• Tidak ada hasil yang ditemukan

Chapter 6: Neural Fly for Fault Tolerance

6.3 Methods

Control allocation through online optimization

First, we introduce two common choices for control allocation matrix, one prior approach, and then propose a novel control allocation algorithm that maximizes control authority. Because these methods do not explicitly consider the time-varying nature of the system, we will simply denote the control actuation matrix of interest as๐ต.

Moore-Penrose Pseudoinverse Allocation

A natural choice for the control allocation matrix, ๐ด, is the Moore-Penrose right pseudoinverse, given by

๐ด= ๐ตโ€ = ๐ต> ๐ต ๐ต>โˆ’1 (6.9) Note that for controllable overactuated systems, i.e., the type of system we are con- sidering,๐ตis a wide, full row rank matrix, so(๐ต ๐ต>)โˆ’1is well-defined. This choice of control allocation matrix yields the minimum norm control input given any de- sired torque command, that is,

๐ดpinv =argmin๐ดmaxk๐œk2=1 k๐ด๐œk2

s.t. ๐ต ๐ด=I

. (6.10)

However, the minimum norm solution does not account for actual power usage or control saturation. Thus, it is not often the best choice.

Maximum Control Authority Allocation

For a symmetric multirotor, we can design a control allocation matrix that maxi- mizes control authority by choosing thrust and torque factors that independently cre- ate the maximum thrust and moments. A multirotor is symmetric when๐ตsign(๐ต>) is diagonal. The maximum torque along the ๐‘–โ€™th axis is produced when๐‘ข๐œmax

,๐‘– = max sign(๐ต>)(ยท,๐‘–),0, where(๐ต>)(ยท,๐‘–)is the๐‘–โ€™th column of๐ต>andmaxis the element-

wise maximum, here. Thus, the allocation matrix that yields maximum control au- thority along each control axis, independently, is

๐ดmca =sign(๐ต>) (6.11)

On most multirotors and every a symmetric multirotor, this allocation scheme will not work under a single motor failure. For example, consider a perfectly sensed motor failure, such that ๐ต = ๐ต0๐ป(๐‘ก), where ๐ต0represents the nominal, symmetric system. Any single motor failure will cause (๐ต0๐ป)sign( (๐ต0๐ป)>) to become non- diagonal. This leads to cross coupling in the different control axis and significantly degraded tracking performance. Thus, for fault-tolerant control, we must consider more sophisticated allocation algorithms.

Kimโ€™s Control Allocation

[5] proposes the following allocation algorithm:

๐ดkim =argmin๐ด k๐ดk๐น + 1

๐‘š

ร๐‘š

๐‘–=1|๐ด(0,๐‘–) โˆ’mean(๐ด(0,ยท)) |

s.t. ๐ต ๐ด=I, ๐ด(0,ยท) โ‰ฅ 0 (6.12)

The first term in the cost function, k๐ดk๐น, is the Frobenius norm of ๐ด, which is used as a surrogate for the control effort. The second term distributes the thrust among the motors as evenly as possible. The constraints ensure that the solution is a valid control allocation matrix for ๐ตand that the thrust factors are non-negative.

However, we find that under an outboard motor failure for our system in Sec. 6.4, some thrust factors are 0 with non-zero torque factors. Thus, there are infinitesimally small torque commands can cause the control to saturate.

Proposed Allocation Algorithm

Do to the limitations of prior approaches, we propose the following allocation algo- rithm. This method directly maximizes the control authority at a nominal operating point, where the thrust equals the (scaled) weight of the vehicle,๐‘š. Furthermore, this formulation is not only convex, but also it is a linear program. Thus, it can be solved efficiently using, for example using the [25], [26]

The thrust for a given set of motor speeds is given by ๐ต0(1

,ยท)๐‘ข. Thus, to achieve the maximum thrust with no torque, that is๐œ๐‘‘ = [1; 0; 0; 0], we must have๐‘ข๐‘‘ = ๐ด๐œ๐‘‘ = ๐ด(ยท,1). Similarly, to achieve the maximum torque along the๐‘–th axis while producing ๐‘šthrust, we must have๐‘ข๐‘‘ = ๐ด๐œ๐‘‘ =๐‘š ๐ด(ยท,1)+๐ด(ยท,๐‘–). Since the vehicle is asymmetric,

we must consider both the positive and negative torque along each axis. Accounting for actuation limits, this leads

๐ดยฏNFF =argmax ๐ต(1,ยท)๐ด(ยท,1) +ร๐‘›

๐‘–=2๐ต(๐‘–,ยท) ๐‘š ๐ด(ยท,1) +๐ด(ยท,๐‘–)

๐ด โˆ’ร๐‘›

๐‘–=2๐ต(๐‘–,ยท) ๐‘š ๐ด(ยท,1) โˆ’ ๐ด(ยท,๐‘–) s.t. ๐ต(2:4,ยท)๐ด(ยท,0) =0, ๐ด(ยท,1) โ‰ฅ 0, ๐ด(ยท,1) โ‰ค1,

๐ต( (1,3,4),ยท)๐ด(ยท,2) = [๐‘š,0,0]>, 0 โ‰ค ๐‘š ๐ด(ยท,1) +๐ด(ยท,๐‘–)

โ‰ค 1,0 โ‰ค ๐‘š ๐ด(ยท,1) โˆ’ ๐ด(ยท,๐‘–)

โ‰ค 1, ๐ต( (1,2,4),ยท)๐ด(ยท,3) = [๐‘š,0,0]>,

0 โ‰ค ๐‘š ๐ด(ยท,1) +๐ด(ยท,๐‘–)

โ‰ค 1,0 โ‰ค ๐‘š ๐ด(ยท,1) โˆ’ ๐ด(ยท,๐‘–)

โ‰ค 1, ๐ต( (1,2,3),ยท)๐ด(ยท,4) = [๐‘š,0,0]>,

0 โ‰ค ๐‘š ๐ด(ยท,1) +๐ด(ยท,๐‘–)

โ‰ค 1,0โ‰ค ๐‘š ๐ด(ยท,1) โˆ’ ๐ด(ยท,๐‘–)

โ‰ค 1

(6.13)

For failure scenarios, ๐ต๐ดยฏNFF โ‰  I due to the reduced control authority, however, ๐ต๐ดยฏNFF is diagonal. Thus, we simply must rescale ๐ดยฏNFF to ensure that๐ต๐ดยฏNFF = I.

Thus, the final control allocation matrix is given by

๐ดNFF = ๐ดยฏNFF ๐ต๐ดยฏNFFโˆ’1 (6.14) Under nominal conditions, this exactly reproduces the solution from (6.11). Further- more, under a single motor failure, this algorithm will maintain maximum control authority while maintaining the nominal performance characteristics of the system.

Motor Efficiency Adaptation as an Extension of Learned Dynamics

Consider the following learning architectures and control laws, which are all models for the error in the nominal model, (6.5).

ห†

๐‘”NF(๐‘ฅ , ๐‘ข) =๐œ™(๐‘ฅ , ๐‘ข)๐‘Ž,ห† ๐‘ขNF= (๐ต0)โˆ’1๐‘… (โˆ’๐‘“(๐‘ฅ) โˆ’๐พ๐‘ฅหœโˆ’๐‘”ห†NF) (6.15) ห†

๐‘”B(๐‘ฅ , ๐‘ข) =(๐ตห†โˆ’๐ต0)๐‘ข, ๐‘ขB=๐ตห†โˆ’1

๐‘… (โˆ’๐‘“(๐‘ฅ) โˆ’๐พ๐‘ฅหœ) (6.16) ห†

๐‘”eff(๐‘ฅ , ๐‘ข) =๐ต0(๐ปห† โˆ’I)๐‘ข, ๐‘ขeff= (๐ต0๐ปห†)โˆ’1๐‘… (โˆ’๐‘“(๐‘ฅ) โˆ’๐พ๐‘ฅหœ) (6.17) ห†

๐‘”NFF(๐‘ฅ , ๐‘ข) =๐ต0(๐ปห† โˆ’I)๐‘ข+๐œ™(๐‘ฅ , ๐‘ข)๐‘Ž,ห†

๐‘ขNFF =(๐ต0๐ปห†)โˆ’1๐‘… (โˆ’๐‘“(๐‘ฅ) โˆ’๐พ๐‘ฅหœโˆ’๐œ™(๐‘ฅ , ๐‘ข)๐‘Žห†) (6.18) ห†

๐‘”NFis the learned dynamics model from [17],๐‘”ห†Bis full actuation matrix adaptation, ห†

๐‘”effis motor efficiency adaptation, and๐‘”ห†NFFis the proposed method, which combines

motor efficiency adaptation and learned dynamics. In the next section, Sec. 6.3, we will discuss online adaptation of the full control actuation matrix, (6.16) and some challenges of this approach. Then, we will continue our analysis only for (6.18), since (6.17) and (6.15) are special cases of (6.18).

Full Actuation Matrix Adaptation

To simplify the notation, define ๐ตยฏ = ๐ตห† โˆ’ ๐ต0. Consider the continuous time cost function

๐ฝ(๐ตยฏ)=

โˆซ ๐‘ก 0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1 ๐‘ฆโˆ’๐ต๐‘ขยฏ

2d๐‘Ÿ +๐œ†2k๐ตยฏk2๐น (6.19)

=

โˆซ ๐‘ก

0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1tr

(๐‘ฆโˆ’๐ต๐‘ขยฏ ) (๐‘ฆโˆ’๐ต๐‘ขยฏ )>d๐‘Ÿ+๐œ†2tr ยฏ๐ต๐ตยฏ> (6.20)

=

โˆซ ๐‘ก 0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1tr

๐‘ฆ ๐‘ฆ>โˆ’2 ยฏ๐ต๐‘ข ๐‘ฆ>+๐ต๐‘ข๐‘ขยฏ >๐ตยฏ

d๐‘Ÿ+๐œ†2tr ยฏ๐ต๐ตยฏ> (6.21) Since this is convex and quadratic in ๐ต, we can easily find the solution by looking for the critical point. We are using the following notation: h

๐œ• ๐ฝ

๐œ•๐ตยฏ

i

๐‘– ๐‘—

= ๐œ• ๐ฝ

๐œ•๐ตยฏ๐‘– ๐‘—.

๐œ• ๐ฝ

๐œ•๐ตยฏ

=

โˆซ ๐‘ก

0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1

0โˆ’2๐‘ฆ๐‘ข>+2 ยฏ๐ต๐‘ข๐‘ข>d๐‘Ÿ+๐œ†22 ยฏ๐ต (6.22)

ยฏ ๐ต

๐œ†2I+

โˆซ ๐‘ก 0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1๐‘ข๐‘ข>d๐‘Ÿ

=

โˆซ ๐‘ก 0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1๐‘ฆ๐‘ข>d๐‘Ÿ (6.23)

ยฏ ๐ต =

โˆซ ๐‘ก

0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1๐‘ฆ๐‘ข>d๐‘Ÿ

๐œ†2I+

โˆซ ๐‘ก

0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1๐‘ข๐‘ข>d๐‘Ÿ โˆ’1

| {z }

๐‘ƒ

(6.24)

Now we can derive a recursive update law for๐ตยฏ. Starting with๐‘ƒ, ๐‘ƒยค=โˆ’๐‘ƒd ๐‘ƒโˆ’1

d๐‘ก

๐‘ƒ (6.25)

=โˆ’๐‘ƒ

๐‘ข๐‘ข>โˆ’ 1 ๐œ†1

โˆซ ๐‘ก 0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1๐‘ข๐‘ข>d๐‘Ÿ

๐‘ƒ (6.26)

=โˆ’๐‘ƒ

๐‘ข๐‘ข>โˆ’ 1 ๐œ†1

๐‘ƒโˆ’1โˆ’๐œ†2I

๐‘ƒ (6.27)

๐‘ƒยค= 1 ๐œ†1

๐‘ƒโˆ’๐‘ƒ ๐œ†2

๐œ†1I+๐‘ข๐‘ข>

๐‘ƒ. (6.28)

Then we can compute ๐ตยคยฏ.

ยคยฏ ๐ต=

๐‘ฆ๐‘ข>โˆ’ 1 ๐œ†1

โˆซ ๐‘ก 0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1๐‘ฆ๐‘ข>d๐‘Ÿ

๐‘ƒ

+

0

eโˆ’(๐‘กโˆ’๐‘Ÿ)/๐œ†1)๐‘ฆ๐‘ข>d๐‘Ÿ 1 ๐œ†1

๐‘ƒโˆ’๐‘ƒ 2

๐œ†1I+๐‘ข๐‘ข> ๐‘ƒ (6.29)

=๐‘ฆ๐‘ข>๐‘ƒโˆ’๐ตยฏ

๐‘ข๐‘ข>+ ๐œ†2 ๐œ†1I

๐‘ƒ (6.30)

ยคยฏ

๐ต=โˆ’ ๐ต๐‘ขยฏ โˆ’๐‘ฆ

๐‘ข>๐‘ƒโˆ’ ๐œ†2 ๐œ†1

ยฏ

๐ต ๐‘ƒ (6.31)

As we will see later, it is useful to consider a composite adaptation law, that is an adaptation law that depends on both๐ต๐‘ขยฏ โˆ’๐‘ฆand๐‘ , given by

ยคยฏ

๐ต=โˆ’ ๐ต๐‘ขยฏ โˆ’๐‘ฆ

๐‘ข>๐‘ƒโˆ’ ๐œ†2 ๐œ†1

ยฏ

๐ต ๐‘ƒ+๐‘ ๐‘ข>๐‘ƒ (6.32) The closed loop dynamics are given by

๐‘€(๐‘ž) ยฅ๐‘ž+๐ถ(๐‘ž,๐‘žยค) ยค๐‘ž+๐‘”(๐‘ž) =๐ต๐‘ข (6.33) ๐‘ข= ๐ตยฏโ€ (๐‘€(๐‘ž) ยฅ๐‘ž๐‘Ÿ +๐ถ(๐‘ž,๐‘žยค) ยค๐‘ž๐‘Ÿ +๐‘”(๐‘ž) โˆ’๐พ ๐‘ ) (6.34)

หœ

๐ต= ๐ตยฏ+๐ต0โˆ’ ๐ตโ†” ๐ต=๐ตยฏ+๐ต0โˆ’๐ตหœ (6.35) ๐‘€๐‘ ยค+ (๐ถ+๐พ)๐‘ =โˆ’๐ตหœ(๐ตยฏ+๐ต0) (๐‘€๐‘žยฅ๐‘Ÿ +๐ถ๐‘žยค+๐‘”(๐‘ž) โˆ’๐พ ๐‘ ) (6.36) Take the following Lyapunov function

V =๐‘ >๐‘€(๐‘ž)๐‘ + k๐ตหœk2F

,๐‘ƒโˆ’1 (6.37)

k๐ตหœk2F

,๐‘ƒโˆ’1 , tr๐ต ๐‘ƒหœ โˆ’1๐ตหœ>

(6.38) V (๐‘ ,๐ตหœ) =๐‘ >๐‘€(๐‘ž)๐‘ +tr๐ต ๐‘ƒหœ โˆ’1๐ตหœ>

(6.39) then

Vยค =2๐‘ >๐‘€๐‘ ยค+๐‘ > ยค๐‘€ ๐‘ +2tr

หœ ๐ต ๐‘ƒโˆ’1๐ตยคหœ>

+tr

หœ ๐ตd

d๐‘ก

๐‘ƒโˆ’1 ๐ตหœ>

(6.40)

=2๐‘ > โˆ’(๐ถ+๐พ)๐‘ โˆ’๐ต๐‘ขหœ

+๐‘ >๐‘€ ๐‘  (6.41)

+2tr

หœ ๐ต ๐‘ƒโˆ’1

โˆ’ ๐ต๐‘ขหœ

๐‘ข>๐‘ƒโˆ’ ๐œ†2 ๐œ†1

ยฏ

๐ต ๐‘ƒ+๐‘ ๐‘ข>๐‘ƒ >

+tr

หœ ๐ต

๐‘ข๐‘ข>โˆ’ 1 ๐œ†1

๐‘ƒโˆ’1โˆ’๐œ†2I

หœ ๐ต>

=โˆ’2๐‘ >๐พ ๐‘ โˆ’2๐‘ >๐ต๐‘ขหœ +2tr

๐ต ๐‘ƒหœ โˆ’1 ๐‘ ๐‘ข>๐‘ƒ>

(6.42) +2tr

หœ ๐ต

โˆ’๐‘ข๐‘ข>๐ตหœ>โˆ’ ๐œ†2 ๐œ†1

ยฏ ๐ต>

+2tr 2 ๐œ†1

หœ

๐ต(๐ตโˆ’๐ต0)> โˆ’2tr 2 ๐œ†1

หœ

๐ต(๐ตโˆ’๐ต0)>

+tr

หœ

๐ต๐‘ข๐‘ข>๐ตหœ>โˆ’ 1 ๐œ†1

หœ

๐ต ๐‘ƒโˆ’1๐ตหœ>+ ๐œ†2 ๐œ†1

หœ ๐ต๐ตหœ>

=โˆ’2๐‘ >๐พ ๐‘ โˆ’2tr ๐œ†2

๐œ†1

หœ

๐ต(๐ตโˆ’๐ต0)>

(6.43)

+tr

โˆ’๐ต๐‘ข๐‘ขหœ >๐ตหœ>โˆ’ 1 ๐œ†1

หœ

๐ต ๐‘ƒโˆ’1๐ตหœ>โˆ’ ๐œ†2 ๐œ†1

หœ ๐ต๐ตหœ>

Vยค =โˆ’2๐‘ >๐พ ๐‘ โˆ’tr

หœ ๐ต

๐‘ข๐‘ข>+ 1 ๐œ†1

๐‘ƒโˆ’1+๐œ†2 ๐œ†1I

หœ ๐ต>

(6.44)

โˆ’2tr ๐œ†2

๐œ†1

หœ

๐ต(๐ตโˆ’๐ต0)>

Lemma 6.3.1. Note that for matrices ๐ต โˆˆ R๐‘›ร—๐‘š, ๐ถ โˆˆ R๐‘šร—๐‘š, and ๐ท โˆˆ R๐‘šร—๐‘š, if ๐ท > ๐ถand rank(๐ต) =๐‘›, thentr(๐ต(๐ทโˆ’๐ถ)๐ต>) >0.

Proof. For any๐‘ฅ โˆˆ R๐‘›, if๐‘ฅ โ‰  0and rank(๐ต) =๐‘›then๐ต>๐‘ฅ โ‰  0. When๐ท โˆ’๐ถ > 0, we also have the๐‘ฅ>๐ต(๐ทโˆ’๐ถ)๐ต>๐‘ฅ >0, and thus๐ต(๐ทโˆ’๐ถ)๐ต> > 0. Since the trace of a matrix is equal to the sum of the eigenvalues of a matrix, and all the eigenvalues of a positive definite matrix are positive,tr(๐ต(๐ทโˆ’๐ถ)๐ต>) > 0.

Define๐›ผ > 0as the exponential convergence rate of the system such that

๐‘ข๐‘ข>+ 1 ๐œ†1

๐‘ƒโˆ’1+๐œ†2 ๐œ†1I

> 2๐›ผ ๐‘ƒโˆ’1 and (6.45)

๐พ > ๐›ผ ๐‘€ . (6.46)

Aside. We can slightly tighten the convergence bound since๐ทโˆ’๐ถ >0is sufficient but not necessary for tr(๐ต(๐ทโˆ’๐ถ)๐ต>) > 0. In particular, (6.45) can be loosened to

ร•

๐‘–

eig๐‘– ๐‘ข๐‘ข>+ 1 ๐œ†1

๐‘ƒโˆ’1+ ๐œ†2 ๐œ†1I

โˆ’2๐›ผ ๐‘ƒโˆ’1

>0 (6.47)

whereeig๐‘–is the๐‘–โ€™th eigenvalue of the matrix.

Define๐ท = ๐œ†2

๐œ†1

๐‘ƒ1/2(๐ตโˆ’๐ต0)>

. Then

V โ‰ค โˆ’2ยค ๐›ผV +2

โˆš

V๐ท (6.48)

Consider the related system W where W =

โˆš

V and 2W ยคW = ๐‘‰ยค. Then, from (6.48),

2W ยคW โ‰ค โˆ’2๐›ผW2+2W๐ท (6.49)

W โ‰ค โˆ’ยค ๐›ผW +๐ท . (6.50) Consider another related system,๐‘ค(๐‘ก), defined by๐‘คยค(๐‘ก) =โˆ’๐›ผ๐‘ค(๐‘ก) +๐ท(๐‘ก)and๐‘ค(0)= W (0). The solution to๐‘ค(๐‘ก)is

๐‘ค(๐‘ก) =eโˆ’๐›ผ๐‘ก๐‘ค(0) +

โˆซ ๐‘ก

0

eโˆ’๐›ผ(๐‘กโˆ’๐‘Ÿ)๐ท(๐‘Ÿ)d๐‘Ÿ , (6.51) which can be bounded by

๐‘ค(๐‘ก) โ‰ค eโˆ’๐›ผ๐‘ก

๐‘ค(0) โˆ’sup

๐‘ก

๐ท(๐‘ก) ๐›ผ

+sup

๐‘ก

๐ท(๐‘ก)

๐›ผ (6.52)

By the Comparison Lemma [27],

โˆš

V =W โ‰ค๐‘ค(๐‘ก), (6.53)

thusโˆš

V and alsok๐‘ฅหœk exponentially converges to the ball k๐‘ฅหœk โ‰ค

โˆš

V โ‰ค ๐‘ ๐‘ข ๐‘๐‘ก ๐ท

๐›ผ (6.54)

While this shows stability of the system, convergence of the system can be slow. This is an inherent limitation of directly adapting all parameters of the control actuation matrix. Furthermore, this method can be sensitive to noise or non-zero ๐‘“res, which we have not considered here. In the next section, we will focus on adaptation of the efficiency factors, which enables faster adaptation, and therefore faster convergence.

Kalman Filter Based Adaptation and โ„“2 Regularized Least Squares

With some simple rearrangements, we can write the Kalman Filter based composite adaptation law following [17]. To see that the Kalman filter adaptation will follow [17], consider the following rearrangements.

ห†

๐‘”NFF = h

๐ต0๐‘ˆ ๐œ™ i

"

ห† ๐œ‚โˆ’1

ห† ๐‘Ž

#

(6.55)

where ๐œ‚ห†=diag(๐ปห†), and (6.56)

๐‘ˆ =diag(๐‘ข) (6.57)

Then, the Kalman filter based adaptation law is given by

"

ยคห† ๐œ‚

ยคห† ๐‘Ž

#

=โˆ’๐œ”๐‘“

"

ห† ๐œ‚โˆ’1

ห† ๐‘Ž

# +๐‘ƒ

h

๐ต0๐‘ˆ ๐œ™ i>

๐‘…โˆ’1 ๐‘ฆโˆ’ h

๐ต0๐‘ˆ ๐œ™ i

"

ห† ๐œ‚โˆ’1

ห† ๐‘Ž

# !

+๐‘ƒ ๐ต0๐‘ˆ ๐œ™ ๐‘ฅหœ (6.58) ๐‘ƒยค =โˆ’2๐œ”๐‘“๐‘ƒ+๐‘„โˆ’๐‘ƒ

h

๐ต0๐‘ˆ ๐œ™ i>

๐‘…โˆ’1 h

๐ต0๐‘ˆ ๐œ™ i

๐‘ƒ (6.59)

A similarโ„“2-regularized least squares with exponential forgetting formulation can also be derived, which takes the form

"

ยคห† ๐œ‚

ยคห† ๐‘Ž

#

=โˆ’๐›พ

"

ห† ๐œ‚โˆ’1

ห† ๐‘Ž

# +๐‘ƒ

h

๐ต0๐‘ˆ ๐œ™ i>

๐‘…โˆ’1 ๐‘ฆโˆ’ h

๐ต0๐‘ˆ ๐œ™ i

"

ห† ๐œ‚โˆ’1

ห† ๐‘Ž

# !

+๐‘ƒ h

๐ต0๐‘ˆ ๐œ™ i>

หœ

๐‘ฅ (6.60)

๐‘ƒยค =๐œ”๐‘“๐‘ƒโˆ’๐‘ƒ h

๐ต0๐‘ˆ ๐œ™ i> h

๐ต0๐‘ˆ ๐œ™ i

+ฮ“

๐‘ƒ (6.61)

whereฮ“is a diagonal positive definite matrix that controls the regularization cost in the least squares problem. Note that the closed from solution for๐‘ƒis given by

๐‘ƒ โ‰ก

โˆซ ๐‘ก

0

๐‘’โˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ) h

๐ต0๐‘ˆ ๐œ™ i> h

๐ต0๐‘ˆ ๐œ™ i

๐‘‘๐‘Ÿ +ฮ“ โˆ’1

. (6.62)

The proof of stability largely follows that of [17] once the closed loop dynamics have been sufficiently rearranged, as we do below in (6.85). There are two added complexities in the proof, which are that the disturbance term becomes a function of ๐‘ˆ>๐‘‘and that uniform boundedness of๐‘ƒnow depends on uniform boundedness of๐‘ˆ. Although we will omit the proof, and address these challenges for theโ„“1-regularized adaptation law in the next section; the proof for theโ„“2-regularized adaptation law and Kalman filter adaptation law follows exactly the same form, except for the form of the regularization term and๐‘ƒupdate equation.

Theโ„“2-regularized and Kalman-filter-based methods are not necessarily able to cor- rectly identify the underlying faults, but the estimated efficiencies vector is sufficient to stabilize and re-balance the system. Both of these results are a result of a lack of persistent excitation. Because we are considering an over-actuated system, and be- cause we control the design of the control allocation matrix, the control allocation can be perturbed to obtain persistent excitation without affecting tracking perfor- mance. This would require constantly updating the allocation scheme to excite dif- ferent modes in the system, while still satisfying the key allocation constraint, (6.6).

Instead, we will consider an alternate regularization method in the following section, which encourages sparse failure identification.

Sparse Failure Identification

In this section, we will consider an update policy similar to theโ„“2-regularized adap- tive update law in the last section, except we will use anโ„“1-regularized update pol- icy. This is a common regularization term for sparse parameter estimation, because it encourages sparse solutions without requiring a hard constraint on the number of non-zero parameters or iteration through many non-zero parameter combinations.

Discrete Update Law

Consider the following least squares loss function.

๐ฝ๐‘˜(๐œ‚,ห† ๐‘Žห†) =

๐‘˜

ร•

๐‘–=0

e(โˆ’๐œ”๐‘“(๐‘ก๐‘˜โˆ’๐‘ก๐‘–))k๐‘ฆ๐‘–โˆ’๐‘”ห†NFFk22+๐›พ๐œ‚k๐œ‚ห†โˆ’1k1+๐›พ๐‘Žk๐‘Žห†k22 (6.63) First, simplify the loss function by moving๐œ‚ห†and๐‘Žห†outside the summation and defin- ing๐œ‚ยฏ=๐œ‚ห†โˆ’1.

๐ฝ๐‘˜(๐œ‚,ห† ๐‘Žห†) =

๐‘˜

ร•

๐‘–=0

e(โˆ’๐œ”๐‘“(๐‘ก๐‘˜โˆ’๐‘ก๐‘–)) (๐‘ฆ๐‘–โˆ’๐‘”ห†)>(๐‘ฆ๐‘–โˆ’๐‘”ห†) +๐›พ๐œ‚k๐œ‚ยฏk1+๐›พ๐‘Žk๐‘Žห†k22 (6.64)

=

๐‘˜

ร•

๐‘–=0

e(โˆ’๐œ”๐‘“(๐‘ก๐‘˜โˆ’๐‘ก๐‘–)) ๐‘ฆ>

๐‘– ๐‘ฆ๐‘–โˆ’2๐‘ฆ>

๐‘– ๐‘”ห†+๐‘”ห†>๐‘”ห†

+๐›พ๐œ‚k๐œ‚ยฏk1+๐›พ๐‘Žk๐‘Žห†k22 (6.65)

=

๐‘˜

ร•

๐‘–=0

e(โˆ’๐œ”๐‘“(๐‘ก๐‘˜โˆ’๐‘ก๐‘–))๐‘ฆ>

๐‘– ๐‘ฆ๐‘–

!

โˆ’2

๐‘˜

ร•

๐‘–=0

e(โˆ’๐œ”๐‘“(๐‘ก๐‘˜โˆ’๐‘ก๐‘–))๐‘ฆ>

๐‘–

h

๐ต0๐‘ˆ๐‘– ๐œ™๐‘– i

! "

ยฏ ๐œ‚ ห† ๐‘Ž

#

+ h

ยฏ ๐œ‚> ๐‘Žห†>

i

๐‘˜

ร•

๐‘–=0

e(โˆ’๐œ”๐‘“(๐‘ก๐‘˜โˆ’๐‘ก๐‘–))

"

๐‘ˆ๐‘–๐ต>

0๐ต0๐‘ˆ๐‘– ๐‘ˆ๐‘–๐ต>

0๐œ™๐‘– ๐œ™>

๐‘– ๐ต0๐‘ˆ๐‘– ๐œ™>

๐‘– ๐œ™๐‘–

# ! "

ยฏ ๐œ‚ ห† ๐‘Ž

#

+๐›พ๐œ‚k๐œ‚ยฏk1+๐›พ๐‘Žk๐‘Žห†k22 (6.66)

This is a convex function of๐œ‚ยฏand๐‘Žห†, so we can easily solve for the optimal๐œ‚ยฏand๐‘Žห† using a number of numerical solving tools. During online computation, we can quickly incorporate a new measurement by scaling the old summation terms by exp(โˆ’๐œ”๐‘“(๐‘ก๐‘˜โˆ’๐‘ก๐‘˜โˆ’1)) and adding the kโ€™th term. Then we can solve for the optimal

ยฏ

๐œ‚and ๐‘Žห†using a numerical solver as needed. Note, that we can also easily derive a recursive solution for the optimal๐‘Žห†, with a simplified update step to quickly incor- porate new measurements and a step for computation of the optimal๐‘Žห†given the most recently computed๐œ‚ยฏ, which would require solving a linear system of equations.

Continuous Update Law

The analogous continuous time adaptation law for๐œ‚ห†can be found from the following cost function:

๐ฝ(๐œ‚ยฏ)=

โˆซ ๐‘ก 0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ)k๐‘ฆโˆ’๐ต๐‘ˆ(๐‘Ÿ)๐œ‚ยฏk2d๐‘Ÿ +2๐›พk๐œ‚ยฏk1 (6.67)

=

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ) ๐‘ฆ>๐‘ฆโˆ’2๐‘ฆ>๐ต๐‘ˆ๐œ‚ยฏ+๐œ‚ยฏ>๐‘ˆ ๐ต>๐ต๐‘ˆ๐œ‚ยฏd๐‘Ÿ +2๐›พk๐œ‚ยฏk1 (6.68) Note that we have dropped back to the simpler case of (6.17), though the full con- tinuous time stability analysis for (6.18) follows similarly under the assumption of Lipschitz boundedness of๐œ™.

First, approximate theโ„“1norm such that k๐œ‚ยฏk1 โ‰ˆร•

๐‘–

q

ยฏ ๐œ‚2

๐‘– +๐œ– = k๐œ‚ยฏk1,๐œ– and lim

๐œ–โ†’0

ร•

๐‘–

q

ยฏ ๐œ‚2

๐‘– +๐œ– =k๐œ‚ยฏk1 (6.69) Then the cost function in (6.68) is approximated๐ฝ(๐œ‚, ๐œ–ยฏ ) such thatlim๐œ–โ†’0๐ฝ(๐œ‚, ๐œ–ยฏ ) = ๐ฝ(๐œ‚ยฏ), where๐ฝ(๐œ‚, ๐œ–ยฏ )is given by

๐ฝ(๐œ‚ยฏ) โ‰ˆ ๐ฝ(๐œ‚, ๐œ–ยฏ )=

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ) ๐‘ฆ>๐‘ฆโˆ’2๐‘ฆ>๐ต0๐‘ˆ๐œ‚ยฏ+๐œ‚ยฏ>๐‘ˆ ๐ต>

0๐ต0๐‘ˆ๐œ‚ยฏd๐‘Ÿ +2๐›พ

ร•

๐‘–

q

ยฏ ๐œ‚2

๐‘– +๐œ– (6.70)

Since this cost function is convex in๐œ‚ยฏ, the minimum value is obtained when ๐œ• ๐ฝ๐œ•๐œ‚ยฏ =0, as follows.

๐œ• ๐ฝ

๐œ•๐œ‚ยฏ

=

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ) โˆ’2๐‘ˆ ๐ต>

0๐‘ฆ+2๐‘ˆ ๐ต>

0๐ต0๐‘ˆ๐œ‚ยฏd๐‘Ÿ+2๐›พ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ ๐œ‚1 q

ยฏ ๐œ‚2

1+๐œ– , ๐œ‚ยฏ2

q

ยฏ ๐œ‚2

2+๐œ– ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ (6.71)๏ฃป

๐œ• ๐ฝ

๐œ•๐œ‚ยฏ

=0

ยฉ

ยญ

ยญ

ยซ

๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ 1 q

ยฏ ๐œ‚2

1+๐œ– ,

1 q

ยฏ ๐œ‚2

2+๐œ– ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ +

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ)๐‘ˆ(๐‘Ÿ)๐ต>

0๐ต0๐‘ˆ(๐‘Ÿ)d๐‘Ÿ ยช

ยฎ

ยฎ

ยฌ

ยฏ ๐œ‚

=

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ)๐‘ˆ(๐‘Ÿ)๐ต>

0๐‘ฆd๐‘Ÿ (6.72)

ยฏ ๐œ‚ =ยฉ

ยญ

ยญ

ยซ

๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ 1 q

ยฏ ๐œ‚2

1+๐œ–

, 1

q

ยฏ ๐œ‚2

2+๐œ– ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ +

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ)๐‘ˆ(๐‘Ÿ)๐ต>

0๐ต0๐‘ˆ(๐‘Ÿ)d๐‘Ÿยช

ยฎ

ยฎ

| {z }ยฌ

๐‘ƒ

ยท

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ)๐‘ˆ(๐‘Ÿ)๐ต>

0๐‘ฆd๐‘Ÿ (6.73)

Note for some ๐‘–, if ๐œ‚ยฏ๐‘– = 0 (typically forโ„“1 norm minimization), then q1

ยฏ ๐œ‚2

๐‘–+๐œ–

= โˆš1

๐œ–. Otherwise, aslim๐œ–โ†’0 1

q

ยฏ ๐œ‚2

๐‘–+๐œ–

= |1

ยฏ ๐œ‚๐‘–|.

Now we can derive a recursive update law for๐œ‚ยฏ. Starting with๐‘ƒ: ๐‘ƒยค =โˆ’๐‘ƒ

d ๐‘ƒโˆ’1 d๐‘ก

๐‘ƒ

=โˆ’๐‘ƒ

ยฉ

ยญ

ยญ

ยซ

๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ ๐œ‚1

ยฏ ๐œ‚2

1+๐œ–

3/2,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

+๐‘ˆ(๐‘ก)๐ต>

0๐ต0๐‘ˆ(๐‘ก)

โˆ’๐œ”๐‘“

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ)๐‘ˆ(๐‘Ÿ)๐ต>

0๐ต0๐‘ˆ(๐‘Ÿ)d๐‘Ÿ

๐‘ƒ

=โˆ’๐‘ƒ

ยฉ

ยญ

ยญ

ยซ

๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ ๐œ‚1

ยฏ ๐œ‚2

1+๐œ–

3/2,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

+๐‘ˆ(๐‘ก)๐ต>

0๐ต0๐‘ˆ(๐‘ก)

โˆ’๐œ”๐‘“

ยฉ

ยญ

ยญ

ยซ

๐‘ƒโˆ’1โˆ’๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ 1 q

ยฏ ๐œ‚2

1+๐œ– ,

1 q

ยฏ ๐œ‚2

2+๐œ– ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ ยช

ยฎ

ยฎ

ยฌ ยช

ยฎ

ยฎ

ยฌ

๐‘ƒ (6.74)

๐‘ƒยค =๐œ”๐‘“๐‘ƒโˆ’๐‘ƒ

ยฉ

ยญ

ยญ

ยซ

๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

+๐‘ˆ(๐‘ก)>๐ต>

0๐ต0๐‘ˆ(๐‘ก)ยช

ยฎ

ยฎ

ยฌ

๐‘ƒ. (6.75)

Then we can compute๐œ‚ยคยฏ.

ยคยฏ ๐œ‚=๐‘ƒ

๐‘ˆ(๐‘ก)>๐ต>

0๐‘ฆ(๐‘ก) โˆ’๐œ”๐‘“

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ)๐‘ˆ(๐‘Ÿ)๐ต>

0๐‘ฆ(๐‘Ÿ)d๐‘Ÿ

+ยฉ

ยญ

ยญ

ยซ

๐œ”๐‘“๐‘ƒโˆ’๐‘ƒยฉ

ยญ

ยญ

ยซ

๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

+๐‘ˆ(๐‘ก)๐ต>

0๐ต0๐‘ˆ(๐‘ก)ยช

ยฎ

ยฎ

ยฌ ๐‘ƒยช

ยฎ

ยฎ

ยฌ

ยท

โˆซ ๐‘ก

0

eโˆ’๐œ”๐‘“(๐‘กโˆ’๐‘Ÿ)๐‘ˆ(๐‘Ÿ)๐ต>

0๐‘ฆ(๐‘Ÿ)d๐‘Ÿ

(6.76)

=๐‘ƒ ๐‘ˆ(๐‘ก)>๐ต>

0๐‘ฆโˆ’๐œ”๐‘“๐‘ƒโˆ’1๐œ‚ยฏ (6.77)

+ยฉ

ยญ

ยญ

ยซ

๐œ”๐‘“๐‘ƒโˆ’๐‘ƒ

ยฉ

ยญ

ยญ

ยซ

๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

+๐‘ˆ(๐‘ก)๐ต>

0๐ต0๐‘ˆ(๐‘ก)ยช

ยฎ

ยฎ

ยฌ ๐‘ƒ

ยช

ยฎ

ยฎ

ยฌ ๐‘ƒโˆ’1๐œ‚ยฏ

=๐‘ƒ๐‘ˆ(๐‘ก)>๐ต>

0๐‘ฆโˆ’๐œ”๐‘“๐œ‚ยฏ+๐œ”๐‘“๐œ‚ยฏ

โˆ’๐‘ƒยฉ

ยญ

ยญ

ยซ

๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

+๐‘ˆ(๐‘ก)๐ต>

0๐ต0๐‘ˆ(๐‘ก)ยช

ยฎ

ยฎ

ยฌ

ยฏ

๐œ‚ (6.78)

ยคยฏ

๐œ‚=๐‘ƒ๐‘ˆ(๐‘ก)>๐ต>

0(๐‘ฆโˆ’๐ต0๐‘ˆ(๐‘ก)๐œ‚ยฏ) โˆ’๐›พ ๐‘ƒยทdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

ยท๐œ‚ยฏ (6.79)

Stability Analysis

Again, for the continuous stability analysis we will focus on (6.17), however, the analysis for (6.18) follows similarly. Assume that we design a control allocation matrix ๐ดsuch that๐ต0๐ป ๐ดห† =I. The closed loop dynamics are

ยค

๐‘ฅ = ๐‘“๐‘›(๐‘ฅ) +๐ต๐‘ขeff+๐‘”(๐‘ฅ , ๐‘ข, ๐‘ก) (6.80)

= ๐‘“๐‘›(๐‘ฅ) +๐ต0๐ป ๐‘ข+๐‘‘(๐‘ก) (6.81)

= ๐‘“๐‘›(๐‘ฅ) +๐ต0๐ป(๐ต0๐ปห†)โˆ’1๐‘… (โˆ’๐พ(๐‘ฅโˆ’๐‘ฅ๐‘‘) + ยค๐‘ฅ๐‘‘) +๐‘‘(๐‘ก) (6.82)

= ๐‘“๐‘›(๐‘ฅ) +

๐ต0๐ปห†(๐ต0๐ปห†)โˆ’1๐‘… +๐ต0(๐ปโˆ’๐ปห†) (๐ต0๐ปห†)โˆ’1๐‘…

(โˆ’๐พ(๐‘ฅโˆ’๐‘ฅ๐‘‘) + ยค๐‘ฅ๐‘‘โˆ’ ๐‘“๐‘›(๐‘ฅ)) (6.83)

=โˆ’๐พ(๐‘ฅโˆ’๐‘ฅ๐‘‘) + ยค๐‘ฅ๐‘‘โˆ’๐ต0๐ป ๐‘ขหœ (6.84)

ยคหœ

๐‘ฅ =โˆ’๐พ๐‘ฅหœโˆ’ ๐ต0๐‘ˆ๐œ‚หœ+๐‘‘(๐‘ก) (6.85)

where๐œ‚หœ =๐œ‚ห†โˆ’๐œ‚,๐‘ฅหœ=๐‘ฅโˆ’๐‘ฅ๐‘‘, and๐‘”(๐‘ฅ , ๐‘ข, ๐‘ก)has been lumped into๐‘‘(๐‘ก).

As we will see later, it is useful to consider a composite adaptation law, which is a modification of the adaptation law from (6.79) that includes both๐ต0๐‘ˆ๐œ‚ยฏโˆ’๐‘ฆ and๐‘ฅหœ, given by

ยคยฏ

๐œ‚=๐‘ƒ๐‘ˆ ๐ต>

0(๐‘ฆโˆ’๐ต0๐‘ˆ๐œ‚ยฏ) โˆ’๐›พ ๐‘ƒdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

ยท๐œ‚ยฏ+๐‘ƒ๐‘ˆ ๐ต>

0๐‘ฅหœ (6.86) Stability can be shown with the following Lyapunov function:

V =๐‘ฅหœ>๐‘ฅหœ+๐œ‚หœ>๐‘ƒโˆ’1๐œ‚หœ= h

หœ ๐‘ฅ ๐œ‚หœ

i>

M h

หœ ๐‘ฅ ๐œ‚หœ

i

, (6.87)

where M = I 0 0 ๐‘ƒโˆ’1

(6.88) The derivative is computed as follows:

Vยค =2 หœ๐‘ฅ>๐‘ฅยคหœ+2 หœ๐œ‚>๐‘ƒโˆ’1๐œ‚ยคหœ+๐œ‚หœ>

d ๐‘ƒโˆ’1

d๐‘ก ๐œ‚หœ (6.89)

=โˆ’2 หœ๐‘ฅ>๐พ๐‘ฅหœโˆ’2 หœ๐‘ฅ>๐ต0๐‘ˆ๐œ‚หœ

2 หœ๐œ‚>๐‘ƒโˆ’1

ยฉ

ยญ

ยญ

ยซ ๐‘ƒ๐‘ˆ ๐ต>

0(๐‘ฆโˆ’๐ต0๐‘ˆ๐œ‚ยฏ) โˆ’๐›พ ๐‘ƒdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

ยท๐œ‚ยฏ

+๐‘ƒ๐‘ˆ ๐ต>

0๐‘ฅหœโˆ’ ยค๐œ‚ +๐œ‚หœ>ยฉ

ยญ

ยญ

ยซ

โˆ’๐œ”๐‘“๐‘ƒโˆ’1+๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

+๐‘ˆ(๐‘ก)๐ต>

0๐ต0๐‘ˆ(๐‘ก)ยช

ยฎ

ยฎ

ยฌ

หœ ๐œ‚ (6.90)

=โˆ’2 หœ๐‘ฅ>๐พ๐‘ฅหœโˆ’2 หœ๐‘ฅ>๐ต0๐‘ˆ๐œ‚หœ+2 หœ๐‘ฅ>๐‘‘

+2 หœ๐œ‚>๐‘ˆ ๐ต>

0(๐‘‘โˆ’๐ต0๐‘ˆ๐œ‚หœ) โˆ’2๐›พ๐œ‚หœ>diagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

ยท๐œ‚ยฏ

+2 หœ๐œ‚>๐‘ˆ ๐ต>

0๐‘ฅหœโˆ’2 หœ๐œ‚>๐‘ƒโˆ’1๐œ‚ยคโˆ’๐œ”๐‘“๐œ‚หœ>๐‘ƒโˆ’1๐œ‚หœ +๐›พ๐œ‚หœ>diagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

หœ

๐œ‚+๐œ‚หœ>๐‘ˆ ๐ต>

0๐ต0๐‘ˆ๐œ‚หœ (6.91)

=โˆ’2 หœ๐‘ฅ>๐พ๐‘ฅหœ+2 หœ๐‘ฅ>๐‘‘

+2 หœ๐œ‚>๐‘ˆ ๐ต>

0(๐‘‘โˆ’๐ต0๐‘ˆ๐œ‚หœ) โˆ’2๐›พ๐œ‚หœ>diagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

ยท (๐œ‚หœ+๐œ‚)

โˆ’2 หœ๐œ‚>๐‘ƒโˆ’1๐œ‚ยคโˆ’๐œ”๐‘“๐œ‚หœ>๐‘ƒโˆ’1๐œ‚หœ+๐›พ๐œ‚หœ>diagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

หœ

๐œ‚ (6.92)

=โˆ’2 หœ๐‘ฅ>๐พ๐‘ฅหœ+2 หœ๐‘ฅ>๐‘‘

โˆ’๐œ‚หœ>ยฉ

ยญ

ยญ

ยซ ๐‘ˆ ๐ต>

0๐ต0๐‘ˆโˆ’๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

โˆ’๐œ”๐‘“๐‘ƒโˆ’1ยช

ยฎ

ยฎ

ยฌ

หœ ๐œ‚

+2 หœ๐œ‚>ยฉ

ยญ

ยญ

ยซ ๐‘ˆ ๐ต>

0๐‘‘โˆ’๐›พdiagยฉ

ยญ

ยญ

ยซ

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ยฏ

๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ยช

ยฎ

ยฎ

ยฌ

ยท๐œ‚โˆ’๐‘ƒโˆ’1๐œ‚ยคยช

ยฎ

ยฎ

ยฌ

(6.93)

=โˆ’

"

หœ ๐‘ฅ

หœ ๐œ‚

#> ๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

2๐พ 0

0 ๐‘ˆ ๐ต>

0๐ต0๐‘ˆ+๐›พdiag "

ยฏ ๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–3/2 ,ยท ยท ยท

# !

+๐œ”๐‘“๐‘ƒโˆ’1

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

"

หœ ๐‘ฅ

หœ ๐œ‚

#

+2

"

หœ ๐‘ฅ

หœ ๐œ‚

#> ๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

๐‘‘ ๐‘ˆ ๐ต>

0๐‘‘โˆ’๐›พdiag "

ยฏ ๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

# !

ยท๐œ‚โˆ’๐‘ƒโˆ’1๐œ‚ยค

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

(6.94)

Following from the definition of๐‘ƒโˆ’1, ๐‘ƒโˆ’1 is bounded and uniformly positive defi- nite. Thus, there exists some๐›ผ > 0such that

โˆ’

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

2๐พ 0

0 ๐‘ˆ ๐ต>

0๐ต0๐‘ˆ+๐›พdiag "

ยฏ ๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–3/2 ,ยท ยท ยท

# !

+๐œ”๐‘“๐‘ƒโˆ’1

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

โ‰ค โˆ’2๐›ผ

"

I 0 0 ๐‘ƒโˆ’1

#

(6.95) Note that, when๐‘ƒโˆ’1is symmetric, uniformly bounded, and uniformly positive def- inite, ๐‘ƒโˆ’1/2and ๐‘ƒ1/2exist and are symmetric, uniformly positive definite, and uni- formly bounded. Using (6.94) and (6.95) and the Cauchy-Schwartz inequality, Vยค can be bounded, as follows:

V โ‰ค โˆ’2ยค ๐›ผ

"

หœ ๐‘ฅ

หœ ๐œ‚

#>"

I 0 0 ๐‘ƒโˆ’1

# "

หœ ๐‘ฅ

หœ ๐œ‚

#

+2

"

I 0

0 ๐‘ƒโˆ’1/2

# "

หœ ๐‘ฅ

หœ ๐œ‚

#

ยท

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

๐‘‘ ๐‘ƒ1/2๐‘ˆ ๐ต>

0๐‘‘โˆ’๐›พ ๐‘ƒ1/2diag "

ยฏ ๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–3/2 ,ยท ยท ยท

# !

ยท๐œ‚โˆ’๐‘ƒโˆ’1/2๐œ‚ยค

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป (6.96)

=โˆ’2๐›ผ๐‘‰ +2

โˆš

๐‘‰ ๐ท (6.97)

where ๐ท =

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

๐‘‘ ๐‘ƒ1/2๐‘ˆ ๐ต>

0๐‘‘โˆ’๐›พ ๐‘ƒ1/2diag "

ยฏ ๐œ‚1+๐œ”๐‘“๐œ‚ยฏ2

1+๐œ”๐‘“๐œ–

ยฏ ๐œ‚2

1+๐œ–

3/2 ,ยท ยท ยท

# !

ยท๐œ‚โˆ’๐‘ƒโˆ’1/2๐œ‚ยค

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

Consider the related system W where W = V and 2W ยคW = ๐‘‰ยค. Then, from (6.97),

2W ยคW โ‰ค โˆ’2๐›ผW2+2W๐ท (6.98)

W โ‰ค โˆ’ยค ๐›ผW +๐ท . (6.99)

Consider another related system,๐‘ค(๐‘ก), defined by๐‘คยค(๐‘ก) =โˆ’๐›ผ๐‘ค(๐‘ก) +๐ท(๐‘ก)and๐‘ค(0)= W (0). The solution to๐‘ค(๐‘ก)is

๐‘ค(๐‘ก) =eโˆ’๐›ผ๐‘ก๐‘ค(0) +

โˆซ ๐‘ก 0

eโˆ’๐›ผ(๐‘กโˆ’๐‘Ÿ)๐ท(๐‘Ÿ)d๐‘Ÿ , (6.100)

which can be bounded by

๐‘ค(๐‘ก) โ‰ค eโˆ’๐›ผ๐‘ก

๐‘ค(0) โˆ’sup

๐‘ก

๐ท(๐‘ก) ๐›ผ

+sup

๐‘ก

๐ท(๐‘ก)

๐›ผ (6.101)

By the Comparison Lemma [27],

โˆš

V =W โ‰ค๐‘ค(๐‘ก), (6.102)

thusโˆš

V and alsok๐‘ฅหœk exponentially converges to the ball k๐‘ฅหœk โ‰ค

โˆš

V โ‰ค ๐‘ ๐‘ข ๐‘๐‘ก ๐ท

๐›ผ (6.103)

Seemingly, the proof is complete at this point. However, we have not yet shown that ๐ท is bounded. By assumption,๐œ‚, ๐‘‘, and๐œ‚ยคare uniformly bounded, and ๐ต0, ๐›พ, ๐œ”๐‘“, and๐œ– are constants. ๐ท is uniformly bounded if ๐‘ƒ1/2, ๐‘ƒโˆ’1/2, ๐œ‚ยฏ, and๐‘ˆ are initially bounded and continuous.

๐‘ƒ1/2and๐‘ƒโˆ’1/2are uniformly bounded if๐‘ƒโˆ’1is uniformly positive definite and uni- formly bounded, respectively. Uniform positive definiteness is guaranteed by uni- form positive definiteness of ๐œ‚ยฏ. Uniform boundedness is guaranteed by uniform boundedness of๐‘ˆand๐œ‚ยฏ.

ยฏ

๐œ‚is uniformly bounded if๐œ‚is uniformly bounded and๐œ‚หœis uniformly bounded.

๐‘ˆis uniformly bounded if๐‘ฅหœis uniformly bounded and(๐ต0๐œ‚ยฏ)โˆ’1๐‘… is uniformly bounded.

For the case of (6.18)๐‘ˆ also is a function of ๐œ™, leading to the additional condition that๐œ™be bounded, which can be guaranteed if๐œ™is Lipschitz bounded.

While precise conditions for uniform boundedness of (๐ต0๐œ‚ยฏ)โˆ’1๐‘… is difficult to write out, it is clear that ๐œ‚ยฏ โ†’ 0 as ๐›พ โ†’ โˆž. We also observe that ๐‘ƒ1/2 โˆผ ๐‘ˆ ,๐œ‚ยฏ, so

Figure 6.1: The test aircraft vehicle design(Left) picture of the vehicle. (Right) schematic of the implemented system. This figure was provided by Joshua Cho.

for small ๐›พ, ๐ท will be dominated by the term ๐‘ƒ1/2๐‘ˆ ๐ต>

0๐‘‘. For sufficiently large ๐›พ, (๐ต0๐œ‚ยฏ)โˆ’1๐‘… is bounded. Lastly, for very large๐›พ, no adaptation will occur, and the system will maintain the baseline performance. Thus, there is an inherent design trade off between the degree of regularization and the nominal modeling errors not captured by the efficiency adaptation model, in the case of (6.17), or the learning representation error in the case of (6.18).

6.4 Experimental Validation

Dalam dokumen Methods for Robust Learning-Based Control (Halaman 112-127)