• Tidak ada hasil yang ditemukan

The.second.and.the.third.equations.lead.to.the.following.differential.and.

integral.relations

.

dV

dx =– ( ),q x V= −∫ q dxfor distributed loads. (4.1a) V= −Pfor concentrated loads. (4.1b)

.

dM

dx =V M, = ∫V dx. (4.2a)

ΔM = Mo for.concentrated.moments. (4.2b) Note.that.we.have.replaced.the.differential.operator.d.with.the.symbol.Δ.in.

Equation.4.1b.and.Equation.4.2b.to.signify.the.fact.that.there.will.be.a.sudden.

change.across.a.section.when.there.is.a.concentrated.load.or.a.concentrated.

moment.externally.applied.at.the.location.of.the.section.

Differentiating. Equation. 4.2a. once. with. respect. to.x and. eliminating.V.

using.Equation.4.1a,.we.arrive.at

.

d M

dx2 2 =– ,q M= ∫∫– q dxdx. (4.3) The.preceding.equations.reveal.the.following.important.features.of.shear.

and.moment.variation.along.the.length.of.a.beam.

. 1..The. shear. and. moment. change. along. the. length. of. the. beam. as. a.

function.of.x..The.shear.and.moment.functions,.V(x).and.M(x),.are.

called. shear. and. moment. diagrams,. respectively,. when. plotted.

against.x.

. 2..According.to.Equation.4.1a,.the.slope.of.the.shear.diagram.is.equal.

to.the.negative.value.of.the.intensity.of.the.distributed.load,.and.

the. integration. of. the. negative. load. intensity. function. gives. the.

shear.diagram.

. 3..According.to.Equation.4.1b,.wherever.there.is.a.concentrated.load,.

the.shear.value.changes.by.an.amount.equal.to.the.negative.value.of.

the.load.

. 4..According. to. Equation. 4.2a,. the. slope. of. the. moment. diagram. is.

equal.to.the.value.of.the.shear,.and.the.integration.of.the.shear.func- tion.gives.the.moment.diagram.

. 5..According. to. Equation. 4.2b,. wherever. there. is. a. concentrated.

moment,.the.moment.value.changes.by.an.amount.equal.to.the.value.

of.the.concentrated.moment.

. 6..According.to.Equation.4.3,.the.moment.function.and.load.intensity.

are.related.by.twice.differentiation/integration.

Furthermore,.integrating.once.from.Equation.4.1a.and.Equation.4.2a.leads.to

Vb Va q dx

a b

= + − . (4.4)

and

Mb Ma V dx

a b

= + . (4.5)

where.a.and.b.are.two.points.on.a.beam.

Equations. 4.4. and. 4.5. reveal. practical. guides. to. drawing. the. shear. and.

moment.diagrams:

. 1..When.drawing.a.shear.diagram.starting.from.the.leftmost.point.

on. a. beam,. the. shear. diagram. between. any. two. points. is. flat. if.

there.are.no.loads.applied.between.the.two.points.(q =.0)..If.there.

is.an.applied.load.(q 0),.the.direction.of.change.of.the.shear.dia- gram.follows.the.direction.of.the.load.and.the.rate.of.change.is.

equal.to.the.intensity.of.the.load..If.a.concentrated.load.is.encoun- tered,. the. shear. diagram,. going. from. left. to. right,. moves. up. or.

down.by.the.amount.of.the.concentrated.load.in.the.direction.of.

the.load.(Equation.4.1b)..These.practical.rules.are.illustrated.in.the.

figure below.

a b

a b

V

Vb

Va

a b

a b

V

Vb Va

q

1 q

a b

V

Vb

Va

P

a b P

Shear.diagram.rules.for.different.loads.

. 2..When.drawing.a.moment.diagram.starting.from.the.leftmost.point.

on.a.beam,.the.moment.diagram.between.any.two.points.is.(a).linear.

if. the. shear. is. constant,. (b). parabolic. if. the. shear. is. linear,. and. so.

forth..The.moment.diagram.has.a.zero.slope.at.the.point.where.the.

shear.is.zero..If.a.concentrated.moment.is.encountered,.the.moment.

diagram,.going.from.left.to.right,.moves.up.or.down.by.the.amount.

of.the.concentrated.moment.if.the.moment.is.counterclockwise.or.

clockwise.(Equation.4.2b)..These.practical.rules.are.illustrated.in.the.

following.figure.

a b

V

a b

M

a b

M

Mo

Mo

a b

a b

M

Mb Ma

Va

1 Va

a b

V

Moment.diagram.rules.for.different.shear.diagrams.and.loads.

Example 4.4

Draw the shear and moment diagrams of the loaded beam shown.

3 kN/m

2 m 3 m 3 m

6 kN

Example for shear and moment diagrams of a beam.

Solution

We shall give a detailed step-by-step solution.

1. Find reactions. The first step in shear and moment diagram con- struction is to find the reactions. Readers are encouraged to verify the reaction values shown in the following figure, which is the FBD of the beam with all the forces shown.

3 kN/m

2 m 3 m 3 m

6 kN

10 kN 2 kN

FBD of the beam showing applied and reaction forces.

2. Draw the shear diagram from left to right.

V

Linear1 m –6 kN 3 kN

2 m

V

–6 kN

4 kN Flat

10 kN

V

–6 kN –2 kN Flat 4 kN

6 kN

Drawing the shear diagram from left to right.

3. Draw the moment diagram from left to right.

–6 kN-m

–6 kN-m

–6 kN-m Parabolic M

Linear

6 kN-m

6 kN-m M

M Linear

4 kN 1 m 2 m

Drawing the moment diagram from left to right.

Example 4.5

Draw the shear and moment diagrams of the loaded beam shown.

3 kN/m

2 m 6 m

6 kN

2 m 6 kN

Example for shear and moment diagrams of a beam.

Solution

We shall draw the shear and moment diagrams directly.

1. Find reactions.

3 kN/m

2 m 3 m 3 m

6 kN

2 m 6 kN

15 kN 15 kN

FBD showing all forces.

2. Draw the shear diagram from left to right.

3 kN/m

2 m 3 m 3 m

6 kN

2 m 6 kN

15 kN

15 kN

6 kN

–6 kN 9 kN

–9 kN V

V

Drawing shear diagram from left to right.

3. Draw the moment diagram from left to right.

2 m 3 m 3 m 2 m

15 kN

13.5 kN-m M

–6 kN/m 6 kN/m

1.5 kN M

–12 kN/m –12 kN/m

Drawing moment diagram from left to right.

Example 4.6

Draw the shear and moment diagrams of the loaded beam shown next.

30 kN-m

2 m

6 kN 2 m 6 kN

3 m 3 m

Example for shear and moment diagrams of a beam.

Solution

1. Find reactions.

30 kN/m

2 m 3 m 3 m

6 kN

2 m 6 kN

5 kN 5 kN

FBD showing all forces.

2. Draw the shear diagram from left to right.

2 m 3 m 3 m

6 kN 2 m

V 6 kN

V

5 kN 5 kN

6 kN 1 kN

6 kN

Drawing shear diagram from left to right.

3. Draw the moment diagram from left to right.

2 m 3 m 3 m 2 m

30 kN-m M

6 kN/m

6 kN/m

M

1 kN/m

1 kN/m

15 kN-m 12 kN-m

–12 kN-m –15 kN-m

Drawing moment diagram from left to right.