Mineral sectors in general work with standard industrial specifications (Sinha and Sharma, 1993; Evans, 1998;
Chatterjee, 2008). If required the raw material is processed for a market-finished commodity. Some minerals can be directly sold, involving negligible processing, such as quartz, feldspar, and limestone. Others may require pro- cessing through a few steps with intermediate saleable goods. Zinc (4%e10%), lead (1%e2%), and copper (0.5%
e2.0%) ore at run-of-mine grade can either be transferred to an in-house beneficiation plant as a separate profit center or sold to a third-party process plant to produce respective concentrates (see Chapter 13). The average concentrate grades areþ50% for zinc and lead, andþ20% for copper.
The bulk concentrate (copperþzincþlead) is of lower grade produced from a complex type of mineralization. The concentrate is further processed either in-house or by a third-party smelter and subsequently refined to produce 99.99% metal grade. This refined metal is the input for the manufacturing industry for making consumer serviceable goods. Specifications for a number of minerals are gener- alized and described as follows:
(1) Bauxite
(a) Metal grade :>50% Al2O3,<5% SiO2
(b) Refractory grade :>55% Al2O3,<3% SiO2, Fe2O3each
(c) Chemical grade :>58% Al2O3,<3% Fe2O3
(2) Chromite
(a) Metallurgical grade :>48% Cr2O3, Cr:Fe¼>2.8:1 (b) Refractory grade : 38%e48% Cr2O3, Cr2O3
þAl2O3>60%
(c) Chemical grade : 48%e50% Cr2O3, Cr:Fe¼1.6:1 Fe as FeO :<15% MgO :<12e16%
SiO2 :<5% P as P2O5:<0.005e0.20%
CaO :<5e12% S as SO3 : 0.1%
(3) Copper ore
Run-of-mine Cu grade : 0.50%e2.00%
Concentrate grade :>20.00%
Refined copper grade : 99.99%
(4) Fluorite
(a) Metallurgical grade :>85% CaF2,<5%
SiO2,<0.03% S (b) Ceramic grade :>95% CaF2,<3%
SiO2,<1%
CaCO3, entirely free from Pb, Zn, Fe, S
(c) Acid grade :>97% CaF2,<1% SiO2, CaCO3, entirely free from Pb, Zn, and Fe
(5) Graphite (a) Lumpy:
- Lumpdwalnut to pea - Chipdpea to wheat grain - Dustdfiner<60 mesh
(b) Amorphous :>50% graphitic carbon (c) Crystalline flacks :>85% graphitic carbon (8 to 60 mesh in size) (6) Gypsum
(a) Cement grade :>70% CaSO4$2H2O (b) Fertilizer grade :>85% CaSO4$2H2O,<6%
SiO2,<0.01% NaCl, no clay (c) Plaster of Paris : 80%e90% CaSO4$2H2O (7) Glass sand
(a) Normal glass
SiO2 :>96%
(b) Optical glass
SiO2 : 99.8%
TABLE 2.3 Host Rock of Common Economic Minerals and Type of Depositsdcont’d Element Host Rock
Associated
Elements Deposit Type Example
Ni Mafic and ultramafic Cu, Cr, Co, PGE Nickel Sudbury NiePGE, Canada,
Kambalda Ni, Australia, Jinchuan Ni, China
Pb Dolomite, carbonaceous schist Zn, Cu, Ag, Cd Base metal Southeast Missouri Lead Belt, USA
P2O5 Dolomite e Phosphate Jhamarkotra stromatolites rock
phosphate, India
Sn Pegmatite and granite W Tin Bangka and Belitung islands,
Indonesia U Black shale, sandstone, hematite
breccias, quartz, and pebble conglomerate
Cu, Mo, Fe, Au, Ag, Re
Uranium McArthur River Uranium Mine, northern Saskatchewan, Canada
Zn Dolomite, carbonaceous schist Pb, Cu, Ag, Cd Base metal Rampura-Agucha mine, India, Broken Hill, Australia, Red Dog, Alaska
BHQ, banded hematite quartzite;BIF, banded iron formations;PGE, platinum-group elements.
Iron oxide :<0.02%
CaOþMgO :<0.1%
Cr, Co, Al2O3, TiO2 :<0.10%
Mn :<1 ppm
(8) Iron ore
(a) Grade classification
Very high grade :>65% Fe
High grade : 62%e65% Fe
Medium grade :<62% Fe
Unclassified : Inadequate sampling Phosphorus<0.18%
(b) Size classification
Lump ore : Particles>8 mm Sinter feed : Fines>100 mesh Fines (pallet feed) : Fines<100 mesh (9) Limestone
(a) Cement grade : 45% CaO,<3% MgO (b) Blast furnace grade : 46%e48% CaO,<11.3%
total insoluble (c) Steel melting grade :>48% CaO,<4% total
insoluble Conventional open hearth steel making:<4% SiO2 Basic oxygen furnace :<1% SiO2
(10) Dolomite
(a) Blast furnace grade :>28e33% CaO,>18e20%
MgO,<7% total insoluble (b) Steel melting grade :>29% CaO,>20%
MgO,<4% total insoluble (c) Glass grade : Consistent chemical
composition,<0.2% Fe2O3
(11) Manganese ore
Manganese ore grade :>35% Mn Ferruginous Mn ore : 10%e35% Mn Manganiferous iron ore : 5%e10% Mn Metallurgical grade :>44% Mn Battery grade :>78% MnO2,
<4% HCl-soluble Fe Chemical grade :>80% MnO2 (12) Rock phosphate
P2O5 :>24% (preferablyþ30%)
Si2O2 :<20%
Fe :<3%
Al2O3 :<7%
(13) Sillimanite and kyanite
Al2O3 :>59%
Si2O2 :<39%
Fe2O3 : 0.75%
TiO3 :<1.25%
CaOþMgO :<0.20%
(14) Talc
Talc is classified according to its color and softness
Grade I Pure white appearance with
smooth feel and free from grit
Grade II Tinted variety with smooth
feel and without grit Grade III Off-color variety with
smooth feel and without grit
Grade IV White or colored with grit
(15) Zinc-lead ore
Run-of-mill grade :>8% PbþZn Fe content as Py, Po : Lesser the better Graphite content : Lesser the better Zinc concentrate :>52% Zn Lead concentrate : 56%e60% Pb Refined metal :>99.99% Zn, Pb
(16) Coal
(a) Noncoking coal
Grade A : Useful heat value
>6200 kcal/kg
Grade B : Useful heat value>5600 and<6200 kcal/kg Grade C : Useful heat value>4940
and<3600 kcal/kg Grade D : Useful heat value>4200
and<4940 kcal/kg Grade E : Useful heat value>3360
and<4200 kcal/kg Grade F : Useful heat value>2400
and<3360 kcal/kg
Grade G : Useful heat value>1300
and<2400 kcal/kg
(b) Coking coal
Steel grade I : Ash content<15%
Steel grade I : Ash content>15%
and<18%
Washery grade I : Ash content<18%
and<21%
Washery grade II : Ash content<21%
and<24%
Washery grade III : Ash content<24%
and<28%
Washery grade IV : Ash content<28%
and<35%
(c) Semicoking coal
Semicoking I : Ashþmoisture content<19%
Semicoking II : Ashþmoisture content between 19% and 24%
(d) Hard coke
Premium : Ash content<25%
Ordinary : Ash content between 25%
and 30%
Beehive premium : Ash content<27%
Beehive superior : Ash content between 27%
and 31%
Beehive superior : Ash content between 31%
and 36%
REFERENCES
Chatterjee, K.K., 2004. Introduction to Mineral Economics, Revised ed.
New Age International, New Delhi, p. 379.
Chatterjee, K.K., 2007. Uses of Metals and Metallic Minerals. New Age, New Delhi, p. 314.
Chatterjee, K.K., 2008. Uses of Industrial Minerals, Rocks and Freshwater.
Nova Science Publishers, New York, p. 584.
Evans, A.M., 1998. Ore Geology and Industrial Mineralsdan Introduc- tion, third ed. Blackwell Scientific Publ. Inc., Oxford, p. 389.
Gaines, R.V., Catherine, H.S., Foord, W.E.E., Mason, B., Rosenzweig, A., King, V.T., 1997. Dana’s New Mineralogy, the System of Mineralogy of James Dwight and Edward Salisbury Dana. John Wiley&Sons, p. 1819.
Haldar, S.K., Tisljar, J., 2014. Introduction to Mineralogy and Petrology.
Elsevier Publication, p. 356.
McQueen, K.G., 2009. Ore Deposit Types and Their Primary Expressions, p. 14.ww.crcleme.org.au/RegExpOre/1-oredeposits.
Sinha, R.K., Sharma, N.L., 1993. Mineral Economics. Oxford & IBH Publishing Co. Pvt. Ltd., p. 394
Photogeology, Remote Sensing, and Geographic Information System in Mineral Exploration
Chapter Outline
3.1 Introduction 48
3.2 Photogeology 48
3.2.1 Classification of Aerial Photographs 49
3.2.1.1 Oblique Photographs 49
3.2.1.2 Vertical Photographs 49
3.2.1.3 Film Emulsion 49
3.2.1.4 Scale 49
3.2.2 Parallax 50
3.2.3 Photographic Resolution 50
3.2.4 Problems of Aerial Photography 51
3.2.5 Photographic Interpretation 51
3.2.6 Application in Mineral Exploration 51
3.3 Remote Sensing 51
3.3.1 Definition and Concept 51
3.3.2 Energy Sources and Radiation 52
3.3.2.1 Electromagnetic Energy 52
3.3.2.2 Electromagnetic Radiation 52
3.3.2.3 Electromagnetic Spectrum 52
3.3.2.4 Spectral Reflectance/Response Pattern 53
3.3.2.5 Data Acquisition 53
3.3.3 Remote Sensing System 53
3.3.3.1 Platform 53
3.3.3.2 Sensors 55
3.3.3.3 Sensor Resolution 56
3.3.4 Characteristics of Digital Images 56
3.3.4.1 Pixel Parameters 56
3.3.4.2 Mosaics 57
3.3.5 Digital Image Processing 57
3.3.5.1 Image Restoration 57
3.3.5.2 Image Enhancement 57
3.3.5.3 Information Extraction 57
3.3.6 Interpretation 57
3.3.7 Remote Sensing Application in Natural Resources 58
3.4 Geographic Information System 59
3.4.1 Definition 59
3.4.2 Components of Geographic Information System 60
3.4.3 Capabilities 61
3.4.4 Data Input 61
3.4.5 Projection and Registration 62
3.4.6 Topology Building 63
3.4.7 Overlay Data Analysis and Modeling 63 3.4.7.1 Digital Evaluation Model, Digital Terrain
Model, Terrain Evaluation Model, and
Triangulated Irregular Network Model 64 3.4.7.2 Mineral Exploration Model 64 3.4.8 Geographic Information System Application in
Mineral Exploration 64
3.5 Global Positioning System 65
3.5.1 Space Segment 65
3.5.2 Ground Control Segment 65
3.5.3 User Segment 65
3.5.4 Signals 66
3.5.5 Types of Global Positioning System 66 3.5.5.1 Handheld Global Positioning System 66 3.5.5.2 Differential Code Phase Global Positioning
System 66
3.5.5.3 Carrier Phase Tracking Global Positioning
System 66
3.5.5.4 Electronic Total Station 67
3.5.6 Global Positioning System Applications 67 3.6 Software in Remote Sensing Geographical Information
System 67
3.6.1 ArcGIS 67
3.6.2 AutoCAD 68
3.6.3 IDRISI 68
3.6.4 Integrated Land and Water Information System 68
3.6.5 MapInfo 68
3.6.6 Micro Station 68
References 68
Mineral Exploration.https://doi.org/10.1016/B978-0-12-814022-2.00003-4 Copyright©2018 Elsevier Inc. All rights reserved.
47
To see a World in a Grain of Sand And a Heaven in a Wild Flower, Hold Infinity in the palm of your hand And Eternity in an hour.
William Blake.