• Tidak ada hasil yang ditemukan

ISS and ESS Hybrid Control Systems

Chapter VI: Estimate-to-State Stability

6.3 ISS and ESS Hybrid Control Systems

To model an amputee-prosthesis system, we employ a hybrid control system. From the prosthesisโ€™ perspective, the human is uncontrollable, hence we consider the zero dynamics in our hybrid system to represent the human. Since the human expects a certain control action from the prosthesis, when the prosthesis control law is based on estimated dynamics, its deviation from the nominal acts as a disturbance to the human. We show there exists conditions such that the human is e-ISS to these input

disturbances. Because of the discrete dynamics, these conditions are only defined locally, so we additionally show the prosthesis stays within this bounded region.

Hybrid Control Systems

Consider a hybrid control system,

โ„‹๐’ž๐œ‚ยฏ๐‘งยฏ =

๏ฃฑ๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด

๏ฃณ

ยคยฏ

๐œ‚ = ๐‘“ยฏ(๐œ‚,ยฏ ๐‘งยฏ) +๐‘”ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐‘ขยฏ+๐‘”ยฏ๐น(๐œ‚,ยฏ ๐‘งยฏ)๐น(๐œ‚,ยฏ ๐‘งยฏ)

ยคยฏ

๐‘ง =ฮจยฏ(๐œ‚,ยฏ ๐‘งยฏ) +ฮจยฏ๐‘‘(๐œ‚,ยฏ ๐‘งยฏ)๐‘‘๐‘งยฏ

ifฮฆโˆ’1(๐œ‚,ยฏ ๐‘งยฏ) โˆˆD \ยฏ ๐‘†ยฏ

ยฏ

๐œ‚+ = ฮ”Nยฏ(๐œ‚ยฏโˆ’,๐‘งยฏโˆ’)

ยฏ

๐‘ง+ = ฮ”๐‘ยฏ(๐œ‚ยฏโˆ’,๐‘งยฏโˆ’) ifฮฆโˆ’1(๐œ‚ยฏโˆ’,๐‘งยฏโˆ’) โˆˆ๐‘†,ยฏ

(6.8)

where ยฏ๐œ‚ โˆˆN โŠ‚ยฏ R๐‘›ยฏ are controlled (output) states, ยฏ๐‘ง โˆˆ ๐‘ยฏ โŠ‚ R๐‘›ยฏ๐‘ง uncontrolled states,

ยฏ

๐‘ˆ โŠ‚ R๐‘šยฏ is a set of admissible control inputs for ยฏ๐‘ข, and ๐‘‘๐‘งยฏ โˆˆ R๐‘›๐‘‘ is an input disturbance in the uncontrolled dynamics. The functions ยฏ๐‘“ , ๐‘”,ยฏ ๐‘”ยฏ๐น, ๐น , ฮจยฏ, ฮจยฏ๐‘‘, ฮ”Nยฏ, and ฮ”๐‘ยฏ are locally Lipschitz in their arguments. There exists a constant๐‘ยฏ

ฮจ๐‘‘ > 0 such that โˆฅฮจยฏ๐‘‘(0,๐‘งยฏ) โˆฅ โ‰ค ๐‘ยฏ

ฮจ๐‘‘, โˆ€ยฏ๐‘ง โˆˆ ๐‘ยฏ. The domain ยฏD is a closed subset of ยฏN ร—๐‘ยฏ, the guard or switching surface ยฏ๐‘† โŠ‚ Dยฏ is a co-dimension one submanifold of ยฏD, respectively defined as

Dยฏ ={(๐œ‚,ยฏ โˆˆยฏN ร—ยฏ ๐‘ยฏ : ยฏโ„“(๐œ‚,ยฏ ๐‘งยฏ) โ‰ฅ0},

ยฏ

๐‘† ={(๐œ‚,ยฏ ๐‘งยฏ) โˆˆN ร—ยฏ ๐‘ยฏ : ยฏโ„“(๐œ‚,ยฏ ๐‘งยฏ) =0,โ„Žยค(๐œ‚,ยฏ ๐‘งยฏ) <0}, (6.9) where the continuously differentiable function ยฏโ„“ : ยฏN ร—๐‘ยฏ โ†’ Ryields๐ฟ๐‘”ยฏโ„“ยฏ= ๐ฟ๐‘”ยฏ

๐‘‘

โ„“ยฏ= 0. We assume ยฏ๐‘“(0,๐‘งยฏ) = ๐‘”ยฏ(0,๐‘งยฏ) = ๐‘”ยฏ๐น(0,๐‘งยฏ) = ฮ”Nยฏ(0,๐‘งยฏ) = 0 such that the surface

ยฏ

๐‘ defined by ยฏ๐œ‚ = 0 with ๐‘‘๐‘งยฏ = 0, ๐‘งยคยฏ = ฮจยฏ(0,๐‘งยฏ), is invariant for the continuous and discrete dynamics. The hybrid system for the hybrid zero dynamics is,

โ„‹|๐‘ยฏ =

( ๐‘งยคยฏ=ฮจ(0ยฏ ,๐‘งยฏ) if ยฏ๐‘ง โˆˆ๐‘ยฏ \ (๐‘†ยฏโˆฉ๐‘ยฏ)

ยฏ

๐‘ง+ = ฮ”๐‘ยฏ(0,๐‘งยฏโˆ’) if ยฏ๐‘งโˆ’ โˆˆ๐‘†ยฏโˆฉ๐‘ .ยฏ

(6.10)

RES-CLFs. As discussed in 3.1 a RES-CLF, developed in [199], guarantees stability of a hybrid periodic orbit of the zero dynamics in the full-order dynamics. For the continuous output dynamics of (6.8), the continuously differentiable function ๐‘‰๐œ€ : R๐‘›ยฏ โ†’ Rโ‰ฅ0 with constants ๐‘1, ๐‘2, ๐‘3 > 0 is a RES-CLF, such that for all 0< ๐œ€ < 1 and(๐œ‚,ยฏ ๐‘งยฏ) โˆˆN ร—ยฏ ๐‘ยฏ,

๐‘1โˆฅ๐œ‚ยฏโˆฅ2 โ‰ค๐‘‰๐œ€(๐œ‚ยฏ) โ‰ค ๐‘2 ๐œ€2

โˆฅ๐œ‚ยฏโˆฅ2 inf

ยฏ ๐‘ขโˆˆ๐‘ˆยฏ

[๐ฟ ยฏ

๐‘“๐‘‰๐œ€(๐œ‚,ยฏ ๐‘งยฏ) +๐ฟ๐‘”ยฏ๐‘‰๐œ€(๐œ‚,ยฏ ๐‘งยฏ)๐‘ขยฏ+๐ฟ๐‘”ยฏ

๐น๐น๐‘‰๐œ€(๐œ‚,ยฏ ๐‘งยฏ)] โ‰ค ๐‘3 ๐œ€

๐‘‰๐œ€(๐œ‚ยฏ).

(6.11)

The following set contains all control inputs that satisfy (6.11), ๐พ๐œ€(๐œ‚,ยฏ ๐‘งยฏ) ={๐‘ขยฏ โˆˆ๐‘ˆยฏ : ๐ฟยฏ

๐‘“๐‘‰๐œ€(๐œ‚,ยฏ ๐‘งยฏ) +๐ฟ๐‘”ยฏ๐‘‰๐œ€(๐œ‚,ยฏ ๐‘งยฏ)๐‘ขยฏ+๐ฟ๐‘”ยฏ

๐น๐น๐‘‰๐œ€(๐œ‚,ยฏ ๐‘งยฏ) โ‰ค โˆ’๐‘3 ๐œ€

๐‘‰๐œ€(๐œ‚ยฏ)}. Note while this formulation appears slightly different from that proposed in [199]

which did not have ยฏ๐‘”๐น(๐œ‚,ยฏ ๐‘งยฏ)๐น(๐œ‚,ยฏ ๐‘งยฏ) in the system dynamics, we can equivalently write the formulation given here with หœ๐‘“(๐œ‚,ยฏ ๐‘งยฏ) := ๐‘“ยฏ(๐œ‚,ยฏ ๐‘งยฏ) +๐‘”ยฏ๐น(๐œ‚,ยฏ ๐‘งยฏ)๐น(๐œ‚,ยฏ ๐‘งยฏ), resulting in the same form as in [199].

A ยฏ๐‘ข๐œ€(๐œ‚,ยฏ ๐‘งยฏ) โˆˆ ๐พ๐œ€(๐œ‚,ยฏ ๐‘งยฏ) for all (๐œ‚,ยฏ ๐‘งยฏ) โˆˆN ร—ยฏ ๐‘ยฏ, with zero disturbance input (๐‘‘๐‘งยฏ = 0), gives the closed-loop hybrid system of (6.8):

โ„‹๐œ‚ยฏ๐‘ง,๐œ€ยฏ =

๏ฃฑ๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด

๏ฃณ

ยคยฏ

๐œ‚ = ๐‘“ยฏ(๐œ‚,ยฏ ๐‘งยฏ) +๐‘”ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐‘ขยฏ๐œ€(๐œ‚,ยฏ ๐‘งยฏ) +๐‘”ยฏ๐น(๐œ‚,ยฏ ๐‘งยฏ)๐น(๐œ‚,ยฏ ๐‘งยฏ)

ยคยฏ

๐‘ง =ฮจ(ยฏ ๐œ‚,ยฏ ๐‘งยฏ) ifฮฆโˆ’1(๐œ‚,ยฏ ๐‘งยฏ) โˆˆD \ยฏ ๐‘†ยฏ

ยฏ

๐œ‚+ = ฮ”Nยฏ(๐œ‚ยฏโˆ’,๐‘งยฏโˆ’)

ยฏ

๐‘ง+ = ฮ”๐‘ยฏ(๐œ‚ยฏโˆ’,๐‘งยฏโˆ’) ifฮฆโˆ’1(๐œ‚ยฏโˆ’,๐‘งยฏโˆ’) โˆˆ๐‘† .ยฏ (6.12) Re-ESS-CLF.We assumed we have a RES-CLF controller ยฏ๐‘ข๐œ€acting on our control- lable dynamics. However we cannot perfectly determine a ยฏ๐‘ข โˆˆ ๐พ๐œ€(๐œ‚,ยฏ ๐‘งยฏ) when we only have access to ห†๐น and not๐น(๐œ‚,ยฏ ๐‘งยฏ). Hence, we employ the e-ESS constructions of Section 6.2 to construct arapidly exponentially estimate-to-state stabilizing CLF (Re-ESS-CLF).

Corollary 1: The continuously differentiable function๐‘‰๐œ€,๐œ€ยฏ : R๐‘›ยฏ โ†’ Rโ‰ฅ0defined for constants๐‘1, ๐‘2, ๐‘3 > 0,

๐‘1โˆฅ๐œ‚ยฏโˆฅ2 โ‰ค๐‘‰๐œ€,๐œ€ยฏ(๐œ‚ยฏ) โ‰ค ๐‘2 ๐œ€2

โˆฅ๐œ‚ยฏโˆฅ2 inf

ยฏ ๐‘ขโˆˆR๐‘šยฏ

[๐ฟ ยฏ

๐‘“๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ) +๐ฟ๐‘”ยฏ๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐‘ขยฏ+๐ฟ๐‘”ยฏ

๐น

๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐นห†]

โ‰ค โˆ’๐‘3 ๐œ€

๐‘‰๐œ€,๐œ€ยฏ(๐œ‚ยฏ) โˆ’ 1

ยฏ ๐œ€

๐ฟ๐‘”ยฏ

๐น

๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐ฟ๐‘”ยฏ

๐น

๐‘‰ ๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐‘‡,

(6.13)

is Re-ESS-CLF of the continuous๐œ‚ยฏdynamics of (6.8), and a control input๐‘ขยฏin the class,

๐พ๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘ง,ยฏ ๐นห†) ={๐‘ขยฏ โˆˆR๐‘šยฏ : ๐ฟยฏ

๐‘“๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ) +๐ฟ๐‘”ยฏ๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐‘ขยฏ +๐ฟ๐‘”ยฏ

๐น๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐นห† โ‰ค โˆ’๐‘3 ๐œ€

๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ) โˆ’ 1

ยฏ ๐œ€

๐ฟ๐‘”ยฏ

๐น๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐ฟ๐‘”ยฏ

๐น๐‘‰๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘งยฏ)๐‘‡},

(6.14)

converges to a set proportional toโˆš

ยฏ

๐œ€such that decreasing๐œ€ยฏdecreases the set size

ยฏ

๐œ‚converges to.

Proof: The first part of the proof is similar to that of Theorem 5 resulting in ๐‘‰ยค๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘ง,ยฏ ๐‘ขยฏ) โ‰ค โˆ’๐‘3

๐œ€๐‘‰๐œ€,๐œ€ยฏ(๐œ‚ยฏ)for,

โˆฅ๐œ‚ยฏโˆฅ โ‰ฅ ๐œ€ 2

โˆš๏ธ‚ ๐œ€๐œ€ยฏ

๐‘2๐‘3(1โˆ’๐œ†)โˆฅฮ”๐นโˆฅโˆž :=๐›ฟ๐œ‚ยฏ(๐œ€,๐œ€ยฏ) โˆฅฮ”๐นโˆฅโˆž, (6.15) with๐œ†โˆˆ (0,1)and constant๐›ฟ๐œ‚ยฏ > 0, dependent on๐œ€,๐œ€ยฏ. โ–ก We give the convergence rate of ยฏ๐œ‚for future use,

โˆฅ๐œ‚ยฏโˆฅ โ‰ค 1 ๐œ€

โˆš๏ธ‚๐‘2 ๐‘1

๐‘’โˆ’

๐‘3 2๐œ€๐œ†๐‘ก

โˆฅ๐œ‚ยฏ(0) โˆฅ. (6.16)

Note, to have exponential stability closer to the origin, we can decrease๐›ฟ๐œ‚ยฏin (6.15) by decreasing ยฏ๐œ€without affecting the convergence rate here.

Periodic Orbits. Let the periodic flow of the continuous dynamics of (6.12) be ๐œ‘๐‘ก(๐œ‚,ยฏ ๐‘งยฏ). We assume the fixed point(๐œ‚ยฏโˆ—,๐‘งยฏโˆ—)is in the switching surface,(๐œ‚ยฏโˆ—,๐‘งยฏโˆ—) โˆˆ ๐‘†ยฏ. We consider the flow๐œ‘๐‘ก to be hybrid periodic with period๐‘‡ >0 if ๐œ‘๐‘‡(ฮ”(๐œ‚ยฏโˆ—,๐‘งยฏโˆ—))= (๐œ‚ยฏโˆ—,๐‘งยฏโˆ—), with ฮ”๐œ‚ยฏ๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ) = (ฮ”Nยฏ(๐œ‚,ยฏ ๐‘งยฏ),ฮ”๐‘ยฏ(๐œ‚,ยฏ ๐‘งยฏ)). Let ๐’ช be the associated periodic orbit where๐’ช = {๐œ‘๐‘ก(ฮ”(๐œ‚ยฏโˆ—,๐‘งยฏโˆ—)) : 0 โ‰ค ๐‘ก โ‰ค ๐‘‡}. Corresponding to this periodic orbit an considering ยฏ๐‘† as the Poincarรฉ section, we have the Poincarรฉ map๐‘ƒ : ยฏ๐‘† โ†’ ๐‘†ยฏ, a partial function:

๐‘ƒ(๐œ‚,ยฏ ๐‘งยฏ) =๐œ‘๐‘‡

๐‘ƒ(๐œ‚,ยฏ๐‘ง)ยฏ (ฮ”๐œ‚ยฏ๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ)). Here the time-to-impact function๐‘‡๐‘ƒ : ยฏ๐‘† โ†’ Dยฏ is,

๐‘‡๐‘ƒ(๐œ‚,ยฏ ๐‘งยฏ)=inf{๐‘ก โ‰ฅ 0 :๐œ‘๐‘ก(ฮ”๐œ‚ยฏ๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ)) โˆˆ๐‘†ยฏ}.

By the implicit function theorem, this function๐‘‡๐‘ƒis well-defined in a neighborhood of(๐œ‚ยฏโˆ—,๐‘งยฏโˆ—)[199] and hence๐‘‡๐‘ƒ(๐œ‚ยฏโˆ—,๐‘งยฏโˆ—) =๐‘‡ and๐‘ƒ(๐œ‚ยฏโˆ—,๐‘งยฏโˆ—) =(๐œ‚ยฏโˆ—,๐‘งยฏโˆ—). Since๐œ‘๐‘ก(๐œ‚,ยฏ ๐‘งยฏ)is Lipschitz continuous, so is๐‘‡๐‘ƒ. We can divide the Poincarรฉ map into the ยฏ๐œ‚-component P๐œ‚ยฏ and the ยฏ๐‘ง-componentP๐‘งยฏ, i.e. P= (P๐œ‚ยฏ,P๐‘งยฏ).

We similarly define the periodic flow of the continuous zero dynamics of (6.10) as ๐œ‘๐‘ง

๐‘ก and its corresponding hybrid periodic orbit as๐’ช๐‘ยฏ. We call the associated Poincarรฉ map ๐œŒ : ยฏ๐‘† โˆฉ๐‘ยฏ โ†’ ๐‘†ยฏโˆฉ ๐‘ยฏ the restricted Poincarรฉ map. Here this partial function is,

๐œŒ(๐‘งยฏ) =๐œ‘๐‘ง

๐‘‡๐œŒ(๐‘ง)ยฏ (ฮ”๐‘ยฏ(0,๐‘งยฏ)). (6.17) Here๐‘‡๐œŒ(๐‘งยฏ) is the restricted time-to-impact function, defined as๐‘‡๐œŒ(๐‘งยฏ) := ๐‘‡๐‘ƒ(0,๐‘งยฏ).

The period is ๐‘‡โˆ— = ๐‘‡๐œŒ(0). Because we assume the zero dynamics surface ยฏ๐‘ is

invariant, for a periodic orbit for the zero dynamics๐’ช๐‘ยฏ there exists a corresponding periodic orbit for the full-order dynamics,๐’ช =๐œ„0(๐’ช๐‘ยฏ). Here๐œ„0 : ยฏ๐‘ โ†’N ร—ยฏ ๐‘ยฏ is the canonical embedding ๐œ„0(๐‘งยฏ) = (0,๐‘งยฏ). From this we assume ยฏ๐‘ฅโˆ— = 0 and without loss of generality we assume ยฏ๐‘งโˆ— =0 too.

We assume the norm on ยฏN ร—๐‘ยฏis constructed asโˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆฅ =โˆฅ๐œ‚ยฏโˆฅ + โˆฅ๐‘งยฏโˆฅwithout losing generality. Then the distance from a periodic orbit๐’ชto a point(๐œ‚,ยฏ ๐‘งยฏ)is,

โˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆฅ๐’ช = inf

(๐‘ฅโ€ฒ,๐‘งยฏโ€ฒ)โˆˆ๐’ช

โˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆ’ (๐‘ฅโ€ฒ,๐‘งยฏโ€ฒ) โˆฅ

= inf

ยฏ ๐‘งโ€ฒโˆˆ๐’ช๐‘ยฏ

โˆฅ๐‘งยฏโˆ’๐‘งยฏโ€ฒโˆฅ + โˆฅ๐‘ฅโˆ’0โˆฅ =โˆฅ๐‘งยฏโˆฅ๐’ชยฏ

๐‘ + โˆฅ๐œ‚ยฏโˆฅ.

Zero Dynamics Lyapunov Function. To establish e-ISS of the full hybrid system (6.12), we construct a Lyapunov function for the stable hybrid periodic orbit ๐’ช๐‘ยฏ of the zero dynamics. By [272], since ๐’ช๐‘ยฏ is exponentially stable, there exists a Lyapunov function๐‘‰๐‘งยฏ : ยฏ๐‘ โ†’ Rโ‰ฅ0 for a neighborhood \๐ต๐‘Ÿ(๐’ช๐‘ยฏ) with ๐‘Ÿ > 0 of๐’ช๐‘ยฏ such that,

๐‘1,๐‘งยฏโˆฅ๐‘งยฏโˆฅ2

๐’ช๐‘ยฏ

โ‰ค๐‘‰๐‘งยฏ(๐‘งยฏ) โ‰ค๐‘2,๐‘งยฏโˆฅ๐‘งยฏโˆฅ2

๐’ช๐‘ยฏ

(6.18)

๐œ•๐‘‰๐‘งยฏ

๐œ•๐‘งยฏ

ฮจ(ยฏ 0,๐‘งยฏ) โ‰ค โˆ’๐‘3,๐‘งยฏโˆฅ๐‘งยฏโˆฅ2

๐’ช๐‘ยฏ

(6.19)

๐œ•๐‘‰๐‘งยฏ

๐œ•๐‘งยฏ

โ‰ค ๐‘4,๐‘งยฏโˆฅ๐‘งยฏโˆฅ๐’ชยฏ

๐‘

, (6.20)

with constants๐‘1,๐‘งยฏ, ๐‘2,๐‘งยฏ, ๐‘3,๐‘งยฏ, ๐‘4,๐‘งยฏ > 0. Since ยฏฮจ๐‘‘(0,๐‘งยฏ)is upper bounded by๐‘ฮจ๐‘‘, then with a disturbance๐‘‘๐‘งยฏ, our system has an e-ISS-Lyapunov function,

๐œ•๐‘‰๐‘งยฏ

๐œ•๐‘งยฏ

(ฮจ(0ยฏ ,๐‘งยฏ) +ฮจยฏ๐‘‘(0,๐‘งยฏ)๐‘‘๐‘งยฏ)

โ‰ค โˆ’๐‘3,๐‘งยฏโˆฅ๐‘งยฏโˆฅ2

๐’ช๐‘ยฏ + ๐œ•๐‘‰๐‘งยฏ

๐œ•๐‘งยฏ

ฮจยฏ๐‘‘(0,๐‘งยฏ)๐‘‘๐‘งยฏ

โ‰ค โˆ’๐‘3,๐‘งยฏโˆฅ๐‘งยฏโˆฅ2

๐’ช๐‘ยฏ

+๐‘4,๐‘งยฏโˆฅ๐‘งยฏโˆฅ๐’ชยฏ

๐‘

๐‘ฮจยฏ

๐‘‘โˆฅ๐‘‘๐‘งยฏโˆฅโˆž.

Similarly to Theorem 5, we use๐œ†๐‘งยฏ โˆˆ (0,1) to establish exponential convergence at a rateโˆ’๐‘3,๐‘งยฏ

2 ๐œ†๐‘งยฏfor,

โˆฅ๐‘งยฏโˆฅ๐’ชยฏ

๐‘ โ‰ฅ

๐‘4,๐‘งยฏ๐‘ยฏ

ฮจ๐‘‘

๐‘3,๐‘งยฏ(1โˆ’๐œ†๐‘งยฏ)โˆฅ๐‘‘๐‘งยฏโˆฅโˆž :=๐›ฟ๐‘งยฏโˆฅ๐‘‘๐‘งยฏโˆฅโˆž. (6.21) Main Result

We now establish the main system result of the chapter: guaranteeing e-ISS of the hybrid periodic orbit of the zero dynamics๐’ช๐‘ยฏ with our Re-ESS-CLF of (6.13). To

establish bounds on the Poincarรฉ maps and their time-to-impact functions, we give a proof sketch for a lemma due to space constraints. A similar proof can be found in Lemma 1 of [199] and Lemma 2 of [270]. Following, a theorem proves the main result. The basic method for the proof follows closely to that of Theorem 2 of [199]

and Theorem 2 of [270]. These proofs are unique since they are developed for the hybrid system (6.8) which has a disturbance๐‘‘๐‘งยฏwith input matrix ยฏฮจ๐‘‘(๐œ‚,ยฏ ๐‘งยฏ)in the zero dynamics and whose control input ยฏ๐‘ข may not be a RES-CLF controller in๐พ๐œ€(๐œ‚,ยฏ ๐‘งยฏ) but rather depends on force estimate ห†๐น. We highlight where the differences for our system come into these proofs.

Lemma 3: Given the hybrid system(6.8)with input disturbance and๐‘‘๐‘งยฏ, control input

ยฏ

๐‘ข(๐œ‚,ยฏ ๐‘งยฏ) โˆˆ ๐พ๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘ง,ยฏ ๐นห†) (6.14), and periodic orbit๐’ช๐‘ยฏ of the hybrid zero dynamics โ„‹|๐‘ยฏ (6.10) transverse to ๐‘†ยฏ โˆฉ ๐‘ยฏ, for ๐‘Ÿ > 0 such that (๐œ‚,ยฏ ๐‘งยฏ) โˆˆ \๐ต๐‘Ÿ(0,0), and

โˆฅ๐œ‚ยฏโˆฅ โ‰ฅ ๐›ฟ๐œ‚ยฏ(๐œ€,๐œ€ยฏ) โˆฅฮ”๐นโˆฅโˆž (6.15), there exists finite constants ๐ด๐‘‡๐œ‚ยฏ, ๐ด๐‘‡ ๐‘‘

ยฏ

๐‘ง, ๐ด๐‘ƒ๐œ‚ยฏ, ๐ด๐‘ƒ ๐‘‘

ยฏ ๐‘ง > 0 such that,

โˆฅ๐‘‡๐‘ƒ(๐œ‚,ยฏ ๐‘งยฏ) โˆ’๐‘‡๐œŒ(๐‘งยฏ) โˆฅ โ‰ค ๐ด๐‘‡๐œ‚ยฏโˆฅ๐œ‚ยฏโˆฅ + ๐ด๐‘‡ ๐‘‘

ยฏ

๐‘งโˆฅ๐‘‘๐‘งยฏโˆฅโˆž, (6.22)

โˆฅP๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ) โˆ’๐œŒ(๐‘งยฏ) โˆฅ โ‰ค ๐ด๐‘ƒ๐œ‚ยฏโˆฅ๐œ‚ยฏโˆฅ +๐ด๐‘ƒ ๐‘‘

๐‘ฅโˆฅ๐‘‘๐‘งยฏโˆฅโˆž. (6.23) Proof Sketch: We construct an auxiliary time-to-impact function, ๐‘‡๐ต, to relate to both ๐‘‡๐œŒ and ๐‘‡๐‘ƒ, such that we can then relate ๐‘‡๐œŒ to ๐‘‡๐‘ƒ. The difference between ๐‘‡๐ต and๐‘‡๐œŒ is bounded by a Lipschitz constant. Bounds of๐‘‡๐‘ƒ are found which are valid for(๐œ‚,ยฏ ๐‘งยฏ) โˆˆ\๐ต๐‘Ÿ(0,0). For a given solution,๐‘‡๐ต =๐‘‡๐‘ƒ because these are locally unique solutions in ยฏ๐‘†. To bound a solution๐‘ฅ(๐‘ก)of๐œ‘๐‘ก(ฮ”(๐œ‚,ยฏ ๐‘งยฏ)), the initial condition is bounded with the Lipschitz constant ofฮ”Nยฏ which is used in the bound of (6.16) with the๐‘‡๐‘ƒ bounds and โˆฅ๐œ‚ยฏโˆฅ. Note this bound only holds forโˆฅ๐œ‚ยฏโˆฅ โ‰ฅ ๐›ฟ๐œ‚ยฏโˆฅฮ”๐นโˆฅโˆž, a specific element of this proof. Using a Gronwall-Bellman argument similar to that in [199], we bound the difference between a solution ยฏ๐‘ง(๐‘ก)for the full-order dynamics and zero dynamics. This bound again includesโˆฅ๐œ‚ยฏโˆฅas well asโˆฅ๐‘‘๐‘งยฏโˆฅโˆž, another unique element of this proof. Grouping terms gives (6.22). Using the maximum of ยฏฮจ(0,๐‘งยฏ(๐‘ก))for a given solution ยฏ๐‘ง(๐‘ก) and (6.22), we arrive at (6.23). โ–ก Theorem 6: Given the hybrid system(6.8)with input disturbance๐‘‘๐‘งยฏ, control input

ยฏ

๐‘ข โˆˆ ๐พ๐œ€,๐œ€ยฏ(๐œ‚,ยฏ ๐‘ง,ยฏ ๐นห†), and periodic orbit ๐’ช๐‘ยฏ of the hybrid zero dynamicsโ„‹|๐‘ยฏ (6.10) transverse to ๐‘†ยฏโˆฉ๐‘ยฏ, for๐‘Ÿ > 0such that (๐œ‚,ยฏ ๐‘งยฏ) โˆˆ\๐ต๐‘Ÿ(0,0), there exists๐›ฟ > 0such that for allโˆฅ๐‘‘๐‘งยฏโˆฅโˆž < ๐›ฟ the periodic orbit๐’ช =๐œ„0(๐’ช๐‘ยฏ) is e-ISS.

Proof: Since the ISS stability of a hybrid periodic orbit can be analyzed via its Poincarรฉ map [269], we seek to establish e-ISS of the Poincarรฉ map. We aim to find a Lyapunov function๐‘‰๐‘ƒ(๐œ‚,ยฏ ๐‘งยฏ) for the discrete dynamics of the Poincarรฉ map๐‘ƒthat satisfies this discrete-time e-ISS Lyapunov condition with๐œ„ โˆˆ๐พโˆž:

๐‘‰๐‘ƒ(P (๐œ‚,ยฏ ๐‘งยฏ)) โˆ’๐‘‰๐‘ƒ(๐œ‚,ยฏ ๐‘งยฏ)

โ‰ค โˆ’๐œ…( โˆฅ๐œ‚ยฏโˆฅ2+ โˆฅ๐‘งยฏโˆฅ2) +๐œ„( โˆฅ๐‘‘๐‘งยฏโˆฅโˆž).

(6.24)

For the zero dynamics on the switching surface ยฏ๐‘†, we establish a Lyapuonv function.

There exists an ๐‘Ÿ๐‘งยฏ > 0 such that ๐œŒ : ๐ต๐‘Ÿ

ยฏ

๐‘ง(0) โˆฉ (๐‘†ยฏ โˆฉ๐‘ยฏ) โ†’ ๐ต๐‘Ÿ

ยฏ

๐‘ง(0) โˆฉ (๐‘†ยฏโˆฉ ๐‘ยฏ) is well defined for all๐‘ง โˆˆ ๐ต๐‘Ÿ

ยฏ

๐‘ง(0) โˆฉ (๐‘†ยฏโˆฉ๐‘ยฏ) and ยฏ๐‘งk+1 = ๐œŒ(๐‘งยฏk)is locally exponentially stable. By the converse Lyapunov theorem for discrete-time systems, there exists a Lyapunov function๐‘‰๐œŒ defined on ๐ต๐‘Ÿ

ยฏ

๐‘ง(0) โˆฉ (๐‘†ยฏโˆฉ๐‘ยฏ) for some๐‘Ÿ๐‘งยฏ > ๐œ…๐‘˜โˆฅ๐‘‘๐‘งยฏโˆฅโˆž and constants๐‘1, ๐œŒ, ๐‘2, ๐œŒ, ๐‘3, ๐œŒ, ๐‘4, ๐œŒ > 0 such that,

๐‘1, ๐œŒโˆฅ๐‘งยฏโˆฅ2โ‰ค ๐‘‰๐œŒ(๐‘งยฏ) โ‰ค ๐‘2, ๐œŒโˆฅ๐‘งยฏโˆฅ2 ๐‘‰๐œŒ(๐œŒ(๐‘งยฏ)) โˆ’๐‘‰๐œŒ(๐‘งยฏ) โ‰ค โˆ’๐‘3, ๐œŒโˆฅ๐‘งยฏโˆฅ2

|๐‘‰๐œŒ(๐‘งยฏ) โˆ’๐‘‰๐œŒ(๐‘งยฏโ€ฒ) | โ‰ค ๐‘4, ๐œŒโˆฅ๐‘งยฏโˆ’๐‘งยฏโ€ฒโˆฅ ( โˆฅ๐‘งยฏโˆฅ + โˆฅ๐‘งยฏโ€ฒโˆฅ).

To obtain a Lyapunov function for the ยฏ๐œ‚ dynamics in ยฏ๐‘†, we define our Re-ISS- CLF๐‘‰๐œ€,๐œ€ยฏ restricted to the switching surface by,๐‘‰๐‘†ยฏ

๐œ€,๐œ€ยฏ(๐œ‚ยฏ) :=๐‘‰๐œ€,๐œ€ยฏ|๐‘†ยฏ(๐œ‚ยฏ). We define a composite Lyapunov function on\๐ต๐‘Ÿ(0,0) โˆฉ๐‘†ยฏ,

๐‘‰๐‘ƒ(๐œ‚,ยฏ ๐‘งยฏ) =๐‘‰๐œŒ(๐‘งยฏ) +๐œŽ๐‘‰๐‘†ยฏ

๐œ€,๐œ€ยฏ(๐œ‚ยฏ),

with constant๐œŽ > 0, which we define later, lower bound min{๐‘1, ๐œŒ, ๐œŽ ๐‘1}โˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆฅ2, and upper bound max{๐‘2, ๐œŒ, ๐œŽ๐‘2

๐œ€2}โˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆฅ2. To satisfy (6.24), we first establish, ๐‘‰๐œŒ(P๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ)) โˆ’๐‘‰๐œŒ(๐‘งยฏ)

=๐‘‰๐œŒ(P๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ) โˆ’๐‘‰๐œŒ(๐œŒ(๐‘งยฏ)) +๐‘‰๐œŒ(๐œŒ(๐‘งยฏ)) โˆ’๐‘‰๐œŒ(๐‘งยฏ)

โ‰ค ๐‘4, ๐œŒโˆฅP๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ) โˆ’ ๐œŒ(๐‘งยฏ) โˆฅ ( โˆฅP๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ)) โˆฅ + โˆฅ๐œŒ(๐‘งยฏ) โˆฅ) โˆ’๐‘3, ๐œŒโˆฅ๐‘งยฏโˆฅ2.

(6.25)

Using (6.23) and the Lipschitz constant ๐ฟ๐œŒ of๐œŒ(๐‘งยฏ), (6.17), gives,

โˆฅP๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ) โˆฅ = โˆฅP๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ) โˆ’ ๐œŒ(๐‘งยฏ) +๐œŒ(๐‘งยฏ) โˆ’๐œŒ(0) โˆฅ

โ‰ค ๐ด๐‘ƒ๐œ‚ยฏโˆฅ๐œ‚ยฏโˆฅ +๐ด๐‘ƒ ๐‘‘

ยฏ

๐‘งโˆฅ๐‘‘๐‘งยฏโˆฅโˆž+๐ฟ๐œŒโˆฅ๐‘งยฏโˆฅ

โˆฅ๐œŒ(๐‘งยฏ) โˆฅ = โˆฅ๐œŒ(๐‘งยฏ) โˆ’๐œŒ(0) โˆฅ โ‰ค ๐ฟ๐œŒโˆฅ๐‘งยฏโˆฅ,

yielding known finite bounds along with those of (6.23) for (6.25). Because (6.23) is a unique development of this work from Lemma 3, this theorem proof is unique since it uses (6.23) and carries out the following steps with it. We next establish for

โˆฅ๐œ‚ยฏโˆฅ โ‰ฅ ๐›ฟ๐œ‚ยฏโˆฅฮ”๐นโˆฅโˆž, a unique bound in this proof, ๐‘‰๐‘†ยฏ

๐œ€,๐œ€ยฏ(P๐œ‚ยฏ(๐œ‚,ยฏ ๐‘งยฏ)) โˆ’๐‘‰๐‘†ยฏ

๐œ€,๐œ€ยฏ(๐œ‚ยฏ)

โ‰ค ๐‘’โˆ’

๐‘3 ๐œ€๐œ†๐‘ก

๐‘‰๐œ€,๐œ€ยฏ(ฮ”Nยฏ(๐œ‚,ยฏ ๐‘งยฏ)) โˆ’๐‘1โˆฅ๐œ‚ยฏโˆฅ2

โ‰ค ๐‘2 ๐œ€2

๐ฟ2

ฮ”Nยฏ๐‘’โˆ’

๐‘3 ๐œ€๐œ†๐‘

๐‘‡๐‘‡โˆ—

| {z }

๐ด๐‘‰๐œ‚ยฏ(๐œ€)

โˆ’๐‘1

โˆฅ๐œ‚ยฏโˆฅ2,

(6.26)

where ๐ด๐‘‰๐œ‚ยฏ is a constant dependent on ๐œ€. Since ๐ด๐‘‰๐œ‚ยฏ(0+) := lim๐œ€โ†’0+๐ด๐‘‰๐œ‚ยฏ(๐œ€) = 0, there exists an หœ๐œ€ such that ๐ด๐‘‰๐œ‚ยฏ(๐œ€) < ๐‘1, โˆ€0 < ๐œ€ < ๐œ€หœ such that (6.26) is negative definite.

The discrete-time Lyapunov condition (6.24) becomes, ๐‘‰๐œŒ(P๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ)) โˆ’๐‘‰๐œŒ(๐‘งยฏ) +๐œŽ(๐‘‰๐‘†ยฏ

๐œ€,๐œ€ยฏ(P๐œ‚ยฏ(๐œ‚,ยฏ ๐‘งยฏ)) โˆ’๐‘‰๐‘†ยฏ

๐œ€,๐œ€ยฏ(๐œ‚ยฏ))

โ‰ค ๐‘4, ๐œŒ(๐ด๐‘ƒ๐œ‚ยฏโˆฅ๐œ‚ยฏโˆฅ +๐ด๐‘ƒ ๐‘‘

ยฏ

๐‘งโˆฅ๐‘‘๐‘งยฏโˆฅโˆž) (๐ด๐‘ƒ๐œ‚ยฏโˆฅ๐œ‚ยฏโˆฅ +๐ด๐‘ƒ ๐‘‘

ยฏ ๐‘งโˆฅ๐‘‘๐‘งยฏโˆฅโˆž +2๐ฟ๐œŒโˆฅ๐‘งยฏโˆฅ) โˆ’๐‘3, ๐œŒโˆฅ๐‘งยฏโˆฅ2+๐œŽ(๐ด๐‘‰๐œ‚ยฏ(๐œ€) โˆ’๐‘1) โˆฅ๐œ‚ยฏโˆฅ2

=โˆ’h

โˆฅ๐œ‚ยฏโˆฅ โˆฅ๐‘งยฏโˆฅ i

ฮ›(๐œ€)

"

โˆฅ๐œ‚ยฏโˆฅ

โˆฅ๐‘งยฏโˆฅ

# + ๐ด2

๐‘ƒ ๐‘‘๐‘งยฏโˆฅ๐‘‘๐‘งยฏโˆฅ2โˆž +2๐‘4, ๐œŒ๐ด๐‘ƒ๐œ‚ยฏ๐ด๐‘ƒ ๐‘‘

ยฏ

๐‘งโˆฅ๐œ‚ยฏโˆฅ โˆฅ๐‘‘๐‘งยฏโˆฅโˆž+2๐ด๐‘ƒ ๐‘‘

ยฏ

๐‘ง๐ฟ๐œŒโˆฅ๐‘งยฏโˆฅ โˆฅ๐‘‘๐‘งยฏโˆฅโˆž, where,

ฮ›(๐œ€)=

"

โˆ’๐‘4, ๐œŒ๐ด2

๐‘ƒ๐œ‚ยฏ+๐œŽ(๐‘1โˆ’ ๐ด๐‘‰๐œ‚ยฏ(๐œ€)) โˆ’๐‘4, ๐œŒ๐ด๐‘ƒ๐œ‚ยฏ๐ฟ๐œŒ

โˆ’๐‘4, ๐œŒ๐ด๐‘ƒ๐œ‚ยฏ๐ฟ๐œŒ ๐‘3, ๐œŒ

# .

To yield positive definiteness of ฮ›(๐œ€), we choose ๐œŽ > 0 such that for๐œŽ > ๐œŽ and ๐œ€ < ๐œ€หœ, det(ฮ›(๐œ€)) > 0:

det(ฮ›(๐œ€)) =โˆ’๐‘4, ๐œŒ๐ด2

๐‘ƒ๐œ‚ยฏ+๐œŽ(๐‘1โˆ’ ๐ด๐‘‰๐œ‚ยฏ(๐œ€))๐‘3, ๐œŒโˆ’2๐‘4, ๐œŒ๐ด๐‘ƒ๐œ‚ยฏ๐ฟ๐œŒ. We select,

๐œŽ :=

๐‘4, ๐œŒ๐ด2

๐‘ƒ๐œ‚ยฏ+2๐‘4, ๐œŒ๐ด๐‘ƒ๐œ‚ยฏ๐ฟ๐œŒ (๐‘1โˆ’๐ด๐‘‰๐œ‚ยฏ(๐œ€))๐‘3, ๐œŒ

,

where๐œŽ >0 for all 0 < ๐œ€ <๐œ€หœ. We choose๐œ…=๐œ†min(ฮ›(๐œ€)), the minimum eigenvalue ofฮ›(๐œ€). As in Theorem 5, we again split the derivative with๐œ†๐‘ƒ โˆˆ (0,1),

๐‘‰๐‘ƒ(P๐‘งยฏ(๐œ‚,ยฏ ๐‘งยฏ)) โˆ’๐‘‰๐‘ƒ(๐œ‚,ยฏ ๐‘งยฏ)

โ‰ค โˆ’๐œ†min(ฮ›(๐œ€))๐œ†๐‘ƒโˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆฅ2โˆ’๐œ†min(ฮ›(๐œ€)) (1โˆ’๐œ†๐‘ƒ) โˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆฅ2 + ๐ด๐œ‚ยฏ๐‘งยฏโˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆฅ โˆฅ๐‘‘๐‘งยฏโˆฅโˆž+๐ด2

๐‘ƒ ๐‘‘๐‘งยฏโˆฅ๐‘‘๐‘งยฏโˆฅ2โˆž,

(6.27)

with ๐ด๐œ‚ยฏ๐‘งยฏ = max{2๐‘4, ๐œŒ๐ด๐‘ƒ๐œ‚ยฏ๐ด๐‘ƒ ๐‘‘

ยฏ ๐‘ง,2๐ด๐‘ƒ ๐‘‘

ยฏ

๐‘ง๐ฟ๐œŒ}. This satisfies the discrete time e-ISS Lyapunov condition (6.24). Setting the last 3 terms of (6.27) โ‰ค 0 and solving for the positive root of the resultant quadratic equation, we establish exponential convergence at a rate ofโˆ’๐œ†min(ฮ›(๐œ€))๐œ†๐‘ƒ to the set,

โˆฅ (๐œ‚,ยฏ ๐‘งยฏ) โˆฅ โ‰ค

๐ด๐œ‚ยฏ๐‘งยฏ +โˆš๏ธƒ

๐ด2

ยฏ

๐œ‚๐‘งยฏ+4๐œ†min(ฮ›(๐œ€)) (1โˆ’๐œ†๐‘ƒ)๐ด2

๐‘ƒ ๐‘‘๐‘งยฏ

2๐œ†min(ฮ›(๐œ€)) (1โˆ’๐œ†๐‘ƒ) โˆฅ๐‘‘๐‘งยฏโˆฅโˆž. We require this bound to be less than๐‘Ÿ๐‘งยฏ, yielding,

๐›ฟ๐‘ƒ := 2๐‘Ÿ๐‘งยฏ๐œ†min(ฮ›(๐œ€)) (1โˆ’๐œ†๐‘ƒ) ๐ด๐œ‚ยฏ๐‘งยฏ+โˆš๏ธƒ

๐ด2

ยฏ

๐œ‚๐‘งยฏ +4๐œ†min(ฮ›(๐œ€)) (1โˆ’๐œ†๐‘ƒ)๐ด2

๐‘ƒ ๐‘‘ยฏ๐‘ง

.

To also ensure the continuous dynamics of ยฏ๐‘ง remain bounded by ๐‘Ÿ๐‘งยฏ, we require

โˆฅ๐‘‘๐‘งยฏโˆฅโˆž < ๐›ฟ:=min{๐›ฟ๐‘ƒ,

๐‘Ÿ๐‘งยฏ

๐›ฟ๐‘งยฏ}, unique to this proof, and hence establishing e-ISS of๐’ช

for โˆฅ๐‘‘๐‘งยฏโˆฅโˆž < ๐›ฟ. โ–ก