Chapter 6: Neural Fly for Fault Tolerance
6.3 Methods
Control allocation through online optimization
First, we introduce two common choices for control allocation matrix, one prior approach, and then propose a novel control allocation algorithm that maximizes control authority. Because these methods do not explicitly consider the time-varying nature of the system, we will simply denote the control actuation matrix of interest as๐ต.
Moore-Penrose Pseudoinverse Allocation
A natural choice for the control allocation matrix, ๐ด, is the Moore-Penrose right pseudoinverse, given by
๐ด= ๐ตโ = ๐ต> ๐ต ๐ต>โ1 (6.9) Note that for controllable overactuated systems, i.e., the type of system we are con- sidering,๐ตis a wide, full row rank matrix, so(๐ต ๐ต>)โ1is well-defined. This choice of control allocation matrix yields the minimum norm control input given any de- sired torque command, that is,
๐ดpinv =argmin๐ดmaxk๐k2=1 k๐ด๐k2
s.t. ๐ต ๐ด=I
. (6.10)
However, the minimum norm solution does not account for actual power usage or control saturation. Thus, it is not often the best choice.
Maximum Control Authority Allocation
For a symmetric multirotor, we can design a control allocation matrix that maxi- mizes control authority by choosing thrust and torque factors that independently cre- ate the maximum thrust and moments. A multirotor is symmetric when๐ตsign(๐ต>) is diagonal. The maximum torque along the ๐โth axis is produced when๐ข๐max
,๐ = max sign(๐ต>)(ยท,๐),0, where(๐ต>)(ยท,๐)is the๐โth column of๐ต>andmaxis the element-
wise maximum, here. Thus, the allocation matrix that yields maximum control au- thority along each control axis, independently, is
๐ดmca =sign(๐ต>) (6.11)
On most multirotors and every a symmetric multirotor, this allocation scheme will not work under a single motor failure. For example, consider a perfectly sensed motor failure, such that ๐ต = ๐ต0๐ป(๐ก), where ๐ต0represents the nominal, symmetric system. Any single motor failure will cause (๐ต0๐ป)sign( (๐ต0๐ป)>) to become non- diagonal. This leads to cross coupling in the different control axis and significantly degraded tracking performance. Thus, for fault-tolerant control, we must consider more sophisticated allocation algorithms.
Kimโs Control Allocation
[5] proposes the following allocation algorithm:
๐ดkim =argmin๐ด k๐ดk๐น + 1
๐
ร๐
๐=1|๐ด(0,๐) โmean(๐ด(0,ยท)) |
s.t. ๐ต ๐ด=I, ๐ด(0,ยท) โฅ 0 (6.12)
The first term in the cost function, k๐ดk๐น, is the Frobenius norm of ๐ด, which is used as a surrogate for the control effort. The second term distributes the thrust among the motors as evenly as possible. The constraints ensure that the solution is a valid control allocation matrix for ๐ตand that the thrust factors are non-negative.
However, we find that under an outboard motor failure for our system in Sec. 6.4, some thrust factors are 0 with non-zero torque factors. Thus, there are infinitesimally small torque commands can cause the control to saturate.
Proposed Allocation Algorithm
Do to the limitations of prior approaches, we propose the following allocation algo- rithm. This method directly maximizes the control authority at a nominal operating point, where the thrust equals the (scaled) weight of the vehicle,๐. Furthermore, this formulation is not only convex, but also it is a linear program. Thus, it can be solved efficiently using, for example using the [25], [26]
The thrust for a given set of motor speeds is given by ๐ต0(1
,ยท)๐ข. Thus, to achieve the maximum thrust with no torque, that is๐๐ = [1; 0; 0; 0], we must have๐ข๐ = ๐ด๐๐ = ๐ด(ยท,1). Similarly, to achieve the maximum torque along the๐th axis while producing ๐thrust, we must have๐ข๐ = ๐ด๐๐ =๐ ๐ด(ยท,1)+๐ด(ยท,๐). Since the vehicle is asymmetric,
we must consider both the positive and negative torque along each axis. Accounting for actuation limits, this leads
๐ดยฏNFF =argmax ๐ต(1,ยท)๐ด(ยท,1) +ร๐
๐=2๐ต(๐,ยท) ๐ ๐ด(ยท,1) +๐ด(ยท,๐)
๐ด โร๐
๐=2๐ต(๐,ยท) ๐ ๐ด(ยท,1) โ ๐ด(ยท,๐) s.t. ๐ต(2:4,ยท)๐ด(ยท,0) =0, ๐ด(ยท,1) โฅ 0, ๐ด(ยท,1) โค1,
๐ต( (1,3,4),ยท)๐ด(ยท,2) = [๐,0,0]>, 0 โค ๐ ๐ด(ยท,1) +๐ด(ยท,๐)
โค 1,0 โค ๐ ๐ด(ยท,1) โ ๐ด(ยท,๐)
โค 1, ๐ต( (1,2,4),ยท)๐ด(ยท,3) = [๐,0,0]>,
0 โค ๐ ๐ด(ยท,1) +๐ด(ยท,๐)
โค 1,0 โค ๐ ๐ด(ยท,1) โ ๐ด(ยท,๐)
โค 1, ๐ต( (1,2,3),ยท)๐ด(ยท,4) = [๐,0,0]>,
0 โค ๐ ๐ด(ยท,1) +๐ด(ยท,๐)
โค 1,0โค ๐ ๐ด(ยท,1) โ ๐ด(ยท,๐)
โค 1
(6.13)
For failure scenarios, ๐ต๐ดยฏNFF โ I due to the reduced control authority, however, ๐ต๐ดยฏNFF is diagonal. Thus, we simply must rescale ๐ดยฏNFF to ensure that๐ต๐ดยฏNFF = I.
Thus, the final control allocation matrix is given by
๐ดNFF = ๐ดยฏNFF ๐ต๐ดยฏNFFโ1 (6.14) Under nominal conditions, this exactly reproduces the solution from (6.11). Further- more, under a single motor failure, this algorithm will maintain maximum control authority while maintaining the nominal performance characteristics of the system.
Motor Efficiency Adaptation as an Extension of Learned Dynamics
Consider the following learning architectures and control laws, which are all models for the error in the nominal model, (6.5).
ห
๐NF(๐ฅ , ๐ข) =๐(๐ฅ , ๐ข)๐,ห ๐ขNF= (๐ต0)โ1๐ (โ๐(๐ฅ) โ๐พ๐ฅหโ๐หNF) (6.15) ห
๐B(๐ฅ , ๐ข) =(๐ตหโ๐ต0)๐ข, ๐ขB=๐ตหโ1
๐ (โ๐(๐ฅ) โ๐พ๐ฅห) (6.16) ห
๐eff(๐ฅ , ๐ข) =๐ต0(๐ปห โI)๐ข, ๐ขeff= (๐ต0๐ปห)โ1๐ (โ๐(๐ฅ) โ๐พ๐ฅห) (6.17) ห
๐NFF(๐ฅ , ๐ข) =๐ต0(๐ปห โI)๐ข+๐(๐ฅ , ๐ข)๐,ห
๐ขNFF =(๐ต0๐ปห)โ1๐ (โ๐(๐ฅ) โ๐พ๐ฅหโ๐(๐ฅ , ๐ข)๐ห) (6.18) ห
๐NFis the learned dynamics model from [17],๐หBis full actuation matrix adaptation, ห
๐effis motor efficiency adaptation, and๐หNFFis the proposed method, which combines
motor efficiency adaptation and learned dynamics. In the next section, Sec. 6.3, we will discuss online adaptation of the full control actuation matrix, (6.16) and some challenges of this approach. Then, we will continue our analysis only for (6.18), since (6.17) and (6.15) are special cases of (6.18).
Full Actuation Matrix Adaptation
To simplify the notation, define ๐ตยฏ = ๐ตห โ ๐ต0. Consider the continuous time cost function
๐ฝ(๐ตยฏ)=
โซ ๐ก 0
eโ(๐กโ๐)/๐1 ๐ฆโ๐ต๐ขยฏ
2d๐ +๐2k๐ตยฏk2๐น (6.19)
=
โซ ๐ก
0
eโ(๐กโ๐)/๐1tr
(๐ฆโ๐ต๐ขยฏ ) (๐ฆโ๐ต๐ขยฏ )>d๐+๐2tr ยฏ๐ต๐ตยฏ> (6.20)
=
โซ ๐ก 0
eโ(๐กโ๐)/๐1tr
๐ฆ ๐ฆ>โ2 ยฏ๐ต๐ข ๐ฆ>+๐ต๐ข๐ขยฏ >๐ตยฏ
d๐+๐2tr ยฏ๐ต๐ตยฏ> (6.21) Since this is convex and quadratic in ๐ต, we can easily find the solution by looking for the critical point. We are using the following notation: h
๐ ๐ฝ
๐๐ตยฏ
i
๐ ๐
= ๐ ๐ฝ
๐๐ตยฏ๐ ๐.
๐ ๐ฝ
๐๐ตยฏ
=
โซ ๐ก
0
eโ(๐กโ๐)/๐1
0โ2๐ฆ๐ข>+2 ยฏ๐ต๐ข๐ข>d๐+๐22 ยฏ๐ต (6.22)
ยฏ ๐ต
๐2I+
โซ ๐ก 0
eโ(๐กโ๐)/๐1๐ข๐ข>d๐
=
โซ ๐ก 0
eโ(๐กโ๐)/๐1๐ฆ๐ข>d๐ (6.23)
ยฏ ๐ต =
โซ ๐ก
0
eโ(๐กโ๐)/๐1๐ฆ๐ข>d๐
๐2I+
โซ ๐ก
0
eโ(๐กโ๐)/๐1๐ข๐ข>d๐ โ1
| {z }
๐
(6.24)
Now we can derive a recursive update law for๐ตยฏ. Starting with๐, ๐ยค=โ๐d ๐โ1
d๐ก
๐ (6.25)
=โ๐
๐ข๐ข>โ 1 ๐1
โซ ๐ก 0
eโ(๐กโ๐)/๐1๐ข๐ข>d๐
๐ (6.26)
=โ๐
๐ข๐ข>โ 1 ๐1
๐โ1โ๐2I
๐ (6.27)
๐ยค= 1 ๐1
๐โ๐ ๐2
๐1I+๐ข๐ข>
๐. (6.28)
Then we can compute ๐ตยคยฏ.
ยคยฏ ๐ต=
๐ฆ๐ข>โ 1 ๐1
โซ ๐ก 0
eโ(๐กโ๐)/๐1๐ฆ๐ข>d๐
๐
+
0
eโ(๐กโ๐)/๐1)๐ฆ๐ข>d๐ 1 ๐1
๐โ๐ 2
๐1I+๐ข๐ข> ๐ (6.29)
=๐ฆ๐ข>๐โ๐ตยฏ
๐ข๐ข>+ ๐2 ๐1I
๐ (6.30)
ยคยฏ
๐ต=โ ๐ต๐ขยฏ โ๐ฆ
๐ข>๐โ ๐2 ๐1
ยฏ
๐ต ๐ (6.31)
As we will see later, it is useful to consider a composite adaptation law, that is an adaptation law that depends on both๐ต๐ขยฏ โ๐ฆand๐ , given by
ยคยฏ
๐ต=โ ๐ต๐ขยฏ โ๐ฆ
๐ข>๐โ ๐2 ๐1
ยฏ
๐ต ๐+๐ ๐ข>๐ (6.32) The closed loop dynamics are given by
๐(๐) ยฅ๐+๐ถ(๐,๐ยค) ยค๐+๐(๐) =๐ต๐ข (6.33) ๐ข= ๐ตยฏโ (๐(๐) ยฅ๐๐ +๐ถ(๐,๐ยค) ยค๐๐ +๐(๐) โ๐พ ๐ ) (6.34)
ห
๐ต= ๐ตยฏ+๐ต0โ ๐ตโ ๐ต=๐ตยฏ+๐ต0โ๐ตห (6.35) ๐๐ ยค+ (๐ถ+๐พ)๐ =โ๐ตห(๐ตยฏ+๐ต0) (๐๐ยฅ๐ +๐ถ๐ยค+๐(๐) โ๐พ ๐ ) (6.36) Take the following Lyapunov function
V =๐ >๐(๐)๐ + k๐ตหk2F
,๐โ1 (6.37)
k๐ตหk2F
,๐โ1 , tr๐ต ๐ห โ1๐ตห>
(6.38) V (๐ ,๐ตห) =๐ >๐(๐)๐ +tr๐ต ๐ห โ1๐ตห>
(6.39) then
Vยค =2๐ >๐๐ ยค+๐ > ยค๐ ๐ +2tr
ห ๐ต ๐โ1๐ตยคห>
+tr
ห ๐ตd
d๐ก
๐โ1 ๐ตห>
(6.40)
=2๐ > โ(๐ถ+๐พ)๐ โ๐ต๐ขห
+๐ >๐ ๐ (6.41)
+2tr
ห ๐ต ๐โ1
โ ๐ต๐ขห
๐ข>๐โ ๐2 ๐1
ยฏ
๐ต ๐+๐ ๐ข>๐ >
+tr
ห ๐ต
๐ข๐ข>โ 1 ๐1
๐โ1โ๐2I
ห ๐ต>
=โ2๐ >๐พ ๐ โ2๐ >๐ต๐ขห +2tr
๐ต ๐ห โ1 ๐ ๐ข>๐>
(6.42) +2tr
ห ๐ต
โ๐ข๐ข>๐ตห>โ ๐2 ๐1
ยฏ ๐ต>
+2tr 2 ๐1
ห
๐ต(๐ตโ๐ต0)> โ2tr 2 ๐1
ห
๐ต(๐ตโ๐ต0)>
+tr
ห
๐ต๐ข๐ข>๐ตห>โ 1 ๐1
ห
๐ต ๐โ1๐ตห>+ ๐2 ๐1
ห ๐ต๐ตห>
=โ2๐ >๐พ ๐ โ2tr ๐2
๐1
ห
๐ต(๐ตโ๐ต0)>
(6.43)
+tr
โ๐ต๐ข๐ขห >๐ตห>โ 1 ๐1
ห
๐ต ๐โ1๐ตห>โ ๐2 ๐1
ห ๐ต๐ตห>
Vยค =โ2๐ >๐พ ๐ โtr
ห ๐ต
๐ข๐ข>+ 1 ๐1
๐โ1+๐2 ๐1I
ห ๐ต>
(6.44)
โ2tr ๐2
๐1
ห
๐ต(๐ตโ๐ต0)>
Lemma 6.3.1. Note that for matrices ๐ต โ R๐ร๐, ๐ถ โ R๐ร๐, and ๐ท โ R๐ร๐, if ๐ท > ๐ถand rank(๐ต) =๐, thentr(๐ต(๐ทโ๐ถ)๐ต>) >0.
Proof. For any๐ฅ โ R๐, if๐ฅ โ 0and rank(๐ต) =๐then๐ต>๐ฅ โ 0. When๐ท โ๐ถ > 0, we also have the๐ฅ>๐ต(๐ทโ๐ถ)๐ต>๐ฅ >0, and thus๐ต(๐ทโ๐ถ)๐ต> > 0. Since the trace of a matrix is equal to the sum of the eigenvalues of a matrix, and all the eigenvalues of a positive definite matrix are positive,tr(๐ต(๐ทโ๐ถ)๐ต>) > 0.
Define๐ผ > 0as the exponential convergence rate of the system such that
๐ข๐ข>+ 1 ๐1
๐โ1+๐2 ๐1I
> 2๐ผ ๐โ1 and (6.45)
๐พ > ๐ผ ๐ . (6.46)
Aside. We can slightly tighten the convergence bound since๐ทโ๐ถ >0is sufficient but not necessary for tr(๐ต(๐ทโ๐ถ)๐ต>) > 0. In particular, (6.45) can be loosened to
ร
๐
eig๐ ๐ข๐ข>+ 1 ๐1
๐โ1+ ๐2 ๐1I
โ2๐ผ ๐โ1
>0 (6.47)
whereeig๐is the๐โth eigenvalue of the matrix.
Define๐ท = ๐2
๐1
๐1/2(๐ตโ๐ต0)>
. Then
V โค โ2ยค ๐ผV +2
โ
V๐ท (6.48)
Consider the related system W where W =
โ
V and 2W ยคW = ๐ยค. Then, from (6.48),
2W ยคW โค โ2๐ผW2+2W๐ท (6.49)
W โค โยค ๐ผW +๐ท . (6.50) Consider another related system,๐ค(๐ก), defined by๐คยค(๐ก) =โ๐ผ๐ค(๐ก) +๐ท(๐ก)and๐ค(0)= W (0). The solution to๐ค(๐ก)is
๐ค(๐ก) =eโ๐ผ๐ก๐ค(0) +
โซ ๐ก
0
eโ๐ผ(๐กโ๐)๐ท(๐)d๐ , (6.51) which can be bounded by
๐ค(๐ก) โค eโ๐ผ๐ก
๐ค(0) โsup
๐ก
๐ท(๐ก) ๐ผ
+sup
๐ก
๐ท(๐ก)
๐ผ (6.52)
By the Comparison Lemma [27],
โ
V =W โค๐ค(๐ก), (6.53)
thusโ
V and alsok๐ฅหk exponentially converges to the ball k๐ฅหk โค
โ
V โค ๐ ๐ข ๐๐ก ๐ท
๐ผ (6.54)
While this shows stability of the system, convergence of the system can be slow. This is an inherent limitation of directly adapting all parameters of the control actuation matrix. Furthermore, this method can be sensitive to noise or non-zero ๐res, which we have not considered here. In the next section, we will focus on adaptation of the efficiency factors, which enables faster adaptation, and therefore faster convergence.
Kalman Filter Based Adaptation and โ2 Regularized Least Squares
With some simple rearrangements, we can write the Kalman Filter based composite adaptation law following [17]. To see that the Kalman filter adaptation will follow [17], consider the following rearrangements.
ห
๐NFF = h
๐ต0๐ ๐ i
"
ห ๐โ1
ห ๐
#
(6.55)
where ๐ห=diag(๐ปห), and (6.56)
๐ =diag(๐ข) (6.57)
Then, the Kalman filter based adaptation law is given by
"
ยคห ๐
ยคห ๐
#
=โ๐๐
"
ห ๐โ1
ห ๐
# +๐
h
๐ต0๐ ๐ i>
๐ โ1 ๐ฆโ h
๐ต0๐ ๐ i
"
ห ๐โ1
ห ๐
# !
+๐ ๐ต0๐ ๐ ๐ฅห (6.58) ๐ยค =โ2๐๐๐+๐โ๐
h
๐ต0๐ ๐ i>
๐ โ1 h
๐ต0๐ ๐ i
๐ (6.59)
A similarโ2-regularized least squares with exponential forgetting formulation can also be derived, which takes the form
"
ยคห ๐
ยคห ๐
#
=โ๐พ
"
ห ๐โ1
ห ๐
# +๐
h
๐ต0๐ ๐ i>
๐ โ1 ๐ฆโ h
๐ต0๐ ๐ i
"
ห ๐โ1
ห ๐
# !
+๐ h
๐ต0๐ ๐ i>
ห
๐ฅ (6.60)
๐ยค =๐๐๐โ๐ h
๐ต0๐ ๐ i> h
๐ต0๐ ๐ i
+ฮ
๐ (6.61)
whereฮis a diagonal positive definite matrix that controls the regularization cost in the least squares problem. Note that the closed from solution for๐is given by
๐ โก
โซ ๐ก
0
๐โ๐๐(๐กโ๐) h
๐ต0๐ ๐ i> h
๐ต0๐ ๐ i
๐๐ +ฮ โ1
. (6.62)
The proof of stability largely follows that of [17] once the closed loop dynamics have been sufficiently rearranged, as we do below in (6.85). There are two added complexities in the proof, which are that the disturbance term becomes a function of ๐>๐and that uniform boundedness of๐now depends on uniform boundedness of๐. Although we will omit the proof, and address these challenges for theโ1-regularized adaptation law in the next section; the proof for theโ2-regularized adaptation law and Kalman filter adaptation law follows exactly the same form, except for the form of the regularization term and๐update equation.
Theโ2-regularized and Kalman-filter-based methods are not necessarily able to cor- rectly identify the underlying faults, but the estimated efficiencies vector is sufficient to stabilize and re-balance the system. Both of these results are a result of a lack of persistent excitation. Because we are considering an over-actuated system, and be- cause we control the design of the control allocation matrix, the control allocation can be perturbed to obtain persistent excitation without affecting tracking perfor- mance. This would require constantly updating the allocation scheme to excite dif- ferent modes in the system, while still satisfying the key allocation constraint, (6.6).
Instead, we will consider an alternate regularization method in the following section, which encourages sparse failure identification.
Sparse Failure Identification
In this section, we will consider an update policy similar to theโ2-regularized adap- tive update law in the last section, except we will use anโ1-regularized update pol- icy. This is a common regularization term for sparse parameter estimation, because it encourages sparse solutions without requiring a hard constraint on the number of non-zero parameters or iteration through many non-zero parameter combinations.
Discrete Update Law
Consider the following least squares loss function.
๐ฝ๐(๐,ห ๐ห) =
๐
ร
๐=0
e(โ๐๐(๐ก๐โ๐ก๐))k๐ฆ๐โ๐หNFFk22+๐พ๐k๐หโ1k1+๐พ๐k๐หk22 (6.63) First, simplify the loss function by moving๐หand๐หoutside the summation and defin- ing๐ยฏ=๐หโ1.
๐ฝ๐(๐,ห ๐ห) =
๐
ร
๐=0
e(โ๐๐(๐ก๐โ๐ก๐)) (๐ฆ๐โ๐ห)>(๐ฆ๐โ๐ห) +๐พ๐k๐ยฏk1+๐พ๐k๐หk22 (6.64)
=
๐
ร
๐=0
e(โ๐๐(๐ก๐โ๐ก๐)) ๐ฆ>
๐ ๐ฆ๐โ2๐ฆ>
๐ ๐ห+๐ห>๐ห
+๐พ๐k๐ยฏk1+๐พ๐k๐หk22 (6.65)
=
๐
ร
๐=0
e(โ๐๐(๐ก๐โ๐ก๐))๐ฆ>
๐ ๐ฆ๐
!
โ2
๐
ร
๐=0
e(โ๐๐(๐ก๐โ๐ก๐))๐ฆ>
๐
h
๐ต0๐๐ ๐๐ i
! "
ยฏ ๐ ห ๐
#
+ h
ยฏ ๐> ๐ห>
i
๐
ร
๐=0
e(โ๐๐(๐ก๐โ๐ก๐))
"
๐๐๐ต>
0๐ต0๐๐ ๐๐๐ต>
0๐๐ ๐>
๐ ๐ต0๐๐ ๐>
๐ ๐๐
# ! "
ยฏ ๐ ห ๐
#
+๐พ๐k๐ยฏk1+๐พ๐k๐หk22 (6.66)
This is a convex function of๐ยฏand๐ห, so we can easily solve for the optimal๐ยฏand๐ห using a number of numerical solving tools. During online computation, we can quickly incorporate a new measurement by scaling the old summation terms by exp(โ๐๐(๐ก๐โ๐ก๐โ1)) and adding the kโth term. Then we can solve for the optimal
ยฏ
๐and ๐หusing a numerical solver as needed. Note, that we can also easily derive a recursive solution for the optimal๐ห, with a simplified update step to quickly incor- porate new measurements and a step for computation of the optimal๐หgiven the most recently computed๐ยฏ, which would require solving a linear system of equations.
Continuous Update Law
The analogous continuous time adaptation law for๐หcan be found from the following cost function:
๐ฝ(๐ยฏ)=
โซ ๐ก 0
eโ๐๐(๐กโ๐)k๐ฆโ๐ต๐(๐)๐ยฏk2d๐ +2๐พk๐ยฏk1 (6.67)
=
โซ ๐ก
0
eโ๐๐(๐กโ๐) ๐ฆ>๐ฆโ2๐ฆ>๐ต๐๐ยฏ+๐ยฏ>๐ ๐ต>๐ต๐๐ยฏd๐ +2๐พk๐ยฏk1 (6.68) Note that we have dropped back to the simpler case of (6.17), though the full con- tinuous time stability analysis for (6.18) follows similarly under the assumption of Lipschitz boundedness of๐.
First, approximate theโ1norm such that k๐ยฏk1 โร
๐
q
ยฏ ๐2
๐ +๐ = k๐ยฏk1,๐ and lim
๐โ0
ร
๐
q
ยฏ ๐2
๐ +๐ =k๐ยฏk1 (6.69) Then the cost function in (6.68) is approximated๐ฝ(๐, ๐ยฏ ) such thatlim๐โ0๐ฝ(๐, ๐ยฏ ) = ๐ฝ(๐ยฏ), where๐ฝ(๐, ๐ยฏ )is given by
๐ฝ(๐ยฏ) โ ๐ฝ(๐, ๐ยฏ )=
โซ ๐ก
0
eโ๐๐(๐กโ๐) ๐ฆ>๐ฆโ2๐ฆ>๐ต0๐๐ยฏ+๐ยฏ>๐ ๐ต>
0๐ต0๐๐ยฏd๐ +2๐พ
ร
๐
q
ยฏ ๐2
๐ +๐ (6.70)
Since this cost function is convex in๐ยฏ, the minimum value is obtained when ๐ ๐ฝ๐๐ยฏ =0, as follows.
๐ ๐ฝ
๐๐ยฏ
=
โซ ๐ก
0
eโ๐๐(๐กโ๐) โ2๐ ๐ต>
0๐ฆ+2๐ ๐ต>
0๐ต0๐๐ยฏd๐+2๐พ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ ๐1 q
ยฏ ๐2
1+๐ , ๐ยฏ2
q
ยฏ ๐2
2+๐ ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ (6.71)๏ฃป
๐ ๐ฝ
๐๐ยฏ
=0
ยฉ
ยญ
ยญ
ยซ
๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ 1 q
ยฏ ๐2
1+๐ ,
1 q
ยฏ ๐2
2+๐ ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ +
โซ ๐ก
0
eโ๐๐(๐กโ๐)๐(๐)๐ต>
0๐ต0๐(๐)d๐ ยช
ยฎ
ยฎ
ยฌ
ยฏ ๐
=
โซ ๐ก
0
eโ๐๐(๐กโ๐)๐(๐)๐ต>
0๐ฆd๐ (6.72)
ยฏ ๐ =ยฉ
ยญ
ยญ
ยซ
๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ 1 q
ยฏ ๐2
1+๐
, 1
q
ยฏ ๐2
2+๐ ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ +
โซ ๐ก
0
eโ๐๐(๐กโ๐)๐(๐)๐ต>
0๐ต0๐(๐)d๐ยช
ยฎ
ยฎ
| {z }ยฌ
๐
ยท
โซ ๐ก
0
eโ๐๐(๐กโ๐)๐(๐)๐ต>
0๐ฆd๐ (6.73)
Note for some ๐, if ๐ยฏ๐ = 0 (typically forโ1 norm minimization), then q1
ยฏ ๐2
๐+๐
= โ1
๐. Otherwise, aslim๐โ0 1
q
ยฏ ๐2
๐+๐
= |1
ยฏ ๐๐|.
Now we can derive a recursive update law for๐ยฏ. Starting with๐: ๐ยค =โ๐
d ๐โ1 d๐ก
๐
=โ๐
ยฉ
ยญ
ยญ
ยซ
๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ ๐1
ยฏ ๐2
1+๐
3/2,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
+๐(๐ก)๐ต>
0๐ต0๐(๐ก)
โ๐๐
โซ ๐ก
0
eโ๐๐(๐กโ๐)๐(๐)๐ต>
0๐ต0๐(๐)d๐
๐
=โ๐
ยฉ
ยญ
ยญ
ยซ
๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ ๐1
ยฏ ๐2
1+๐
3/2,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
+๐(๐ก)๐ต>
0๐ต0๐(๐ก)
โ๐๐
ยฉ
ยญ
ยญ
ยซ
๐โ1โ๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ 1 q
ยฏ ๐2
1+๐ ,
1 q
ยฏ ๐2
2+๐ ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ ยช
ยฎ
ยฎ
ยฌ ยช
ยฎ
ยฎ
ยฌ
๐ (6.74)
๐ยค =๐๐๐โ๐
ยฉ
ยญ
ยญ
ยซ
๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
+๐(๐ก)>๐ต>
0๐ต0๐(๐ก)ยช
ยฎ
ยฎ
ยฌ
๐. (6.75)
Then we can compute๐ยคยฏ.
ยคยฏ ๐=๐
๐(๐ก)>๐ต>
0๐ฆ(๐ก) โ๐๐
โซ ๐ก
0
eโ๐๐(๐กโ๐)๐(๐)๐ต>
0๐ฆ(๐)d๐
+ยฉ
ยญ
ยญ
ยซ
๐๐๐โ๐ยฉ
ยญ
ยญ
ยซ
๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
+๐(๐ก)๐ต>
0๐ต0๐(๐ก)ยช
ยฎ
ยฎ
ยฌ ๐ยช
ยฎ
ยฎ
ยฌ
ยท
โซ ๐ก
0
eโ๐๐(๐กโ๐)๐(๐)๐ต>
0๐ฆ(๐)d๐
(6.76)
=๐ ๐(๐ก)>๐ต>
0๐ฆโ๐๐๐โ1๐ยฏ (6.77)
+ยฉ
ยญ
ยญ
ยซ
๐๐๐โ๐
ยฉ
ยญ
ยญ
ยซ
๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
+๐(๐ก)๐ต>
0๐ต0๐(๐ก)ยช
ยฎ
ยฎ
ยฌ ๐
ยช
ยฎ
ยฎ
ยฌ ๐โ1๐ยฏ
=๐๐(๐ก)>๐ต>
0๐ฆโ๐๐๐ยฏ+๐๐๐ยฏ
โ๐ยฉ
ยญ
ยญ
ยซ
๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
+๐(๐ก)๐ต>
0๐ต0๐(๐ก)ยช
ยฎ
ยฎ
ยฌ
ยฏ
๐ (6.78)
ยคยฏ
๐=๐๐(๐ก)>๐ต>
0(๐ฆโ๐ต0๐(๐ก)๐ยฏ) โ๐พ ๐ยทdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
ยท๐ยฏ (6.79)
Stability Analysis
Again, for the continuous stability analysis we will focus on (6.17), however, the analysis for (6.18) follows similarly. Assume that we design a control allocation matrix ๐ดsuch that๐ต0๐ป ๐ดห =I. The closed loop dynamics are
ยค
๐ฅ = ๐๐(๐ฅ) +๐ต๐ขeff+๐(๐ฅ , ๐ข, ๐ก) (6.80)
= ๐๐(๐ฅ) +๐ต0๐ป ๐ข+๐(๐ก) (6.81)
= ๐๐(๐ฅ) +๐ต0๐ป(๐ต0๐ปห)โ1๐ (โ๐พ(๐ฅโ๐ฅ๐) + ยค๐ฅ๐) +๐(๐ก) (6.82)
= ๐๐(๐ฅ) +
๐ต0๐ปห(๐ต0๐ปห)โ1๐ +๐ต0(๐ปโ๐ปห) (๐ต0๐ปห)โ1๐
(โ๐พ(๐ฅโ๐ฅ๐) + ยค๐ฅ๐โ ๐๐(๐ฅ)) (6.83)
=โ๐พ(๐ฅโ๐ฅ๐) + ยค๐ฅ๐โ๐ต0๐ป ๐ขห (6.84)
ยคห
๐ฅ =โ๐พ๐ฅหโ ๐ต0๐๐ห+๐(๐ก) (6.85)
where๐ห =๐หโ๐,๐ฅห=๐ฅโ๐ฅ๐, and๐(๐ฅ , ๐ข, ๐ก)has been lumped into๐(๐ก).
As we will see later, it is useful to consider a composite adaptation law, which is a modification of the adaptation law from (6.79) that includes both๐ต0๐๐ยฏโ๐ฆ and๐ฅห, given by
ยคยฏ
๐=๐๐ ๐ต>
0(๐ฆโ๐ต0๐๐ยฏ) โ๐พ ๐diagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
ยท๐ยฏ+๐๐ ๐ต>
0๐ฅห (6.86) Stability can be shown with the following Lyapunov function:
V =๐ฅห>๐ฅห+๐ห>๐โ1๐ห= h
ห ๐ฅ ๐ห
i>
M h
ห ๐ฅ ๐ห
i
, (6.87)
where M = I 0 0 ๐โ1
(6.88) The derivative is computed as follows:
Vยค =2 ห๐ฅ>๐ฅยคห+2 ห๐>๐โ1๐ยคห+๐ห>
d ๐โ1
d๐ก ๐ห (6.89)
=โ2 ห๐ฅ>๐พ๐ฅหโ2 ห๐ฅ>๐ต0๐๐ห
2 ห๐>๐โ1
ยฉ
ยญ
ยญ
ยซ ๐๐ ๐ต>
0(๐ฆโ๐ต0๐๐ยฏ) โ๐พ ๐diagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
ยท๐ยฏ
+๐๐ ๐ต>
0๐ฅหโ ยค๐ +๐ห>ยฉ
ยญ
ยญ
ยซ
โ๐๐๐โ1+๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
+๐(๐ก)๐ต>
0๐ต0๐(๐ก)ยช
ยฎ
ยฎ
ยฌ
ห ๐ (6.90)
=โ2 ห๐ฅ>๐พ๐ฅหโ2 ห๐ฅ>๐ต0๐๐ห+2 ห๐ฅ>๐
+2 ห๐>๐ ๐ต>
0(๐โ๐ต0๐๐ห) โ2๐พ๐ห>diagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
ยท๐ยฏ
+2 ห๐>๐ ๐ต>
0๐ฅหโ2 ห๐>๐โ1๐ยคโ๐๐๐ห>๐โ1๐ห +๐พ๐ห>diagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
ห
๐+๐ห>๐ ๐ต>
0๐ต0๐๐ห (6.91)
=โ2 ห๐ฅ>๐พ๐ฅห+2 ห๐ฅ>๐
+2 ห๐>๐ ๐ต>
0(๐โ๐ต0๐๐ห) โ2๐พ๐ห>diagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
ยท (๐ห+๐)
โ2 ห๐>๐โ1๐ยคโ๐๐๐ห>๐โ1๐ห+๐พ๐ห>diagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
ห
๐ (6.92)
=โ2 ห๐ฅ>๐พ๐ฅห+2 ห๐ฅ>๐
โ๐ห>ยฉ
ยญ
ยญ
ยซ ๐ ๐ต>
0๐ต0๐โ๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
โ๐๐๐โ1ยช
ยฎ
ยฎ
ยฌ
ห ๐
+2 ห๐>ยฉ
ยญ
ยญ
ยซ ๐ ๐ต>
0๐โ๐พdiagยฉ
ยญ
ยญ
ยซ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
ยฏ
๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ยช
ยฎ
ยฎ
ยฌ
ยท๐โ๐โ1๐ยคยช
ยฎ
ยฎ
ยฌ
(6.93)
=โ
"
ห ๐ฅ
ห ๐
#> ๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
2๐พ 0
0 ๐ ๐ต>
0๐ต0๐+๐พdiag "
ยฏ ๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐3/2 ,ยท ยท ยท
# !
+๐๐๐โ1
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป
"
ห ๐ฅ
ห ๐
#
+2
"
ห ๐ฅ
ห ๐
#> ๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
๐ ๐ ๐ต>
0๐โ๐พdiag "
ยฏ ๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
# !
ยท๐โ๐โ1๐ยค
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป
(6.94)
Following from the definition of๐โ1, ๐โ1 is bounded and uniformly positive defi- nite. Thus, there exists some๐ผ > 0such that
โ
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
2๐พ 0
0 ๐ ๐ต>
0๐ต0๐+๐พdiag "
ยฏ ๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐3/2 ,ยท ยท ยท
# !
+๐๐๐โ1
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป
โค โ2๐ผ
"
I 0 0 ๐โ1
#
(6.95) Note that, when๐โ1is symmetric, uniformly bounded, and uniformly positive def- inite, ๐โ1/2and ๐1/2exist and are symmetric, uniformly positive definite, and uni- formly bounded. Using (6.94) and (6.95) and the Cauchy-Schwartz inequality, Vยค can be bounded, as follows:
V โค โ2ยค ๐ผ
"
ห ๐ฅ
ห ๐
#>"
I 0 0 ๐โ1
# "
ห ๐ฅ
ห ๐
#
+2
"
I 0
0 ๐โ1/2
# "
ห ๐ฅ
ห ๐
#
ยท
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
๐ ๐1/2๐ ๐ต>
0๐โ๐พ ๐1/2diag "
ยฏ ๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐3/2 ,ยท ยท ยท
# !
ยท๐โ๐โ1/2๐ยค
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป (6.96)
=โ2๐ผ๐ +2
โ
๐ ๐ท (6.97)
where ๐ท =
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ
๐ ๐1/2๐ ๐ต>
0๐โ๐พ ๐1/2diag "
ยฏ ๐1+๐๐๐ยฏ2
1+๐๐๐
ยฏ ๐2
1+๐
3/2 ,ยท ยท ยท
# !
ยท๐โ๐โ1/2๐ยค
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป
Consider the related system W where W = V and 2W ยคW = ๐ยค. Then, from (6.97),
2W ยคW โค โ2๐ผW2+2W๐ท (6.98)
W โค โยค ๐ผW +๐ท . (6.99)
Consider another related system,๐ค(๐ก), defined by๐คยค(๐ก) =โ๐ผ๐ค(๐ก) +๐ท(๐ก)and๐ค(0)= W (0). The solution to๐ค(๐ก)is
๐ค(๐ก) =eโ๐ผ๐ก๐ค(0) +
โซ ๐ก 0
eโ๐ผ(๐กโ๐)๐ท(๐)d๐ , (6.100)
which can be bounded by
๐ค(๐ก) โค eโ๐ผ๐ก
๐ค(0) โsup
๐ก
๐ท(๐ก) ๐ผ
+sup
๐ก
๐ท(๐ก)
๐ผ (6.101)
By the Comparison Lemma [27],
โ
V =W โค๐ค(๐ก), (6.102)
thusโ
V and alsok๐ฅหk exponentially converges to the ball k๐ฅหk โค
โ
V โค ๐ ๐ข ๐๐ก ๐ท
๐ผ (6.103)
Seemingly, the proof is complete at this point. However, we have not yet shown that ๐ท is bounded. By assumption,๐, ๐, and๐ยคare uniformly bounded, and ๐ต0, ๐พ, ๐๐, and๐ are constants. ๐ท is uniformly bounded if ๐1/2, ๐โ1/2, ๐ยฏ, and๐ are initially bounded and continuous.
๐1/2and๐โ1/2are uniformly bounded if๐โ1is uniformly positive definite and uni- formly bounded, respectively. Uniform positive definiteness is guaranteed by uni- form positive definiteness of ๐ยฏ. Uniform boundedness is guaranteed by uniform boundedness of๐and๐ยฏ.
ยฏ
๐is uniformly bounded if๐is uniformly bounded and๐หis uniformly bounded.
๐is uniformly bounded if๐ฅหis uniformly bounded and(๐ต0๐ยฏ)โ1๐ is uniformly bounded.
For the case of (6.18)๐ also is a function of ๐, leading to the additional condition that๐be bounded, which can be guaranteed if๐is Lipschitz bounded.
While precise conditions for uniform boundedness of (๐ต0๐ยฏ)โ1๐ is difficult to write out, it is clear that ๐ยฏ โ 0 as ๐พ โ โ. We also observe that ๐1/2 โผ ๐ ,๐ยฏ, so
Figure 6.1: The test aircraft vehicle design(Left) picture of the vehicle. (Right) schematic of the implemented system. This figure was provided by Joshua Cho.
for small ๐พ, ๐ท will be dominated by the term ๐1/2๐ ๐ต>
0๐. For sufficiently large ๐พ, (๐ต0๐ยฏ)โ1๐ is bounded. Lastly, for very large๐พ, no adaptation will occur, and the system will maintain the baseline performance. Thus, there is an inherent design trade off between the degree of regularization and the nominal modeling errors not captured by the efficiency adaptation model, in the case of (6.17), or the learning representation error in the case of (6.18).
6.4 Experimental Validation