• Tidak ada hasil yang ditemukan

Stability and Robustness Formal Guarantees and Proof

Dalam dokumen Methods for Robust Learning-Based Control (Halaman 82-87)

Chapter 4: Analysis, Proofs, and Implementation of Neural-Fly

4.5 Stability and Robustness Formal Guarantees and Proof

We divide the proof of (3.12) into two steps. First, in Theorem 4.5.1, we show that the combined composite velocity tracking error and adaptation error, k [𝑠; Λœπ‘Ž] k, ex- ponentially converges to a bounded error ball. This implies the exponential con- vergence of 𝑠. Then in Corollary 4.5.1.1 we show that when 𝑠 is exponentially bounded,π‘žΛœ is also exponentially bounded. Combining the exponential bound from Theorem 4.5.1 and the ultimate bound from Corollary 4.5.1.1 proves Theorem 3.4.1.

Before discussing the main proof, let us consider the robustness properties of the feedback controller without considering any specific adaptation law. Taking the dy- namics (3.1), control law (3.7), the composite velocity error definition (3.10), and the parameter estimation errorπ‘ŽΛœ =π‘ŽΛ†βˆ’π‘Ž, we find

𝑀𝑠€+ (𝐢+𝐾)𝑠=βˆ’πœ™π‘ŽΛœ+𝑑 (4.6) We can use the Lyapunov functionV =𝑠>𝑀 𝑠under the assumption of boundedπ‘ŽΛœ to show that

π‘‘β†’βˆžlim k𝑠k ≀ sup𝑑kπ‘‘βˆ’πœ™π‘ŽΛœkπœ†max(𝑀)

πœ†min(𝐾)πœ†min(𝑀) (4.7) Taking this results alone, one might expect that any online estimator or learning algorithm will lead to good performance. However, the boundedness of π‘ŽΛœ is not guaranteed; Slotine and Li discuss this topic thoroughly [9]. In the full proof below, we show the stability and robustness of the Neural-Fly adaptation algorithm.

First, we introduce the parameter measurement noiseπœ–Β―, whereπœ–Β― = π‘¦βˆ’ πœ™π‘Ž. Thus,

Β―

πœ– = πœ– + 𝑑 and kπœ–Β―k ≀ kπœ–k + k𝑑k by the triangle inequality. Using the above closed loop dynamics (4.6), the parameter estimation error π‘ŽΛœ, and the adaptation

law (3.8) and (3.9), the combined velocity and parameter-error closed-loop dynam- ics are given by

"

𝑀 0

0 π‘ƒβˆ’1

# "

Β€ 𝑠

€˜ π‘Ž

# +

"

𝐢+𝐾 πœ™

βˆ’πœ™π‘‡ πœ™>π‘…βˆ’1πœ™+πœ† π‘ƒβˆ’1

# "

𝑠

˜ π‘Ž

#

=

"

𝑑

πœ™>π‘…βˆ’1πœ–Β―βˆ’π‘ƒβˆ’1πœ†π‘Žβˆ’π‘ƒβˆ’1π‘ŽΒ€

#

(4.8) 𝑑

𝑑 𝑑

π‘ƒβˆ’1

=βˆ’π‘ƒβˆ’1𝑃 𝑃€ βˆ’1=π‘ƒβˆ’1

2πœ† π‘ƒβˆ’π‘„+𝑃 πœ™>π‘…βˆ’1πœ™ 𝑃

π‘ƒβˆ’1 (4.9) For our stability proof, we rely on the fact thatπ‘ƒβˆ’1is both uniformly positive definite and uniformly bounded, that is, there exists some positive definite, constant matri- ces 𝐴and𝐡such that 𝐴 π‘ƒβˆ’1 𝐡. Dieci and Eirola [7] show the slightly weaker result that 𝑃 is positive definite and finite when πœ™is bounded under the looser as- sumption𝑄 0. Following the proof from [7] with the additional assumption that 𝑄is uniformly positive definite, one can show the uniform definiteness and uniform boundedness of 𝑃. Hence, π‘ƒβˆ’1 is also uniformly positive definite and uniformly bounded.

Theorem 4.5.1. Given dynamics that evolve according to (4.8) and (4.9), uniform positive definiteness and uniform boundedness ofπ‘ƒβˆ’1, the norm of

"

𝑠

˜ π‘Ž

#

exponentially converges to the bound given in (4.10) with rate𝛼.

lim

π‘‘β†’βˆž

"

𝑠

˜ π‘Ž

#

≀ 1

π›Όπœ†min(M)

sup

𝑑

k𝑑k +sup

𝑑

( kπœ™>π‘…βˆ’1πœ–Β―k) +πœ†max(π‘ƒβˆ’1)sup

𝑑

( kπœ†π‘Ž+ Β€π‘Žk)

(4.10) where𝛼andM are functions ofπœ™, 𝑅, 𝑄 , 𝐾 , 𝑀 andπœ†, and πœ†min(Β·)andπœ†max(Β·) are the minimum and maximum eigenvalues of(Β·)over time, respectively. Given Corol- lary 4.5.1.1 and (4.10), the bound in (3.12) is proven. Noteπœ†max(π‘ƒβˆ’1) =1/πœ†min(𝑃) and a sufficiently large value ofπœ†min(𝑃)will make the RHS of (4.10) small.

Proof. Now consider the Lyapunov functionV given by

V =

"

𝑠

˜ π‘Ž

#> "

𝑀 0

0 π‘ƒβˆ’1

# "

𝑠

˜ π‘Ž

#

(4.11)

This Lyapunov function has the derivative VΒ€ =2

"

𝑠

˜ π‘Ž

#> "

𝑀 0

0 π‘ƒβˆ’1

# "

Β€ 𝑠

€˜ π‘Ž

# +

"

𝑠

˜ π‘Ž

#> "

𝑀€ 0

0 𝑑 𝑑𝑑 π‘ƒβˆ’1

# "

𝑠

˜ π‘Ž

#

(4.12)

=βˆ’2

"

𝑠

˜ π‘Ž

#>"

𝐢+𝐾 πœ™

βˆ’πœ™π‘‡ πœ™>π‘…βˆ’1πœ™+πœ† π‘ƒβˆ’1

# "

𝑠

˜ π‘Ž

# +2

"

𝑠

˜ π‘Ž

#>"

𝑑

πœ™>π‘…βˆ’1πœ–Β―βˆ’π‘ƒβˆ’1πœ†π‘Žβˆ’π‘ƒβˆ’1π‘ŽΒ€

#

+

"

𝑠

˜ π‘Ž

#>"

𝑀€ 0

0 𝑑 𝑑𝑑 π‘ƒβˆ’1

# "

𝑠

˜ π‘Ž

#

(4.13)

=βˆ’2

"

𝑠

˜ π‘Ž

#>"

𝐾 πœ™

βˆ’πœ™π‘‡ πœ™>π‘…βˆ’1πœ™+πœ† π‘ƒβˆ’1

# "

𝑠

˜ π‘Ž

# +2

"

𝑠

˜ π‘Ž

#> "

𝑑

πœ™>π‘…βˆ’1πœ–Β―βˆ’π‘ƒβˆ’1πœ†π‘Žβˆ’π‘ƒβˆ’1π‘ŽΒ€

#

+

"

𝑠

˜ π‘Ž

#>"

0 0

0 2πœ† π‘ƒβˆ’1βˆ’π‘ƒβˆ’1𝑄 π‘ƒβˆ’1+πœ™>π‘…βˆ’1πœ™

# "

𝑠

˜ π‘Ž

#

(4.14)

=βˆ’

"

𝑠

˜ π‘Ž

#>"

2𝐾 0

0 πœ™>π‘…βˆ’1πœ™+π‘ƒβˆ’1𝑄 π‘ƒβˆ’1

# "

𝑠

˜ π‘Ž

# +2

"

𝑠

˜ π‘Ž

#> "

𝑑

πœ™>π‘…βˆ’1πœ–Β―βˆ’π‘ƒβˆ’1πœ†π‘Žβˆ’π‘ƒβˆ’1π‘ŽΒ€

#

(4.15) where we used the fact 𝑀€ βˆ’2𝐢 is skew-symmetric. As𝐾, π‘ƒβˆ’1𝑄 π‘ƒβˆ’1, 𝑀, andπ‘ƒβˆ’1 are all uniformly positive definite and uniformly bounded, and πœ™>π‘…βˆ’1πœ™ is positive semidefinite, there exists some𝛼 >0such that

βˆ’

"

2𝐾 0

0 πœ™>π‘…βˆ’1πœ™+π‘ƒβˆ’1𝑄 π‘ƒβˆ’1

#

βˆ’2𝛼

"

𝑀 0

0 π‘ƒβˆ’1

#

(4.16) for all𝑑.

Define an upper bound for the disturbance term𝐷as

𝐷 =sup

𝑑

"

𝑑

πœ™>π‘…βˆ’1πœ–Β―βˆ’π‘ƒβˆ’1πœ†π‘Žβˆ’π‘ƒβˆ’1π‘ŽΒ€

#

(4.17) and define the functionM,

M =

"

𝑀 0

0 π‘ƒβˆ’1

#

(4.18) By (4.16), the Cauchy-Schwartz inequality, and the definition of the minimum eigen- value, we have the following inequality forVΒ€:

V ≀ βˆ’2Β€ 𝛼V +2 s

V

πœ†min(M)𝐷 (4.19)

Consider the related systems,WwhereW = V,2WWΒ€ =VΒ€, and the following three equations hold

2WW ≀ βˆ’2Β€ 𝛼W2+ 2𝐷W p

πœ†min(M) (4.20)

W ≀ βˆ’Β€ 𝛼W + 𝐷 p

πœ†min(M) (4.21)

By the Comparison Lemma [10],

√

V =W ≀eβˆ’π›Όπ‘‘ W (0) βˆ’ 𝐷 𝛼

p

πœ†min(M)

!

+ 𝐷

𝛼 p

πœ†min(M) (4.22) and the stacked state exponentially converges to the ball

π‘‘β†’βˆžlim

"

𝑠

˜ π‘Ž

#

≀ 𝐷

π›Όπœ†min(M) (4.23)

This completes the proof.

Next, we present a corollary which shows the exponential convergence ofπ‘žΛœwhen𝑠 is exponentially stable.

Corollary 4.5.1.1. Ifk𝑠(𝑑) k ≀ 𝐴exp(βˆ’π›Όπ‘‘) +𝐡/𝛼for some constants 𝐴, 𝐡, and𝛼, and𝑠=π‘žΒ€Λœ+Ξ›π‘žΛœ, then

kπ‘žΛœk ≀ eβˆ’πœ†min(Ξ›)𝑑kπ‘žΛœ(0) k +

∫ 𝑑 0

eβˆ’πœ†min(Ξ›) (π‘‘βˆ’πœ)𝐴eβˆ’π›Όπœd𝜏+

∫ 𝑑 0

eβˆ’πœ†min(Ξ›) (π‘‘βˆ’πœ)𝐡 𝛼d𝜏

(4.24) thuskπ‘žΛœk exponentially approaches the bound

π‘‘β†’βˆžlim kπ‘žΛœk ≀ 𝐡

π›Όπœ†min(Ξ›) (4.25)

Proof. From the Comparison Lemma [10], we can easily show (4.24). This can be further reduced as follows.

kπ‘žΛœk ≀ eβˆ’πœ†min(Ξ›)𝑑kπ‘žΛœ(0) k +𝐴eβˆ’πœ†min(Ξ›)𝑑

∫ 𝑑

0

e(πœ†min(Ξ›)βˆ’π›Ό)𝜏d𝜏+

∫ 𝑑

0

eβˆ’πœ†min(Ξ›) (π‘‘βˆ’πœ)𝐡 𝛼d𝜏 (4.26)

≀ eβˆ’πœ†min(Ξ›)𝑑kπ‘žΛœ(0) k +𝐴

eβˆ’π›Όπ‘‘βˆ’eβˆ’πœ†min(Ξ›)𝑑 πœ†min(Ξ›) βˆ’π›Ό

+ 𝐡

1βˆ’eβˆ’πœ†min(Ξ›)𝑑

π›Όπœ†min(Ξ›) (4.27)

Taking the limit, we arrive at (4.25)

With the following corollary, we will justify that 𝛼 is strictly positive even when πœ™ ≑ 0, and thus the adaptive control algorithm guarantees robustness even in the absence of persistent excitation or with ineffective learning. In practice, we expect some measurement information about all the elements of π‘Ž, that is, we expect a non-zeroπœ™.

Corollary 4.5.1.2. Ifπœ™β‰‘ 0, then the bound in (4.10) can be simplified to lim

π‘‘β†’βˆž

"

𝑠

˜ π‘Ž

#

≀ supk𝑑k +πœ†max(π‘ƒβˆ’1)sup( kπœ†π‘Ž+ Β€π‘Žk)

min(πœ†, πœ†min(𝐾)/πœ†max(𝑀))πœ†min(M) (4.28) Proof. Assumingπœ™β‰‘0immediately leads to𝛼of

𝛼=min 1

2πœ†min(π‘ƒβˆ’1𝑄),

πœ†min(𝐾) πœ†max(𝑀)

(4.29) πœ™ ≑ 0also simplifies the 𝑃€ equation to a stable first-order differential matrix equa- tion. By integrating this simplified 𝑃€ equation, we can show 𝑃exponentially con- verges to the value𝑃 = 2𝑄

πœ†. This leads to bound in (4.28).

We now introduce another corollary for the Neural-Fly-Constant, when πœ™ = 𝐼. In this case, the regularization term is not needed, as it is intended to regularize the linear coefficient estimate in the absence of persistent excitation, so we setπœ† = 0. This corollary also shows that Neural-Fly-Constant is sufficient for perfect tracking control when 𝑓 is constant; though in this case, even the nonlinear baseline controller with integral control will converge to perfect tracking. In practice for quadrotors, we only expect 𝑓 to be constant when the drone air-velocity is constant, such as in hover or steady level flight with constant wind velocity.

Corollary 4.5.1.3. If πœ™ ≑ 𝐼,𝑄 = π‘ž 𝐼, 𝑅 =π‘Ÿ 𝐼,πœ† = 0, and𝑃(0) = 𝑝0𝐼 is diagonal, whereπ‘ž,π‘Ÿand𝑝0are strictly positive scalar constants, then the bound in (4.10) can be simplified to

lim

π‘‘β†’βˆž

"

𝑠

˜ π‘Ž

#

≀ 1+π‘Ÿβˆ’1

sup𝑑k𝑓 βˆ’π‘Žk+πœ–/π‘Ÿ

πœ†max(𝑀)

πœ†min(𝐾)πœ†min(M) (4.30) Proof. Under these assumptions, the matrix differential equation for𝑃is reduced to the scalar differential equation

𝑑 𝑝 𝑑 𝑑

=π‘žβˆ’ 𝑝2/π‘Ÿ (4.31)

where 𝑃(𝑑) = 𝑝(𝑑)𝐼. This equation can be integrated to find that 𝑝 exponentially converges to 𝑝 = √

π‘žπ‘Ÿ. Then by (4.16), 𝛼 ≀ p

π‘ž/π‘Ÿ and 𝛼 ≀ πœ†min(𝐾)/πœ†max(𝑀). If we choose π‘ž andπ‘Ÿ such that p

π‘ž/π‘Ÿ = πœ†min(𝐾)/πœ†max(𝑀), then we can take𝛼 = πœ†min(𝐾)/πœ†max(𝑀). Then, the error bound reduces to

lim

π‘‘β†’βˆž

"

𝑠

˜ π‘Ž

#

≀ 𝐷 πœ†max(𝑀)

πœ†min(𝐾)πœ†min(M) (4.32) Takeπ‘Žas a constant. Thenπ‘ŽΒ€ =0,𝑑 = 𝑓 βˆ’π‘Ž, and𝐷is bounded by

𝐷 ≀

1+π‘Ÿβˆ’1

sup

𝑑

k𝑓 βˆ’π‘Žk +πœ–/π‘Ÿ (4.33)

Dalam dokumen Methods for Robust Learning-Based Control (Halaman 82-87)