• Tidak ada hasil yang ditemukan

Separable Robotic Control Systems

Chapter IV: Separable Subsystems

4.3 Separable Robotic Control Systems

Theorem 2: For the subsystems (4.2) and(4.7), ifโˆƒ ๐‘‡ : R๐‘› โ†’ R๐‘›ยฏ s.t. ๐‘‡(๐‘ฅ) = X and the following conditions hold,

๐‘“๐‘ (๐‘ฅ) = ๐‘“ยฏ๐‘ (X), ๐‘”๐‘ (๐‘ฅ) =๐‘”ยฏ๐‘ (X),

(T2) then ๐‘ข๐‘ (๐‘ฅ) = ๐‘ขยฏ๐‘ (X). Applying these to (4.2) and (4.7), respectively, results in dynamical systems such that given the same initial condition๐‘ฅ๐‘Ÿ0

๐‘ฅ๐‘ 0

= h๐‘ฅ๐‘Ÿ(๐‘ก0)

๐‘ฅ๐‘ (๐‘ก0)

i yields solutions๐‘ฅ๐‘ (๐‘ก) =๐‘ฅยฏ๐‘ (๐‘ก) โˆ€๐‘ก โ‰ฅ ๐‘ก0.

Proof. Since the subsystems have the same dynamics and outputs, the Lie derivatives comprising their control laws are also the same, hence

๐‘ข๐‘ (๐‘ฅ) =โˆ’๐ดโˆ’1

๐‘  (๐‘ฅ) (๐ฟโˆ—

๐‘“๐‘ ๐‘ฆ๐‘ (๐‘ฅ) โˆ’๐œ‡๐‘ )

=โˆ’๐ดยฏโˆ’1

๐‘  (X) (๐ฟโˆ—

ยฏ ๐‘“๐‘ 

๐‘ฆ๐‘ (X) โˆ’๐œ‡๐‘ ) =๐‘ขยฏ๐‘ (X).

With the same control law and dynamics, the closed-loop dynamics of the subsys- tems are the same:

ยค

๐‘ฅ๐‘  = ๐‘“๐‘ (๐‘ฅ) +๐‘”๐‘ (๐‘ฅ)๐‘ข๐‘ (๐‘ฅ)

= ๐‘“ยฏ๐‘ (X) +๐‘”ยฏ๐‘ (X)๐‘ขยฏ๐‘ (X)=๐‘ฅยคยฏ๐‘ . Hence, given the same initial condition๐‘ฅ๐‘Ÿ0

๐‘ฅ๐‘ 0

= h

๐‘ฅ๐‘Ÿ(๐‘ก0) ๐‘ฅ๐‘ (๐‘ก0)

i

, they have the same solution ๐‘ฅ๐‘ (๐‘ก)=๐‘ฅยฏ๐‘ (๐‘ก) โˆ€๐‘ก โ‰ฅ ๐‘ก0.

By Theorems 1 and 2, we can construct a stabilizingmodel dependent controller, namely (4.8), for the subsystem (4.2) independent of the rest of the system dynamics and with measurable inputs.

Zero Dynamics. For full-state feedback linearizable systems, this control method will stabilize the full-order system. For partially feedback linearizable systems, we can apply this method to the feedback linearizable portion of the system. If the zero dynamics are stable, then we can guarantee full-order system stability, which will be proved through Lyapunov methods in the next chapter, Chapter 5.

DOF fixed joint. Now, the control inputs of one subsystem only affect the other subsystem through theconstraint wrench. This construction hence decouples the dynamics of one subsystem from the control input of the other so the robotic system can be in separable system form (4.1).

Robotic System in Separable Form

For an open-chain robotic system, consider decomposing this robotic system into 2 subsystems, with the subsystem under consideration denoted with coordinates ๐‘ž๐‘  โˆˆR๐‘›๐‘ž , ๐‘  and the remaining subsystem denoted with coordinates ๐‘ž๐‘Ÿ โˆˆR๐‘›๐‘ž ,๐‘Ÿ. The floating base coordinates๐‘ž๐ต โˆˆ R๐‘›๐‘“ for the full robotic system are contained in๐‘ž๐‘Ÿ, i.e. ๐‘ž๐ต โŠ‚ ๐‘ž๐‘Ÿ. We consider another floating base with coordinates ยฏ๐‘ž๐ต โˆˆ R๐‘›๐‘“ at the attachment point between the subsystem denoted with coordinates ๐‘ž๐‘  and the rest of the system. A๐‘›๐‘“ DOF holonomic constraint models this attachment as a fixed joint, as previously described. These coordinates are part of ๐‘ž๐‘ , i.e. ยฏ๐‘ž๐ต โŠ‚ ๐‘ž๐‘ , and can be determined for any robotic system by ๐‘ž๐‘Ÿ through the forward kinematics [204], meaning one does not need to directly sense these subsystem floating base coordinates when they have knowledge of the rest of the system with coordinates ๐‘ž๐‘Ÿ. An example of this configuration for an amputee-prosthesis system is shown in Figure 4.2.

The dynamics for the remaining system and the subsystem of focus are given, respectively, by the classical Euler-Lagrangian equation [204],

๐ท๐‘Ÿ(๐‘ž๐‘Ÿ) ยฅ๐‘ž๐‘Ÿ +๐ป๐‘Ÿ(๐‘ž๐‘Ÿ,๐‘žยค๐‘Ÿ) =๐ต๐‘Ÿ๐‘ข๐‘Ÿ +๐ฝ๐‘‡

๐‘,๐‘Ÿ(๐‘ž๐‘Ÿ)๐œ†๐‘Ÿ +๐ฝ๐‘‡

๐‘“ ,๐‘Ÿ๐น๐‘“, (4.9) and

๐ท๐‘ (๐‘ž๐‘ ) ยฅ๐‘ž๐‘ +๐ป๐‘ (๐‘ž๐‘ ,๐‘žยค๐‘ ) =๐ต๐‘ ๐‘ข๐‘ +๐ฝ๐‘‡

๐‘,๐‘ (๐‘ž๐‘ )๐œ†๐‘ +๐ฝ๐‘‡

๐‘“ ,๐‘ ๐น๐‘“, (4.10) with respective holonomic constraint equations,

๐ฝยค๐‘,๐‘Ÿ(๐‘ž๐‘Ÿ,๐‘žยค๐‘Ÿ) ยค๐‘ž๐‘Ÿ +๐ฝ๐‘,๐‘Ÿ(๐‘ž๐‘Ÿ) ยฅ๐‘ž๐‘Ÿ =0, and,

๐ฝยค๐‘,๐‘ (๐‘ž๐‘ ,๐‘žยค๐‘ ) ยค๐‘ž๐‘ +๐ฝ๐‘,๐‘ (๐‘ž๐‘ ) ยฅ๐‘ž๐‘  =0, (4.11) where ๐ฝ๐‘,๐‘Ÿ and ๐ฝ๐‘,๐‘  are the Jacobians of the ๐‘›๐‘,๐‘Ÿ and ๐‘›๐‘,๐‘  holonomic constraints, respectively, for the contacts of the respective subsystems with respective contact wrenches ๐œ†๐‘Ÿ and ๐œ†๐‘ , and ๐ฝ๐‘“ ,๐‘Ÿ and ๐ฝ๐‘“ ,๐‘  are the fixed joint constraint Jacobians for the respective subsystems with fixed joint constraint wrench ๐น๐‘“. Together these

Figure 4.2: Robotic Models with Generalized Coordinates. (Left) Model of the full amputee-prosthesis system labeled with its generalized coordinates, where ๐‘ž๐‘Ÿ is notated in blue and ๐‘ž๐‘  in red. (Right) Model of prosthesis subsystem with its generalized coordinates, where๐น๐‘“ is notated in violet.

equations give the dynamics of the entire robotic system (3.22), as follows,

"

๐ท๐‘Ÿ(๐‘ž๐‘Ÿ) 0 0 ๐ท๐‘ (๐‘ž๐‘ )

#

| {z }

๐ท(๐‘ž)

"

ยฅ ๐‘ž๐‘Ÿ

ยฅ ๐‘ž๐‘ 

# +

"

๐ป๐‘Ÿ(๐‘ž๐‘Ÿ,๐‘žยค๐‘Ÿ) ๐ป๐‘ (๐‘ž๐‘ ,๐‘žยค๐‘ )

#

| {z }

๐ป(๐‘ž ,๐‘žยค)

=

"

๐ต๐‘Ÿ 0 0 ๐ต๐‘ 

#

| {z }

๐ต

"

๐‘ข๐‘Ÿ

๐‘ข๐‘ 

#

|{z}

๐‘ข

+

"

๐ฝ๐‘‡

๐‘ ,๐‘Ÿ(๐‘ž๐‘Ÿ) ๐ฝ๐‘‡

๐‘“ ,๐‘Ÿ(๐‘ž๐‘Ÿ) 0

0 ๐ฝ๐‘‡

๐‘“ , ๐‘ (๐‘ž๐‘ ) ๐ฝ๐‘‡

๐‘ , ๐‘ (๐‘ž๐‘ )

#

| {z }

๐ฝ๐‘‡(๐‘ž)

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ๐œ†๐‘Ÿ

๐น๐‘“

๐œ†๐‘ 

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

|{z}

๐œ†

.

These terms will now be referred to as ๐ท , ๐ป , and๐ฝ, respectively, for notational simplicity. Here๐‘›โ„Žis the summation of the number of holonomic constraints for each subsystem,๐‘›โ„Ž,๐‘Ÿand๐‘›โ„Ž,๐‘ , respectively, and the fixed joint๐‘›๐‘“, i.e. ๐‘›โ„Ž=๐‘›โ„Ž,๐‘Ÿ+๐‘›โ„Ž,๐‘ +๐‘›๐‘“. Remark 1. Any open-chain robotic system can be decomposed in this manner where the control input of each subsystem does not affect the other subsystem, as shown by the block diagonal form of ๐ต. While the dynamics of one subsystem certainly affect the dynamics of the other system, all interaction takes places at the interface between these two subsystems. Hence, the constraint wrench and global coordinates and velocities at this interface completely capture the dynamic effect one subsystem has on the other. This dynamic effect is essentially is treated like an external disturbance to the second subsystem. Even environmental effects on one subsystem, such as external forcing or a viscous fluid, will only affect the

second subsystem through these interaction forces and the global coordinates and velocities. There is not another way one subsystem can affect the other except through this interface.

Robotic System in Nonlinear Form. Using the notation from Section 4.2, ๐‘ฅ๐‘  = (๐‘ž๐‘‡

๐‘ ,๐‘žยค๐‘‡

๐‘ )๐‘‡ โˆˆ R๐‘›๐‘  will denote the states of the subsystem under consideration for control, and ๐‘ฅ๐‘Ÿ = (๐‘ž๐‘‡

๐‘Ÿ,๐‘žยค๐‘‡

๐‘Ÿ)๐‘‡ โˆˆ R๐‘›๐‘Ÿ will denote the states of the remaining system.

We also define the control input๐‘ข =(๐‘ข๐‘‡

๐‘Ÿ, ๐‘ข๐‘‡

๐‘ )๐‘‡, where๐‘ข๐‘Ÿ โˆˆ R๐‘š๐‘Ÿ and๐‘ข๐‘  โˆˆR๐‘š๐‘ , and construct the robotic system in nonlinear form with๐‘ฅ= (๐‘ฅ๐‘‡

๐‘Ÿ, ๐‘ฅ๐‘‡

๐‘ )๐‘‡:

ยค ๐‘ฅ =

"

ยค ๐‘ฅ๐‘Ÿ

ยค ๐‘ฅ๐‘ 

#

= ๐‘“(๐‘ฅ) +๐‘”(๐‘ฅ)๐‘ข

=

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยค ๐‘ž๐‘Ÿ ๐ทโˆ’1

๐‘Ÿ (โˆ’๐ป๐‘Ÿ +๐ฝ๐‘‡

๐‘,๐‘Ÿ๐œ†๐‘,๐‘Ÿ+๐ฝ๐‘‡

๐‘“ ,๐‘Ÿ

๐น๐‘“)

ยค ๐‘ž๐‘  ๐ทโˆ’1

๐‘  (โˆ’๐ป๐‘ +๐ฝ๐‘‡

๐‘,๐‘ ๐œ†๐‘,๐‘ +๐ฝ๐‘‡

๐‘“ ,๐‘ 

๐น๐‘“)

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

| {z }๏ฃป

๐‘“(๐‘ฅ)

+

"

๐ทโˆ’1

๐‘Ÿ ๐ต๐‘Ÿ 0

0 ๐ทโˆ’1

๐‘  ๐ต๐‘ 

#

| {z }

๐‘”(๐‘ฅ)

"

๐‘ข๐‘Ÿ ๐‘ข๐‘ 

#

|{z}

๐‘ข

โ‰œ

"

๐‘“๐‘Ÿ(๐‘ฅ) ๐‘“๐‘ (๐‘ฅ)

# +

"

๐‘”๐‘Ÿ

1(๐‘ฅ) ๐‘”๐‘Ÿ

2(๐‘ฅ) 0 ๐‘”๐‘ (๐‘ฅ)

# "

๐‘ข๐‘Ÿ ๐‘ข๐‘ 

# ,

(4.12)

and we see that our robotic system can be written as a separable control system (4.1).

Remark 2. By Theorem 1, for anyseparable subsystem outputs๐‘ฆ๐‘ (๐‘ฅ๐‘ ), a feedback linearizing control law๐‘ข๐‘ (๐‘ฅ)(4.4) can be constructed. Typically, we calculate๐‘ข(๐‘ฅ) with๐œ†in terms of๐‘ขby solving (3.22) for๐‘žยฅand substituting it into (3.23). Solving for๐œ†yields

๐œ†(๐‘ž,๐‘ž, ๐‘ขยค ) = (๐ฝ ๐ทโˆ’1๐ฝ๐‘‡)โˆ’1(๐ฝ ๐ทโˆ’1(๐ปโˆ’๐ต๐‘ข) โˆ’ ยค๐ฝ๐‘žยค)

โ‰œ ๐œ†๐‘“ +๐œ†๐‘”๐‘ข .

(4.13) When๐œ†๐‘“ and๐œ†๐‘” are included in ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ), respectively, the system does not yield a separable form. However, it calculates the same๐‘ข(๐‘ฅ), hence Theorem 1 still applies.

Equivalent Robotic Subsystem and Controller

The advantage of constructing a robotic system in the form (4.1) is applying Theorem 2 to construct an equivalent control law for a robotic subsystem without knowledge of the full system dynamics and states. For the full robotic system, the subsystem base coordinates ยฏ๐‘ž๐ต can be determined through forward kinematics with ๐‘ž๐‘Ÿ and

the fixed joint forces and moments ๐น๐‘“ can be determined through the holonomic constraints with expression for the constraint wrenches (4.13). However, to obtain the subsystem dynamics independent of the coordinates of the rest of the system, additional sensing is required. When we can directly measure these subsystem base coordinates ยฏ๐‘ž๐ต and the forces and moments๐น๐‘“ at the fixed joint, the robotic separable subsystem dynamics of (4.10) becomes our equivalent robotic subsystem.

Transformation for Subsystem States and Inputs. Using the notation from Sec- tion 4.2, with๐‘ฅ๐‘ from the full-order system,๐‘ฅ๐‘  = (๐‘ž๐‘‡

๐‘ ,๐‘žยค๐‘‡

๐‘ )๐‘‡ โˆˆR๐‘›๐‘ andF =๐น๐‘“ โˆˆR๐‘›๐‘“, we construct the robotic subsystem in nonlinear form. We relate the subsystemโ€™s augmented state vectorX to the full-order system states๐‘ฅ. To obtain an expression for ๐น๐‘“ based on the equation for๐œ†(๐‘ž,๐‘ž, ๐‘ขยค ) given in (4.13), we define the transfor- mation๐œ„ : R๐‘›โ„Ž โ†’ R๐‘›๐‘“ where๐œ„๐‘“(๐œ†) = ๐œ„๐‘“(๐œ† โŠƒ ๐น๐‘“) = ๐น๐‘“. Hence the transformation ๐‘‡(๐‘ฅ) =Xis defined as:

๐‘‡(๐‘ฅ) โ‰œ

"

๐‘ฅ๐‘  ๐œ„๐‘“(๐œ†(๐‘ž,๐‘ž, ๐‘ขยค ))

#

=

"

๐‘ฅ๐‘  ๐น๐‘“

#

=X.

Robotic Subsystem in Nonlinear Form. We construct the equivalent robotic subsystem as in (4.7):

ยคยฏ ๐‘ฅ๐‘  =

"

ยค ๐‘ž๐‘  ๐ทโˆ’1

๐‘  (โˆ’๐ป๐‘ +๐ฝ๐‘‡

๐‘,๐‘ ๐œ†๐‘,๐‘ +๐ฝ๐‘‡

๐‘“ ,๐‘ ๐น๐‘“)

# +

"

0 ๐ทโˆ’1

๐‘  ๐ต

#

ยฏ ๐‘ข๐‘ 

โ‰œ ๐‘“ยฏ๐‘ (X) +๐‘”ยฏ๐‘ (X)๐‘ขยฏ๐‘ .

(4.14)

Remark 3. With condition (T2) met, Theorem 2 applies, enabling users to construct controllers for a robotic subsystem, without knowledge of the full dynamics and states, given the constraint forces and moments ๐น๐‘“ at the fixed joint and its global coordinates ยฏ๐‘ž๐ต and velocities ๐‘žยคยฏ๐ต. This control law yields the same evolution of subsystem states๐‘ฅ๐‘  as those of the full-order system under the control law๐‘ข(๐‘ฅ).

To support our arguments for robotic system separability and subsystem equivalency with experimental data, we examined human-prosthesis motion capture walking data [263] and computed the control input with inverse dynamics. With position and time data, we computed discrete accelerations. By averaging these over a time window we obtain accelerations for computing the inverse dynamics with the full-order system dynamics (3.22) and equivalent subsystem dynamics (4.10). This yielded identical prosthesis control inputs. See Figure 4.1.