Chapter VI: Estimate-to-State Stability
6.3 ISS and ESS Hybrid Control Systems
To model an amputee-prosthesis system, we employ a hybrid control system. From the prosthesisโ perspective, the human is uncontrollable, hence we consider the zero dynamics in our hybrid system to represent the human. Since the human expects a certain control action from the prosthesis, when the prosthesis control law is based on estimated dynamics, its deviation from the nominal acts as a disturbance to the human. We show there exists conditions such that the human is e-ISS to these input
disturbances. Because of the discrete dynamics, these conditions are only defined locally, so we additionally show the prosthesis stays within this bounded region.
Hybrid Control Systems
Consider a hybrid control system,
โ๐๐ยฏ๐งยฏ =
๏ฃฑ๏ฃด
๏ฃด๏ฃด
๏ฃด๏ฃด
๏ฃด๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃด๏ฃด
๏ฃด๏ฃด
๏ฃด
๏ฃณ
ยคยฏ
๐ = ๐ยฏ(๐,ยฏ ๐งยฏ) +๐ยฏ(๐,ยฏ ๐งยฏ)๐ขยฏ+๐ยฏ๐น(๐,ยฏ ๐งยฏ)๐น(๐,ยฏ ๐งยฏ)
ยคยฏ
๐ง =ฮจยฏ(๐,ยฏ ๐งยฏ) +ฮจยฏ๐(๐,ยฏ ๐งยฏ)๐๐งยฏ
ifฮฆโ1(๐,ยฏ ๐งยฏ) โD \ยฏ ๐ยฏ
ยฏ
๐+ = ฮNยฏ(๐ยฏโ,๐งยฏโ)
ยฏ
๐ง+ = ฮ๐ยฏ(๐ยฏโ,๐งยฏโ) ifฮฆโ1(๐ยฏโ,๐งยฏโ) โ๐,ยฏ
(6.8)
where ยฏ๐ โN โยฏ R๐ยฏ are controlled (output) states, ยฏ๐ง โ ๐ยฏ โ R๐ยฏ๐ง uncontrolled states,
ยฏ
๐ โ R๐ยฏ is a set of admissible control inputs for ยฏ๐ข, and ๐๐งยฏ โ R๐๐ is an input disturbance in the uncontrolled dynamics. The functions ยฏ๐ , ๐,ยฏ ๐ยฏ๐น, ๐น , ฮจยฏ, ฮจยฏ๐, ฮNยฏ, and ฮ๐ยฏ are locally Lipschitz in their arguments. There exists a constant๐ยฏ
ฮจ๐ > 0 such that โฅฮจยฏ๐(0,๐งยฏ) โฅ โค ๐ยฏ
ฮจ๐, โยฏ๐ง โ ๐ยฏ. The domain ยฏD is a closed subset of ยฏN ร๐ยฏ, the guard or switching surface ยฏ๐ โ Dยฏ is a co-dimension one submanifold of ยฏD, respectively defined as
Dยฏ ={(๐,ยฏ โยฏN รยฏ ๐ยฏ : ยฏโ(๐,ยฏ ๐งยฏ) โฅ0},
ยฏ
๐ ={(๐,ยฏ ๐งยฏ) โN รยฏ ๐ยฏ : ยฏโ(๐,ยฏ ๐งยฏ) =0,โยค(๐,ยฏ ๐งยฏ) <0}, (6.9) where the continuously differentiable function ยฏโ : ยฏN ร๐ยฏ โ Ryields๐ฟ๐ยฏโยฏ= ๐ฟ๐ยฏ
๐
โยฏ= 0. We assume ยฏ๐(0,๐งยฏ) = ๐ยฏ(0,๐งยฏ) = ๐ยฏ๐น(0,๐งยฏ) = ฮNยฏ(0,๐งยฏ) = 0 such that the surface
ยฏ
๐ defined by ยฏ๐ = 0 with ๐๐งยฏ = 0, ๐งยคยฏ = ฮจยฏ(0,๐งยฏ), is invariant for the continuous and discrete dynamics. The hybrid system for the hybrid zero dynamics is,
โ|๐ยฏ =
( ๐งยคยฏ=ฮจ(0ยฏ ,๐งยฏ) if ยฏ๐ง โ๐ยฏ \ (๐ยฏโฉ๐ยฏ)
ยฏ
๐ง+ = ฮ๐ยฏ(0,๐งยฏโ) if ยฏ๐งโ โ๐ยฏโฉ๐ .ยฏ
(6.10)
RES-CLFs. As discussed in 3.1 a RES-CLF, developed in [199], guarantees stability of a hybrid periodic orbit of the zero dynamics in the full-order dynamics. For the continuous output dynamics of (6.8), the continuously differentiable function ๐๐ : R๐ยฏ โ Rโฅ0 with constants ๐1, ๐2, ๐3 > 0 is a RES-CLF, such that for all 0< ๐ < 1 and(๐,ยฏ ๐งยฏ) โN รยฏ ๐ยฏ,
๐1โฅ๐ยฏโฅ2 โค๐๐(๐ยฏ) โค ๐2 ๐2
โฅ๐ยฏโฅ2 inf
ยฏ ๐ขโ๐ยฏ
[๐ฟ ยฏ
๐๐๐(๐,ยฏ ๐งยฏ) +๐ฟ๐ยฏ๐๐(๐,ยฏ ๐งยฏ)๐ขยฏ+๐ฟ๐ยฏ
๐น๐น๐๐(๐,ยฏ ๐งยฏ)] โค ๐3 ๐
๐๐(๐ยฏ).
(6.11)
The following set contains all control inputs that satisfy (6.11), ๐พ๐(๐,ยฏ ๐งยฏ) ={๐ขยฏ โ๐ยฏ : ๐ฟยฏ
๐๐๐(๐,ยฏ ๐งยฏ) +๐ฟ๐ยฏ๐๐(๐,ยฏ ๐งยฏ)๐ขยฏ+๐ฟ๐ยฏ
๐น๐น๐๐(๐,ยฏ ๐งยฏ) โค โ๐3 ๐
๐๐(๐ยฏ)}. Note while this formulation appears slightly different from that proposed in [199]
which did not have ยฏ๐๐น(๐,ยฏ ๐งยฏ)๐น(๐,ยฏ ๐งยฏ) in the system dynamics, we can equivalently write the formulation given here with ห๐(๐,ยฏ ๐งยฏ) := ๐ยฏ(๐,ยฏ ๐งยฏ) +๐ยฏ๐น(๐,ยฏ ๐งยฏ)๐น(๐,ยฏ ๐งยฏ), resulting in the same form as in [199].
A ยฏ๐ข๐(๐,ยฏ ๐งยฏ) โ ๐พ๐(๐,ยฏ ๐งยฏ) for all (๐,ยฏ ๐งยฏ) โN รยฏ ๐ยฏ, with zero disturbance input (๐๐งยฏ = 0), gives the closed-loop hybrid system of (6.8):
โ๐ยฏ๐ง,๐ยฏ =
๏ฃฑ๏ฃด
๏ฃด๏ฃด
๏ฃด๏ฃด
๏ฃด๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃด๏ฃด
๏ฃด๏ฃด
๏ฃด
๏ฃณ
ยคยฏ
๐ = ๐ยฏ(๐,ยฏ ๐งยฏ) +๐ยฏ(๐,ยฏ ๐งยฏ)๐ขยฏ๐(๐,ยฏ ๐งยฏ) +๐ยฏ๐น(๐,ยฏ ๐งยฏ)๐น(๐,ยฏ ๐งยฏ)
ยคยฏ
๐ง =ฮจ(ยฏ ๐,ยฏ ๐งยฏ) ifฮฆโ1(๐,ยฏ ๐งยฏ) โD \ยฏ ๐ยฏ
ยฏ
๐+ = ฮNยฏ(๐ยฏโ,๐งยฏโ)
ยฏ
๐ง+ = ฮ๐ยฏ(๐ยฏโ,๐งยฏโ) ifฮฆโ1(๐ยฏโ,๐งยฏโ) โ๐ .ยฏ (6.12) Re-ESS-CLF.We assumed we have a RES-CLF controller ยฏ๐ข๐acting on our control- lable dynamics. However we cannot perfectly determine a ยฏ๐ข โ ๐พ๐(๐,ยฏ ๐งยฏ) when we only have access to ห๐น and not๐น(๐,ยฏ ๐งยฏ). Hence, we employ the e-ESS constructions of Section 6.2 to construct arapidly exponentially estimate-to-state stabilizing CLF (Re-ESS-CLF).
Corollary 1: The continuously differentiable function๐๐,๐ยฏ : R๐ยฏ โ Rโฅ0defined for constants๐1, ๐2, ๐3 > 0,
๐1โฅ๐ยฏโฅ2 โค๐๐,๐ยฏ(๐ยฏ) โค ๐2 ๐2
โฅ๐ยฏโฅ2 inf
ยฏ ๐ขโR๐ยฏ
[๐ฟ ยฏ
๐๐๐,๐ยฏ(๐,ยฏ ๐งยฏ) +๐ฟ๐ยฏ๐๐,๐ยฏ(๐,ยฏ ๐งยฏ)๐ขยฏ+๐ฟ๐ยฏ
๐น
๐๐,๐ยฏ(๐,ยฏ ๐งยฏ)๐นห]
โค โ๐3 ๐
๐๐,๐ยฏ(๐ยฏ) โ 1
ยฏ ๐
๐ฟ๐ยฏ
๐น
๐๐,๐ยฏ(๐,ยฏ ๐งยฏ)๐ฟ๐ยฏ
๐น
๐ ๐๐,๐ยฏ(๐,ยฏ ๐งยฏ)๐,
(6.13)
is Re-ESS-CLF of the continuous๐ยฏdynamics of (6.8), and a control input๐ขยฏin the class,
๐พ๐,๐ยฏ(๐,ยฏ ๐ง,ยฏ ๐นห) ={๐ขยฏ โR๐ยฏ : ๐ฟยฏ
๐๐๐,๐ยฏ(๐,ยฏ ๐งยฏ) +๐ฟ๐ยฏ๐๐,๐ยฏ(๐,ยฏ ๐งยฏ)๐ขยฏ +๐ฟ๐ยฏ
๐น๐๐,๐ยฏ(๐,ยฏ ๐งยฏ)๐นห โค โ๐3 ๐
๐๐,๐ยฏ(๐,ยฏ ๐งยฏ) โ 1
ยฏ ๐
๐ฟ๐ยฏ
๐น๐๐,๐ยฏ(๐,ยฏ ๐งยฏ)๐ฟ๐ยฏ
๐น๐๐,๐ยฏ(๐,ยฏ ๐งยฏ)๐},
(6.14)
converges to a set proportional toโ
ยฏ
๐such that decreasing๐ยฏdecreases the set size
ยฏ
๐converges to.
Proof: The first part of the proof is similar to that of Theorem 5 resulting in ๐ยค๐,๐ยฏ(๐,ยฏ ๐ง,ยฏ ๐ขยฏ) โค โ๐3
๐๐๐,๐ยฏ(๐ยฏ)for,
โฅ๐ยฏโฅ โฅ ๐ 2
โ๏ธ ๐๐ยฏ
๐2๐3(1โ๐)โฅฮ๐นโฅโ :=๐ฟ๐ยฏ(๐,๐ยฏ) โฅฮ๐นโฅโ, (6.15) with๐โ (0,1)and constant๐ฟ๐ยฏ > 0, dependent on๐,๐ยฏ. โก We give the convergence rate of ยฏ๐for future use,
โฅ๐ยฏโฅ โค 1 ๐
โ๏ธ๐2 ๐1
๐โ
๐3 2๐๐๐ก
โฅ๐ยฏ(0) โฅ. (6.16)
Note, to have exponential stability closer to the origin, we can decrease๐ฟ๐ยฏin (6.15) by decreasing ยฏ๐without affecting the convergence rate here.
Periodic Orbits. Let the periodic flow of the continuous dynamics of (6.12) be ๐๐ก(๐,ยฏ ๐งยฏ). We assume the fixed point(๐ยฏโ,๐งยฏโ)is in the switching surface,(๐ยฏโ,๐งยฏโ) โ ๐ยฏ. We consider the flow๐๐ก to be hybrid periodic with period๐ >0 if ๐๐(ฮ(๐ยฏโ,๐งยฏโ))= (๐ยฏโ,๐งยฏโ), with ฮ๐ยฏ๐งยฏ(๐,ยฏ ๐งยฏ) = (ฮNยฏ(๐,ยฏ ๐งยฏ),ฮ๐ยฏ(๐,ยฏ ๐งยฏ)). Let ๐ช be the associated periodic orbit where๐ช = {๐๐ก(ฮ(๐ยฏโ,๐งยฏโ)) : 0 โค ๐ก โค ๐}. Corresponding to this periodic orbit an considering ยฏ๐ as the Poincarรฉ section, we have the Poincarรฉ map๐ : ยฏ๐ โ ๐ยฏ, a partial function:
๐(๐,ยฏ ๐งยฏ) =๐๐
๐(๐,ยฏ๐ง)ยฏ (ฮ๐ยฏ๐งยฏ(๐,ยฏ ๐งยฏ)). Here the time-to-impact function๐๐ : ยฏ๐ โ Dยฏ is,
๐๐(๐,ยฏ ๐งยฏ)=inf{๐ก โฅ 0 :๐๐ก(ฮ๐ยฏ๐งยฏ(๐,ยฏ ๐งยฏ)) โ๐ยฏ}.
By the implicit function theorem, this function๐๐is well-defined in a neighborhood of(๐ยฏโ,๐งยฏโ)[199] and hence๐๐(๐ยฏโ,๐งยฏโ) =๐ and๐(๐ยฏโ,๐งยฏโ) =(๐ยฏโ,๐งยฏโ). Since๐๐ก(๐,ยฏ ๐งยฏ)is Lipschitz continuous, so is๐๐. We can divide the Poincarรฉ map into the ยฏ๐-component P๐ยฏ and the ยฏ๐ง-componentP๐งยฏ, i.e. P= (P๐ยฏ,P๐งยฏ).
We similarly define the periodic flow of the continuous zero dynamics of (6.10) as ๐๐ง
๐ก and its corresponding hybrid periodic orbit as๐ช๐ยฏ. We call the associated Poincarรฉ map ๐ : ยฏ๐ โฉ๐ยฏ โ ๐ยฏโฉ ๐ยฏ the restricted Poincarรฉ map. Here this partial function is,
๐(๐งยฏ) =๐๐ง
๐๐(๐ง)ยฏ (ฮ๐ยฏ(0,๐งยฏ)). (6.17) Here๐๐(๐งยฏ) is the restricted time-to-impact function, defined as๐๐(๐งยฏ) := ๐๐(0,๐งยฏ).
The period is ๐โ = ๐๐(0). Because we assume the zero dynamics surface ยฏ๐ is
invariant, for a periodic orbit for the zero dynamics๐ช๐ยฏ there exists a corresponding periodic orbit for the full-order dynamics,๐ช =๐0(๐ช๐ยฏ). Here๐0 : ยฏ๐ โN รยฏ ๐ยฏ is the canonical embedding ๐0(๐งยฏ) = (0,๐งยฏ). From this we assume ยฏ๐ฅโ = 0 and without loss of generality we assume ยฏ๐งโ =0 too.
We assume the norm on ยฏN ร๐ยฏis constructed asโฅ (๐,ยฏ ๐งยฏ) โฅ =โฅ๐ยฏโฅ + โฅ๐งยฏโฅwithout losing generality. Then the distance from a periodic orbit๐ชto a point(๐,ยฏ ๐งยฏ)is,
โฅ (๐,ยฏ ๐งยฏ) โฅ๐ช = inf
(๐ฅโฒ,๐งยฏโฒ)โ๐ช
โฅ (๐,ยฏ ๐งยฏ) โ (๐ฅโฒ,๐งยฏโฒ) โฅ
= inf
ยฏ ๐งโฒโ๐ช๐ยฏ
โฅ๐งยฏโ๐งยฏโฒโฅ + โฅ๐ฅโ0โฅ =โฅ๐งยฏโฅ๐ชยฏ
๐ + โฅ๐ยฏโฅ.
Zero Dynamics Lyapunov Function. To establish e-ISS of the full hybrid system (6.12), we construct a Lyapunov function for the stable hybrid periodic orbit ๐ช๐ยฏ of the zero dynamics. By [272], since ๐ช๐ยฏ is exponentially stable, there exists a Lyapunov function๐๐งยฏ : ยฏ๐ โ Rโฅ0 for a neighborhood \๐ต๐(๐ช๐ยฏ) with ๐ > 0 of๐ช๐ยฏ such that,
๐1,๐งยฏโฅ๐งยฏโฅ2
๐ช๐ยฏ
โค๐๐งยฏ(๐งยฏ) โค๐2,๐งยฏโฅ๐งยฏโฅ2
๐ช๐ยฏ
(6.18)
๐๐๐งยฏ
๐๐งยฏ
ฮจ(ยฏ 0,๐งยฏ) โค โ๐3,๐งยฏโฅ๐งยฏโฅ2
๐ช๐ยฏ
(6.19)
๐๐๐งยฏ
๐๐งยฏ
โค ๐4,๐งยฏโฅ๐งยฏโฅ๐ชยฏ
๐
, (6.20)
with constants๐1,๐งยฏ, ๐2,๐งยฏ, ๐3,๐งยฏ, ๐4,๐งยฏ > 0. Since ยฏฮจ๐(0,๐งยฏ)is upper bounded by๐ฮจ๐, then with a disturbance๐๐งยฏ, our system has an e-ISS-Lyapunov function,
๐๐๐งยฏ
๐๐งยฏ
(ฮจ(0ยฏ ,๐งยฏ) +ฮจยฏ๐(0,๐งยฏ)๐๐งยฏ)
โค โ๐3,๐งยฏโฅ๐งยฏโฅ2
๐ช๐ยฏ + ๐๐๐งยฏ
๐๐งยฏ
ฮจยฏ๐(0,๐งยฏ)๐๐งยฏ
โค โ๐3,๐งยฏโฅ๐งยฏโฅ2
๐ช๐ยฏ
+๐4,๐งยฏโฅ๐งยฏโฅ๐ชยฏ
๐
๐ฮจยฏ
๐โฅ๐๐งยฏโฅโ.
Similarly to Theorem 5, we use๐๐งยฏ โ (0,1) to establish exponential convergence at a rateโ๐3,๐งยฏ
2 ๐๐งยฏfor,
โฅ๐งยฏโฅ๐ชยฏ
๐ โฅ
๐4,๐งยฏ๐ยฏ
ฮจ๐
๐3,๐งยฏ(1โ๐๐งยฏ)โฅ๐๐งยฏโฅโ :=๐ฟ๐งยฏโฅ๐๐งยฏโฅโ. (6.21) Main Result
We now establish the main system result of the chapter: guaranteeing e-ISS of the hybrid periodic orbit of the zero dynamics๐ช๐ยฏ with our Re-ESS-CLF of (6.13). To
establish bounds on the Poincarรฉ maps and their time-to-impact functions, we give a proof sketch for a lemma due to space constraints. A similar proof can be found in Lemma 1 of [199] and Lemma 2 of [270]. Following, a theorem proves the main result. The basic method for the proof follows closely to that of Theorem 2 of [199]
and Theorem 2 of [270]. These proofs are unique since they are developed for the hybrid system (6.8) which has a disturbance๐๐งยฏwith input matrix ยฏฮจ๐(๐,ยฏ ๐งยฏ)in the zero dynamics and whose control input ยฏ๐ข may not be a RES-CLF controller in๐พ๐(๐,ยฏ ๐งยฏ) but rather depends on force estimate ห๐น. We highlight where the differences for our system come into these proofs.
Lemma 3: Given the hybrid system(6.8)with input disturbance and๐๐งยฏ, control input
ยฏ
๐ข(๐,ยฏ ๐งยฏ) โ ๐พ๐,๐ยฏ(๐,ยฏ ๐ง,ยฏ ๐นห) (6.14), and periodic orbit๐ช๐ยฏ of the hybrid zero dynamics โ|๐ยฏ (6.10) transverse to ๐ยฏ โฉ ๐ยฏ, for ๐ > 0 such that (๐,ยฏ ๐งยฏ) โ \๐ต๐(0,0), and
โฅ๐ยฏโฅ โฅ ๐ฟ๐ยฏ(๐,๐ยฏ) โฅฮ๐นโฅโ (6.15), there exists finite constants ๐ด๐๐ยฏ, ๐ด๐ ๐
ยฏ
๐ง, ๐ด๐๐ยฏ, ๐ด๐ ๐
ยฏ ๐ง > 0 such that,
โฅ๐๐(๐,ยฏ ๐งยฏ) โ๐๐(๐งยฏ) โฅ โค ๐ด๐๐ยฏโฅ๐ยฏโฅ + ๐ด๐ ๐
ยฏ
๐งโฅ๐๐งยฏโฅโ, (6.22)
โฅP๐งยฏ(๐,ยฏ ๐งยฏ) โ๐(๐งยฏ) โฅ โค ๐ด๐๐ยฏโฅ๐ยฏโฅ +๐ด๐ ๐
๐ฅโฅ๐๐งยฏโฅโ. (6.23) Proof Sketch: We construct an auxiliary time-to-impact function, ๐๐ต, to relate to both ๐๐ and ๐๐, such that we can then relate ๐๐ to ๐๐. The difference between ๐๐ต and๐๐ is bounded by a Lipschitz constant. Bounds of๐๐ are found which are valid for(๐,ยฏ ๐งยฏ) โ\๐ต๐(0,0). For a given solution,๐๐ต =๐๐ because these are locally unique solutions in ยฏ๐. To bound a solution๐ฅ(๐ก)of๐๐ก(ฮ(๐,ยฏ ๐งยฏ)), the initial condition is bounded with the Lipschitz constant ofฮNยฏ which is used in the bound of (6.16) with the๐๐ bounds and โฅ๐ยฏโฅ. Note this bound only holds forโฅ๐ยฏโฅ โฅ ๐ฟ๐ยฏโฅฮ๐นโฅโ, a specific element of this proof. Using a Gronwall-Bellman argument similar to that in [199], we bound the difference between a solution ยฏ๐ง(๐ก)for the full-order dynamics and zero dynamics. This bound again includesโฅ๐ยฏโฅas well asโฅ๐๐งยฏโฅโ, another unique element of this proof. Grouping terms gives (6.22). Using the maximum of ยฏฮจ(0,๐งยฏ(๐ก))for a given solution ยฏ๐ง(๐ก) and (6.22), we arrive at (6.23). โก Theorem 6: Given the hybrid system(6.8)with input disturbance๐๐งยฏ, control input
ยฏ
๐ข โ ๐พ๐,๐ยฏ(๐,ยฏ ๐ง,ยฏ ๐นห), and periodic orbit ๐ช๐ยฏ of the hybrid zero dynamicsโ|๐ยฏ (6.10) transverse to ๐ยฏโฉ๐ยฏ, for๐ > 0such that (๐,ยฏ ๐งยฏ) โ\๐ต๐(0,0), there exists๐ฟ > 0such that for allโฅ๐๐งยฏโฅโ < ๐ฟ the periodic orbit๐ช =๐0(๐ช๐ยฏ) is e-ISS.
Proof: Since the ISS stability of a hybrid periodic orbit can be analyzed via its Poincarรฉ map [269], we seek to establish e-ISS of the Poincarรฉ map. We aim to find a Lyapunov function๐๐(๐,ยฏ ๐งยฏ) for the discrete dynamics of the Poincarรฉ map๐that satisfies this discrete-time e-ISS Lyapunov condition with๐ โ๐พโ:
๐๐(P (๐,ยฏ ๐งยฏ)) โ๐๐(๐,ยฏ ๐งยฏ)
โค โ๐ ( โฅ๐ยฏโฅ2+ โฅ๐งยฏโฅ2) +๐( โฅ๐๐งยฏโฅโ).
(6.24)
For the zero dynamics on the switching surface ยฏ๐, we establish a Lyapuonv function.
There exists an ๐๐งยฏ > 0 such that ๐ : ๐ต๐
ยฏ
๐ง(0) โฉ (๐ยฏ โฉ๐ยฏ) โ ๐ต๐
ยฏ
๐ง(0) โฉ (๐ยฏโฉ ๐ยฏ) is well defined for all๐ง โ ๐ต๐
ยฏ
๐ง(0) โฉ (๐ยฏโฉ๐ยฏ) and ยฏ๐งk+1 = ๐(๐งยฏk)is locally exponentially stable. By the converse Lyapunov theorem for discrete-time systems, there exists a Lyapunov function๐๐ defined on ๐ต๐
ยฏ
๐ง(0) โฉ (๐ยฏโฉ๐ยฏ) for some๐๐งยฏ > ๐ ๐โฅ๐๐งยฏโฅโ and constants๐1, ๐, ๐2, ๐, ๐3, ๐, ๐4, ๐ > 0 such that,
๐1, ๐โฅ๐งยฏโฅ2โค ๐๐(๐งยฏ) โค ๐2, ๐โฅ๐งยฏโฅ2 ๐๐(๐(๐งยฏ)) โ๐๐(๐งยฏ) โค โ๐3, ๐โฅ๐งยฏโฅ2
|๐๐(๐งยฏ) โ๐๐(๐งยฏโฒ) | โค ๐4, ๐โฅ๐งยฏโ๐งยฏโฒโฅ ( โฅ๐งยฏโฅ + โฅ๐งยฏโฒโฅ).
To obtain a Lyapunov function for the ยฏ๐ dynamics in ยฏ๐, we define our Re-ISS- CLF๐๐,๐ยฏ restricted to the switching surface by,๐๐ยฏ
๐,๐ยฏ(๐ยฏ) :=๐๐,๐ยฏ|๐ยฏ(๐ยฏ). We define a composite Lyapunov function on\๐ต๐(0,0) โฉ๐ยฏ,
๐๐(๐,ยฏ ๐งยฏ) =๐๐(๐งยฏ) +๐๐๐ยฏ
๐,๐ยฏ(๐ยฏ),
with constant๐ > 0, which we define later, lower bound min{๐1, ๐, ๐ ๐1}โฅ (๐,ยฏ ๐งยฏ) โฅ2, and upper bound max{๐2, ๐, ๐๐2
๐2}โฅ (๐,ยฏ ๐งยฏ) โฅ2. To satisfy (6.24), we first establish, ๐๐(P๐งยฏ(๐,ยฏ ๐งยฏ)) โ๐๐(๐งยฏ)
=๐๐(P๐งยฏ(๐,ยฏ ๐งยฏ) โ๐๐(๐(๐งยฏ)) +๐๐(๐(๐งยฏ)) โ๐๐(๐งยฏ)
โค ๐4, ๐โฅP๐งยฏ(๐,ยฏ ๐งยฏ) โ ๐(๐งยฏ) โฅ ( โฅP๐งยฏ(๐,ยฏ ๐งยฏ)) โฅ + โฅ๐(๐งยฏ) โฅ) โ๐3, ๐โฅ๐งยฏโฅ2.
(6.25)
Using (6.23) and the Lipschitz constant ๐ฟ๐ of๐(๐งยฏ), (6.17), gives,
โฅP๐งยฏ(๐,ยฏ ๐งยฏ) โฅ = โฅP๐งยฏ(๐,ยฏ ๐งยฏ) โ ๐(๐งยฏ) +๐(๐งยฏ) โ๐(0) โฅ
โค ๐ด๐๐ยฏโฅ๐ยฏโฅ +๐ด๐ ๐
ยฏ
๐งโฅ๐๐งยฏโฅโ+๐ฟ๐โฅ๐งยฏโฅ
โฅ๐(๐งยฏ) โฅ = โฅ๐(๐งยฏ) โ๐(0) โฅ โค ๐ฟ๐โฅ๐งยฏโฅ,
yielding known finite bounds along with those of (6.23) for (6.25). Because (6.23) is a unique development of this work from Lemma 3, this theorem proof is unique since it uses (6.23) and carries out the following steps with it. We next establish for
โฅ๐ยฏโฅ โฅ ๐ฟ๐ยฏโฅฮ๐นโฅโ, a unique bound in this proof, ๐๐ยฏ
๐,๐ยฏ(P๐ยฏ(๐,ยฏ ๐งยฏ)) โ๐๐ยฏ
๐,๐ยฏ(๐ยฏ)
โค ๐โ
๐3 ๐๐๐ก
๐๐,๐ยฏ(ฮNยฏ(๐,ยฏ ๐งยฏ)) โ๐1โฅ๐ยฏโฅ2
โค ๐2 ๐2
๐ฟ2
ฮNยฏ๐โ
๐3 ๐๐๐
๐๐โ
| {z }
๐ด๐๐ยฏ(๐)
โ๐1
โฅ๐ยฏโฅ2,
(6.26)
where ๐ด๐๐ยฏ is a constant dependent on ๐. Since ๐ด๐๐ยฏ(0+) := lim๐โ0+๐ด๐๐ยฏ(๐) = 0, there exists an ห๐ such that ๐ด๐๐ยฏ(๐) < ๐1, โ0 < ๐ < ๐ห such that (6.26) is negative definite.
The discrete-time Lyapunov condition (6.24) becomes, ๐๐(P๐งยฏ(๐,ยฏ ๐งยฏ)) โ๐๐(๐งยฏ) +๐(๐๐ยฏ
๐,๐ยฏ(P๐ยฏ(๐,ยฏ ๐งยฏ)) โ๐๐ยฏ
๐,๐ยฏ(๐ยฏ))
โค ๐4, ๐(๐ด๐๐ยฏโฅ๐ยฏโฅ +๐ด๐ ๐
ยฏ
๐งโฅ๐๐งยฏโฅโ) (๐ด๐๐ยฏโฅ๐ยฏโฅ +๐ด๐ ๐
ยฏ ๐งโฅ๐๐งยฏโฅโ +2๐ฟ๐โฅ๐งยฏโฅ) โ๐3, ๐โฅ๐งยฏโฅ2+๐(๐ด๐๐ยฏ(๐) โ๐1) โฅ๐ยฏโฅ2
=โh
โฅ๐ยฏโฅ โฅ๐งยฏโฅ i
ฮ(๐)
"
โฅ๐ยฏโฅ
โฅ๐งยฏโฅ
# + ๐ด2
๐ ๐๐งยฏโฅ๐๐งยฏโฅ2โ +2๐4, ๐๐ด๐๐ยฏ๐ด๐ ๐
ยฏ
๐งโฅ๐ยฏโฅ โฅ๐๐งยฏโฅโ+2๐ด๐ ๐
ยฏ
๐ง๐ฟ๐โฅ๐งยฏโฅ โฅ๐๐งยฏโฅโ, where,
ฮ(๐)=
"
โ๐4, ๐๐ด2
๐๐ยฏ+๐(๐1โ ๐ด๐๐ยฏ(๐)) โ๐4, ๐๐ด๐๐ยฏ๐ฟ๐
โ๐4, ๐๐ด๐๐ยฏ๐ฟ๐ ๐3, ๐
# .
To yield positive definiteness of ฮ(๐), we choose ๐ > 0 such that for๐ > ๐ and ๐ < ๐ห, det(ฮ(๐)) > 0:
det(ฮ(๐)) =โ๐4, ๐๐ด2
๐๐ยฏ+๐(๐1โ ๐ด๐๐ยฏ(๐))๐3, ๐โ2๐4, ๐๐ด๐๐ยฏ๐ฟ๐. We select,
๐ :=
๐4, ๐๐ด2
๐๐ยฏ+2๐4, ๐๐ด๐๐ยฏ๐ฟ๐ (๐1โ๐ด๐๐ยฏ(๐))๐3, ๐
,
where๐ >0 for all 0 < ๐ <๐ห. We choose๐ =๐min(ฮ(๐)), the minimum eigenvalue ofฮ(๐). As in Theorem 5, we again split the derivative with๐๐ โ (0,1),
๐๐(P๐งยฏ(๐,ยฏ ๐งยฏ)) โ๐๐(๐,ยฏ ๐งยฏ)
โค โ๐min(ฮ(๐))๐๐โฅ (๐,ยฏ ๐งยฏ) โฅ2โ๐min(ฮ(๐)) (1โ๐๐) โฅ (๐,ยฏ ๐งยฏ) โฅ2 + ๐ด๐ยฏ๐งยฏโฅ (๐,ยฏ ๐งยฏ) โฅ โฅ๐๐งยฏโฅโ+๐ด2
๐ ๐๐งยฏโฅ๐๐งยฏโฅ2โ,
(6.27)
with ๐ด๐ยฏ๐งยฏ = max{2๐4, ๐๐ด๐๐ยฏ๐ด๐ ๐
ยฏ ๐ง,2๐ด๐ ๐
ยฏ
๐ง๐ฟ๐}. This satisfies the discrete time e-ISS Lyapunov condition (6.24). Setting the last 3 terms of (6.27) โค 0 and solving for the positive root of the resultant quadratic equation, we establish exponential convergence at a rate ofโ๐min(ฮ(๐))๐๐ to the set,
โฅ (๐,ยฏ ๐งยฏ) โฅ โค
๐ด๐ยฏ๐งยฏ +โ๏ธ
๐ด2
ยฏ
๐๐งยฏ+4๐min(ฮ(๐)) (1โ๐๐)๐ด2
๐ ๐๐งยฏ
2๐min(ฮ(๐)) (1โ๐๐) โฅ๐๐งยฏโฅโ. We require this bound to be less than๐๐งยฏ, yielding,
๐ฟ๐ := 2๐๐งยฏ๐min(ฮ(๐)) (1โ๐๐) ๐ด๐ยฏ๐งยฏ+โ๏ธ
๐ด2
ยฏ
๐๐งยฏ +4๐min(ฮ(๐)) (1โ๐๐)๐ด2
๐ ๐ยฏ๐ง
.
To also ensure the continuous dynamics of ยฏ๐ง remain bounded by ๐๐งยฏ, we require
โฅ๐๐งยฏโฅโ < ๐ฟ:=min{๐ฟ๐,
๐๐งยฏ
๐ฟ๐งยฏ}, unique to this proof, and hence establishing e-ISS of๐ช
for โฅ๐๐งยฏโฅโ < ๐ฟ. โก