• Tidak ada hasil yang ditemukan

ability scores, 10, 77·88 ability scores, validity of, 78 achievement tests, 102

adaptive testing. See computerized adap- tive testing

Aitkin, M., H, 46

American Educational Research AsS()cia- tion, I

American l'sydlOlogical Association, I anchor test design, 128-129. 136-141 ANCILLES, 47,49

Andersen, E. B. 46.58 Antlridl. 1> .• 26 Anl\off, W. II., 123, 125 Ansley, T_ N .• 58 area statistic, 113 115 Arter. J. A .. 147 ASCAL. 47.4')

AssessfIlt'nt sケウャイュセ@ Corpnrlltion. 4749

iiウウオューエゥHIョNセN@ 55· 59

assumptions. (;hc('king of. 55-59.61-6.1 authentic measurement, 15.1

Averill. M, 120 Haker. F. H .. 15.45,57 nfll'lnn, M. A., 4(;

Heyesian estinllllion procruures, J8-:\<), 4.1-44

Hayesiall item selection. 148 Hejar, I. I.. 56

Dell. S. R .. 42 AlC'AL, 42. 46.48 OIGSCALE. 42, 48 RlLOG, 41. 47, 50

hinomial trials model. 27 Birnbaum, A., 14,91-92,94

Rock, R. n., 26.37,43,47-47,49,56, 146,I5J

Boekkooi-Timminga, E., 10 I, 103 Bunurrson, C. V., 145

Burket, O. R .• 37.95 Camilli, G .• 57. 120 Carlson, J. E .• 47.49

characteristic curve method. 134·135 classical item tli friculty. 2, 5 dassicHI item discrimination. 5 clussical measurement, 2-5 dassicaltrue scort' model. 4, 7 co!(nilive <':ollll'ollenis. 154 ('"hrll. A. S ..

n

,'Oflllllnll !,t'''OIlS (ksi!!lI. 1211

(:(llllllllll.'ri/rd Hllal'live エエGセエゥョャONL@ 14S-1 S2 cOllcurrell1 (lIlihrlllinll. IJS· 136 condilional ョャ。セゥイョオュ@ likelihood ・セャゥュBM

tion.46 Cook, L. L.. 5. 58 Cmta, M. G., 27

Cfll ill , R. D., 12()

,'I ilt'rinn . n,I'('re1Il'l."d ャ・セャsN@ 78, 102 (,lIshlmi/.,'d 1"'ling. 117

cUI-off score, 1<5 DATAGEN,54

de Gruijler, D. N, M .. 86, 94,102 differemial ilem funclioning. 109-120 Divgi, I). R., 5.1

domain セHョイ・L@ rNセ@

Jot)

170 FUNDAMENTALS OF ITEM RESPONSE TIII'ORY Ullr;IIIS. N. 1. .'111·.'\9

Drasgow. r .. セVN@ セiiL@ 62. 113. I セT@

EAP estimates. Su expC'cted 1\ posteriori estimales

eigenvalue plot, 56 Eignor, D. R., .'I, 58 Embretson, S. E., 154 equating, classical. 123·126 equating, definition, 123 equaling. IRT, 126·142

equipercentlle equaling, 123 124 equivalent group design, 1211

expected a posteriori estimates, 39,44 Forsyth, R. A .• 58

Fraser, C, 41,49 Gelson, P. R .• 109 Gibhons, R., セV@

Gifford, J. A., 42-44. 46 (JIM, C. 41·41'1 Goldstein. H.. 154 goodness of fil. 24, 53·14 goodness·of·fit statistics, 61 graded response model. 26·27 Green. 8. E, 146. 141'1 Green, D. R., 95

group dependent ilem statistics. 3 growlh. measurement of, 102 Gulliksen, H.. 57

Guslafsson, J. E., 41-48.58 Haebara, T., 134

Hambleton. R. K., 4-5, 36-37.43.54·59, 10,18,82.86-87.102-103,112.

114,133.136,148 IInmisch, D. L., 120 Harris. D .• 15 lIastings. eN., 112 lIallie, J. A .• 53. 56, 58 heuristic estimation, 46 lIolhmd. P. W .• 115. 119 110m, J. L .. 56

lIumphreys. L. G .• 56, 146

inapproprialeness measuremenl, 154·155 indeterminacy problem, 41·42

tllrorlllnli"n hllll'l iUII . .'il'l' Il'S! 01 ;relit information function

informotion nlalrix, 44 Inouye, D. K., 145

il1yuriance, R<sessmcnt of. <;7, セGゥGIN@ 63-66 invariance. property of, 18·25

invariant model parameters, '8 • /ronson, G. II .. 120

item billS. 109

item characteristic curve. 7 item charncteristic function, 7 item difficulty parameter, 13 item discrimination parameler, 15 item inforrnalinn runction, 91-94,99-

106,147

item misfil slatistics, 61, 72·14 item selection, 99·106 Jarjollra, D., 128

joint Bayesian estimation, 46

joint muimlllll likelihood estimation, 41·

44. 46 Jones, R.

w.,

10.\

Kendall, M. G .• 39 Kingsbury, G. G .. 148, 152 Kingston, N. M., 58-59. 102 Klein, L. W., 12K

Knight, D. L., 109 Kolen, M. J., 123 Lam. R., 61 IRtenl セー。」・L@ 10

Levine, M. V .• SR. ItO, 154·155 Lieberman, M., 43

likelihood function, 34 Linacre. J. M .• 42 linear eqUAting, 124-12.5 linear programming, 103 linking designs, 128·129

Linn, R. L., 1R, 87. 110, 120, 132. 146 Lissak. R. I.. 56, 62

Incal independence, 9-12 LOGIST. 42. 46-47, 49. 135

ioャAゥセエゥ」@ models;

one·parameter. 12·14, R I-Kl two·parnmeler. 14-17 three-parameter. 17 ·18

/1/(/1'.1

l<lj!islic iHGセイイウウェッャャ@ pron.llure, 11'1 log!!s, 11.1

Lord. F M., TセL@ II, 14,43,45-46,57- 51(,95,100-101,110,112,125, I.HIVI, 147·147,154 lower asymplote. 13, 16-17 Ludlow, L. H., 58 Mack. J. S., 120

Mantel·Haenszel method, 115 marginal Bayesian estinlation, 46 marginAl maximum likelihood ・セャゥュ。ᄋ@

lion, 43, 48 Masters, G. N., 26. 153

maximum information item selection, 148 maximum likelihood criterion, 33 maximum likelihood estimation, 33-38 McDonald. R. P., 10.26.46-41,49,56,

154

McLaughlin, M. E .• 58, 113. 155 Mead, R. J .• 42

mean and sigma method. 131-132.139- 141

Mediltll Interactive Technologies. 47·48 Mehrens. W. A., 58

Millenbergh. G., 120 MICROSCALE.41-48 MIRTE,50

Millman, 1 .• 141

Mislevy, R. }" 37, 43·41, 49 model fit. Set goodness of fit

ャャャオQエゥ、ゥュ・ョセゥッュャャ@ ュッ、・ャセL@ 10. 154·155

MlJLTILOG,50 Muraki. E .• 56 NAEP, 102

National Council on Measurement in Education, I

Newton·Raphson procedure, 36,40 NOHARM, 47,50

nominal response model. 26 non-linear factor analYRis, 46, 56 normal ogive model, 14·15 Novick, M. R., II, 154 odds for セucc・エャsL@ 81-83 Olsen, J. B .• 145

optimal hem selection. Set Item selection

Owen. It I., 1411 Ilarallel Irsb, 4 Parsons, C. K .. 511 Phillip", S E., 511

!'ierers, J M.P., 141(

PML,47-48

Poisson counts model. 28

171

polytomous response models, 26-28, 153-

QNセT@

predictions, W-61

pseudo-chllnee level parameter. 17 Q, statistic, 54·61

Raju, N. S., 113·114, 121 RASCAL,48

Rasch. G., 14,46 Rasch model. 14 Reckase, M. D .• 56, 146 regression method. 130 regression models, 19. 32 relative efficiency, YNセMYV@

reliahility. 、。セセォ。ャN@ 4.94 Reshetar. R., 149 residuals, '\9·61, 66·61 RIl)A.47-4I1, 135

robusl melln and sigma melhod, 132·13:1 ROg"fS. B. 1..5.1.55.103,114-115.119 Rovinelli. R. J .• 54,56,70

Roznowski. M. A., 56 Rudner, L. M .• 109-110. 113 Sofril, M. 1., 27

Samejima. F .. 26, 95,153·154 scaling. 125·126

seal ing constants, 129-135 Schulz, M .• 42

score transformations, 78-87 Shepard. L. A., 57,120 single-group design. 128 speededness, 。ウウ・セウュ・ョエ@ of. 57 Spray, 1., 26·27

standard error. Su Mandard error of esti·

mation

MandMd error of e,timation, 44·45. 94- 95. 106

standard error of measurement, 4, 94

172 FUNDAMENTALS OF ITEM RESPONSE TIIEORY slllndllnlized residuals. 5<)-61, 611-72

Sleinherg, L.. 153

Stocking, M. L.. 63. 102, 133-135 Stone, M. If .. 5, 14.57-58 Sluart, A .• 19

Subkoviak. M. J .• 120

Swnminnlhftn. H., 5, 36·:'1.42·46. Y'i, 57-59,711.112. 112, 119, 13.1. U6 Sykes, R. C. 37

Taft. H. L.. 58

lailored tesling. Su compulerized adap- live lesling

largel informalion funclion. 10 1-102 Tatsuoka. K. K .. 511

lesl Chllr8clerialic curve. 115 lesl dependelll abililY scores. <;

lesl developmenl. 92·96.99-106 lesl fairness, 109

lesl informalion function. 38,44, 94-95.

100-106 Te .• , Sltlndard.f, I Thayer. D. T .• 115. 119 Thissen, D. M., 47. 49. 58, 153 Traub, R. E .• 58. 61

Irue proponion-correct score. 115 Irue score. 2. 84-87

Tucker, L. R .• 56

IInhlilllell,iunalily.9 10. セV@ "'7 Urry. V.

w..

46·49

Vale. C. D .. 1211. 142

vall lkr Lindell. W. 1.. 4.101.10.1 Wainer. II. 511.145·146 .•

Wnrtlrnl). J. t .. 112

Weiss, n. J. 5. 145-146. 1411. 152 Williams. D. M., 57, 120 Wingersky, M. S., 42, 46, 411 WITS scale. 110

Wolfe. R. G., 511. 61 Wood. R .• 154 Woodcock. R. W .• 110

Woodcod· Johnson P5ydlO" Educnl ional Rallery. 110

Wright. R. D., 5. 14,26.42.46-411,57·

59, 7R, 153

Yen. W. M., 37, 54. 5R, 61, 95, IOJ ZlIal, J. N .. 1411

Zara, A. R .• 1411

About the Authors

Ronald K. Hambleton is Professor of Education and Psychology and Chairman of the Laboratory of Psychometric and Evaluative Rellearch at the Univerllity of Massachusetts at Amherst. He received his Ph.D.

in psychometric methods from the University of Toronto in 1969. His principal research interests are in the areas of criterion-referenced measurement and item response theory. His most recent books are Item Response Theory: Prindples and Applications (co-authored with H. Swaminathllll), A Practical Guide to Criterion-Referenced Testing, and, forthcoming. Advances in Educational and Psychological Te.ftinK (co-edited with Jac Zaa/). He has served as an Allsociate Editor to the Journal of Educational Statistics (1981-1989) and currently Ilerves on Ihe editorial boards of Applied MNUlireml'nt ill Education, Multivariate Behovioral Rl'.fl'tlrch, ApI,lied pLヲケ」ャキャッセゥ」ャャゥ@ Mellsurement, JOllrnal of Ecillcat;oflal Mrosurement, Edllf(JtiOlw/ and PsycholoKical Measure- ment, Evaluation and the lIealtil I'mfe,u;OIIS, and Psit'ot"emo. He hall served also as President of the International Test Commission (1990-

1994) and as President of the National Council on Measurement in Education (1989-1990).

H. Swami nathan is Professor of Education and Psychology at the University of Massachusetts at Amherst. He received his Ph.D. in psychometric methods and statistics from the University of Toronto in 1971. He has held the positions of Associate Dean of Academic Affairs and Acting Dean of the School of Education. He has served as an Associate Editor to the Journal of Edw'otiollal Statistics and currently is an Associate Editor of Psicothema and Rev;.sta Edllcao Potuguese.

He has served also 8s the President of Educational Statisticians, a special interest group of the American Educational Research Associa- tion; co-program chair of Division D of AERA; and as a member of the

173

174 FUNDAMENTALS OF ITEM RESPONSE TlIEORY

Gmduale Records Exarnilllliiolls BtHtrtl. lIis principal research interests are in the areas of item response theory. mullivariale statislics, and Bayesian analysis.

1-1. Jane Rogers is Assistant Professor :II Teachers College. Columbia University. She received her Ph.D. in psychometric'methods frolll the University of Massachusetts in 1989. lIer research interests include item response theory, large-scale assessmenl, methods for the detection of differential item funcl ioning, Bayesian methods. and multivariate statistics.

Dalam dokumen Fundamentals of Item Response Theory (Halaman 177-183)

Dokumen terkait