rd Rdδcd

d

Rcδdc d

d Rdδdd

+

+

Superposition of three determinate problems.

In the figure:

Δ′c: vertical displacement at node c due to the real applied load Δ′d: vertical displacement at node d due to the real applied load δcc: vertical displacement at node c due to a unit load at c δcd: vertical displacement at node c due to a unit load at d δdc: vertical displacement at node d due to a unit load at c δdd: vertical displacement at node d due to a unit load at d

The conditions of compatibility are that the vertical displacements at nodes c and d are zero:

Δc = Δ′c + Rcδcc + Rd δcd = 0

Δd = Δ′d + Rc δdc + Rd δdd = 0 (3.12)

Equation 3.12 can be solved for the two redundant forces Rc and Rd. Denote Vi: ith member elongation due to the real applied load

fic: ith member force due to the unit load at c vic: ith member elongation due to the unit load at c fid: ith member force due to the unit load at d vid: ith member elongation due to the unit load at d

We can express the displacements according to the unit load method as Δ′c = Σ fic (Vι )

Δ′d = Σ fid (Vι ) δcc = Σ fic (vιc ) δdc = Σ fic (vιd ) δcd = Σ fid (vιc ) δdd = Σ fid (vιd )

The member elongation quantities in the equations are related to the member forces through

.

V FL

i E Ai i i i

=

. v f L

ic E Aic i i i

=

. v f L

id E Aid i i i

=

Thus, we need to find only member forces Fi, fic, and fid, corresponding to the real load, a unit load at node c, and a unit load at node d, respectively, from the primary structure.