• Tidak ada hasil yang ditemukan

Omitted Proofs of General Properties Proof of Lemma 1Proof of Lemma 1

Dalam dokumen Essays in Behavioral Economics and Game Theory (Halaman 113-134)

PROOFS FOR CHAPTER 2

A.1 Omitted Proofs of General Properties Proof of Lemma 1Proof of Lemma 1

105 A p p e n d i x A

any available action in every information setI๐‘– = (๐œƒ๐‘–, โ„Ž๐‘ก)with probability at least๐œ– where๐œ– < ร๐‘› 1

๐‘—=1|๐ด๐‘—|. Letฮฃ๐œ– =ร—๐‘›

๐‘—=1ฮฃ๐œ–๐‘— be set of feasible behavioral strategy profiles for players in the perturbed game ฮ“๐œ–. For any behavioral strategy profile ๐œŽ โˆˆ ฮฃ๐œ–, let ๐œ‡๐œ’(ยท) โ‰ก (๐œ‡

๐œ’ ๐‘– (ยท))๐‘›

๐‘–=1be the belief system induced by ๐œŽvia ๐œ’-cursed Bayesโ€™ rule.

That is, for each player๐‘– โˆˆ ๐‘, information setI๐‘– =(๐œƒ๐‘–, โ„Ž๐‘ก)whereโ„Ž๐‘ก =(โ„Ž๐‘กโˆ’1, ๐‘Ž๐‘ก)and type profile๐œƒโˆ’๐‘– โˆˆฮ˜โˆ’๐‘–,

๐œ‡

๐œ’

๐‘– (๐œƒโˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–) = ๐œ’ ๐œ‡

๐œ’

๐‘– (๐œƒโˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–) + (1โˆ’ ๐œ’)

"

๐œ‡

๐œ’

๐‘– (๐œƒโˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–)๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒโˆ’๐‘–) ร

๐œƒโ€ฒ

โˆ’๐‘–โˆˆฮ˜โˆ’๐‘– ๐œ‡

๐œ’ ๐‘– (๐œƒโ€ฒ

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–)๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒโ€ฒ

โˆ’๐‘–)

# . Notice that the ๐œ’-cursed Bayesโ€™ rule is only defined on the family of multi-stage

games with observed actions. As ๐œŽ is fully mixed, the belief system is uniquely pinned down.

Finally, let ๐ต๐œ– : ฮฃ๐œ– โ‡’ ฮฃ๐œ– be the cursed best response correspondence which maps any behavioral strategy profile๐œŽ โˆˆฮฃ๐œ– to the set of๐œ–-constrained behavioral strategy profiles หœ๐œŽ โˆˆฮฃ๐œ– that are best replies given the belief system๐œ‡๐œ’(ยท).

Step 2: Next, fix any 0 < ๐œ– < ร๐‘› 1

๐‘—=1|๐ด๐‘—| and show that ๐ต๐œ– has a fixed point by Kakutaniโ€™s fixed point theorem. We check the conditions of the theorem:

1. It is straightforward thatฮฃ๐œ– is compact and convex.

2. For any๐œŽ โˆˆฮฃ๐œ–, as๐œ‡๐œ’(ยท)is uniquely pinned down by ๐œ’-cursed Bayesโ€™ rule, it is straightforward that๐ต๐œ–(๐œŽ) is non-empty and convex.

3. To verify that ๐ต๐œ– has a closed graph, take any sequence of ๐œ–-constrained behavioral strategy profiles{๐œŽ๐‘˜}โˆž

๐‘˜=1 โІ ฮฃ๐œ–such that๐œŽ๐‘˜ โ†’ ๐œŽ โˆˆฮฃ๐œ–as๐‘˜ โ†’ โˆž, and any sequence {๐œŽหœ๐‘˜}โˆž

๐‘˜=1 such that หœ๐œŽ๐‘˜ โˆˆ ๐ต๐œ–(๐œŽ๐‘˜) for any ๐‘˜ and หœ๐œŽ๐‘˜ โ†’ ๐œŽหœ. We want to prove that หœ๐œŽ โˆˆ ๐ต๐œ–(๐œŽ).

Fix any player๐‘– โˆˆ ๐‘and information setI๐‘– = (๐œƒ๐‘–, โ„Ž๐‘ก). For any๐œŽ โˆˆฮฃ๐œ–, recall that๐œŽ

๐œ’

โˆ’๐‘–(ยท)is player๐‘–โ€™s๐œ’-cursed perceived behavioral strategies of other play- ers induced by ๐œŽ. Specifically, for any type profile ๐œƒ โˆˆ ฮ˜, non-terminal history โ„Ž๐‘กโˆ’1 and action profile ๐‘Ž๐‘ก

โˆ’๐‘– โˆˆ ๐ดโˆ’๐‘–(โ„Ž๐‘กโˆ’1), ๐œŽ

๐œ’

โˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒโˆ’๐‘–, ๐œƒ๐‘–) = ๐œ’๐œŽยฏโˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–) + (1โˆ’ ๐œ’)๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒโˆ’๐‘–). Additionally, recall that ๐œŒ

๐œ’

๐‘– (ยท) is player ๐‘–โ€™s belief about the terminal nodes (conditional on the history and type profile), which is also induced by๐œŽ. Since ๐œ‡๐œ’(ยท) is continuous in ๐œŽ we have that ๐œŽ๐œ’

โˆ’๐‘–(ยท) and ๐œŒ๐œ’

๐‘– (ยท) are also continuous

in ๐œŽ. We further defineS๐‘˜

I๐‘–

โ‰ก ๐œŽโ€ฒ

๐‘– โˆˆฮฃ๐‘–๐œ– :๐œŽโ€ฒ

๐‘–( ยท |I๐‘–) =๐œŽหœ๐‘˜

๐‘– ( ยท |I๐‘–) andSI

๐‘– โ‰ก

๐œŽโ€ฒ

๐‘– โˆˆฮฃ๐‘–๐œ– :๐œŽโ€ฒ

๐‘–( ยท |I๐‘–) =๐œŽหœ๐‘–( ยท |I๐‘–) . Since หœ๐œŽ๐‘˜ โˆˆ ๐ต๐œ–(๐œŽ๐‘˜), for any๐œŽโ€ฒ

๐‘– โˆˆ ฮฃ๐‘–๐œ–, we can obtain that

max

๐œŽโ€ฒโ€ฒ

๐‘– โˆˆS๐‘˜

I๐‘–

(

โˆ‘๏ธ

๐œƒโˆ’๐‘–โˆˆฮ˜โˆ’๐‘–

โˆ‘๏ธ

โ„Ž๐‘‡โˆˆH๐‘‡

๐œ‡

๐œ’

๐‘– [๐œŽ๐‘˜] (๐œƒโˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–)๐œŒ

๐œ’

๐‘– (โ„Ž๐‘‡|โ„Ž๐‘ก, ๐œƒ , ๐œŽ

๐œ’

โˆ’๐‘–[๐œŽ๐‘˜], ๐œŽโ€ฒโ€ฒ

๐‘– )๐‘ข๐‘–(โ„Ž๐‘‡, ๐œƒ๐‘–, ๐œƒโˆ’๐‘–) )

โ‰ฅ โˆ‘๏ธ

๐œƒโˆ’๐‘–โˆˆฮ˜โˆ’๐‘–

โˆ‘๏ธ

โ„Ž๐‘‡โˆˆH๐‘‡

๐œ‡

๐œ’

๐‘– [๐œŽ๐‘˜] (๐œƒโˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–)๐œŒ

๐œ’

๐‘– (โ„Ž๐‘‡|โ„Ž๐‘ก, ๐œƒ , ๐œŽ

๐œ’

โˆ’๐‘–[๐œŽ๐‘˜], ๐œŽโ€ฒ

๐‘–)๐‘ข๐‘–(โ„Ž๐‘‡, ๐œƒ๐‘–, ๐œƒโˆ’๐‘–). By continuity, as we take limits on both sides, we can find หœ๐œŽ โˆˆ ๐ต๐œ–(๐œŽ)because

max

๐œŽโ€ฒโ€ฒ

๐‘– โˆˆSI๐‘–

(

โˆ‘๏ธ

๐œƒโˆ’๐‘–โˆˆฮ˜โˆ’๐‘–

โˆ‘๏ธ

โ„Ž๐‘‡โˆˆH๐‘‡

๐œ‡

๐œ’

๐‘– [๐œŽ] (๐œƒโˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–)๐œŒ

๐œ’

๐‘– (โ„Ž๐‘‡|โ„Ž๐‘ก, ๐œƒ , ๐œŽ

๐œ’

โˆ’๐‘–[๐œŽ], ๐œŽโ€ฒโ€ฒ

๐‘– )๐‘ข๐‘–(โ„Ž๐‘‡, ๐œƒ๐‘–, ๐œƒโˆ’๐‘–) )

โ‰ฅ โˆ‘๏ธ

๐œƒโˆ’๐‘–โˆˆฮ˜โˆ’๐‘–

โˆ‘๏ธ

โ„Ž๐‘‡โˆˆH๐‘‡

๐œ‡

๐œ’

๐‘– [๐œŽ] (๐œƒโˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–)๐œŒ

๐œ’

๐‘– (โ„Ž๐‘‡|โ„Ž๐‘ก, ๐œƒ , ๐œŽ

๐œ’

โˆ’๐‘–[๐œŽ], ๐œŽโ€ฒ

๐‘–)๐‘ข๐‘–(โ„Ž๐‘‡, ๐œƒ๐‘–, ๐œƒโˆ’๐‘–). By Kakutaniโ€™s fixed point theorem, ๐ต๐œ– has a fixed point.

Step 3: For any ๐œ–, let ๐œŽ๐œ– be a fixed point of ๐ต๐œ– and ๐œ‡๐œ– be the belief system induced by๐œŽ๐œ– via๐œ’-cursed Bayesโ€™ rule. We combine these two components and let (๐œ‡๐œ–, ๐œŽ๐œ–) be the induced assessment. We now consider a sequence of๐œ– โ†’0,where {(๐œ‡๐œ–, ๐œŽ๐œ–)} is the corresponding sequence of assessments. By compactness and the finiteness of ฮ“, the Bolzano-Weierstrass theorem guarantees the existence of a convergent subsequence of the assessments. As๐œ– โ†’ 0, let(๐œ‡๐œ–, ๐œŽ๐œ–) โ†’ (๐œ‡โˆ—, ๐œŽโˆ—). By construction, the limit assessment (๐œ‡โˆ—, ๐œŽโˆ—) satisfies ๐œ’-consistency and sequential rationality. Hence,(๐œ‡โˆ—, ๐œŽโˆ—) is a ๐œ’-CSE.โ– 

Proof of Proposition 2

To prove ฮฆ(๐œ’) is upper hemi-continuous in ๐œ’, consider any sequence of {๐œ’๐‘˜}โˆž

๐‘˜=1

such that ๐œ’๐‘˜ โ†’ ๐œ’โˆ— โˆˆ [0,1], and any sequence of CSE, {(๐œ‡๐‘˜, ๐œŽ๐‘˜)}, such that (๐œ‡๐‘˜, ๐œŽ๐‘˜) โˆˆ ฮฆ(๐œ’๐‘˜) for all ๐‘˜. Let (๐œ‡โˆ—, ๐œŽโˆ—) be the limit assessment, i.e., (๐œ‡๐‘˜, ๐œŽ๐‘˜) โ†’ (๐œ‡โˆ—, ๐œŽโˆ—). We need to show that (๐œ‡โˆ—, ๐œŽโˆ—) โˆˆฮฆ(๐œ’โˆ—).

For simplicity, for any player๐‘– โˆˆ ๐‘, any information setI๐‘– = (โ„Ž๐‘ก, ๐œƒ๐‘–), any๐œŽโ€ฒ

๐‘– โˆˆ ฮฃ๐‘–, and any ๐œŽ โˆˆ ฮฃ, the expected payoff under the belief system ๐œ‡๐œ’(ยท) induced by๐œŽ is denoted as:

E๐œ‡๐œ’[๐œŽ]

๐‘ข๐‘–(๐œŽโ€ฒ

๐‘–, ๐œŽโˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–)

โ‰ก โˆ‘๏ธ

๐œƒโˆ’๐‘–โˆˆฮ˜โˆ’๐‘–

โˆ‘๏ธ

โ„Ž๐‘‡โˆˆH๐‘‡

๐œ‡

๐œ’

๐‘– (๐œƒโˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–)๐œŒ

๐œ’

๐‘– (โ„Ž๐‘‡|โ„Ž๐‘ก, ๐œƒ , ๐œŽ

๐œ’

โˆ’๐‘–, ๐œŽโ€ฒ

๐‘–)๐‘ข๐‘–(โ„Ž๐‘‡, ๐œƒ๐‘–, ๐œƒโˆ’๐‘–).

Suppose(๐œ‡โˆ—, ๐œŽโˆ—) โˆ‰ ฮฆ(๐œ’โˆ—). Then there exists some player๐‘– โˆˆ ๐‘, some information setI๐‘– =(โ„Ž๐‘ก, ๐œƒ๐‘–), some๐œŽโ€ฒ

๐‘– โˆˆฮฃ๐‘–, and some๐œ– > 0 such that E๐œ‡๐œ’โˆ—[๐œŽโˆ—]

๐‘ข๐‘–(๐œŽโ€ฒ

๐‘–, ๐œŽโˆ’๐‘–โˆ— |โ„Ž๐‘ก, ๐œƒ๐‘–)

โˆ’E๐œ‡๐œ’โˆ—[๐œŽโˆ—]

๐‘ข๐‘–(๐œŽโˆ—

๐‘–, ๐œŽโˆ’๐‘–โˆ— |โ„Ž๐‘ก, ๐œƒ๐‘–)

> ๐œ– . (A) Since๐œ‡๐œ’(ยท)is continuous in๐œ’, it follows that for any strategy profile๐œŽ,๐œŽ

๐œ’

โˆ’๐‘–(ยท)and ๐œŒ

๐œ’

๐‘– (ยท)are both continuous in ๐œ’. Thus, there exists a sufficiently large ๐‘€1 such that for every๐‘˜ โ‰ฅ ๐‘€1,

E๐œ‡๐œ’

๐‘˜[๐œŽ๐‘˜]

๐‘ข๐‘–(๐œŽ๐‘˜

๐‘– , ๐œŽ๐‘˜

โˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–)

โˆ’E๐œ‡๐œ’โˆ—[๐œŽโˆ—]

๐‘ข๐‘–(๐œŽโˆ—

๐‘–, ๐œŽโˆ—

โˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–)

<

๐œ–

3. (B) Similarly, there exists a sufficiently large๐‘€2such that for every๐‘˜ โ‰ฅ ๐‘€2,

E๐œ‡๐œ’

๐‘˜[๐œŽ๐‘˜]

๐‘ข๐‘–(๐œŽโ€ฒ

๐‘–, ๐œŽโˆ’๐‘–๐‘˜ |โ„Ž๐‘ก, ๐œƒ๐‘–)

โˆ’E๐œ‡๐œ’โˆ—[๐œŽโˆ—]

๐‘ข๐‘–(๐œŽโ€ฒ

๐‘–, ๐œŽโˆ’๐‘–โˆ— |โ„Ž๐‘ก, ๐œƒ๐‘–)

<

๐œ–

3. (C) Therefore, for any๐‘˜ โ‰ฅ max{๐‘€1, ๐‘€2}, inequalities (A), (B) and (C) imply:

E๐œ‡๐œ’

๐‘˜[๐œŽ๐‘˜]

๐‘ข๐‘–(๐œŽโ€ฒ

๐‘–, ๐œŽโˆ’๐‘–๐‘˜|โ„Ž๐‘ก, ๐œƒ๐‘–)

โˆ’E๐œ‡๐œ’

๐‘˜[๐œŽ๐‘˜]

๐‘ข๐‘–(๐œŽ๐‘˜

๐‘– , ๐œŽโˆ’๐‘–๐‘˜ |โ„Ž๐‘ก, ๐œƒ๐‘–)

>

๐œ– 3, implying that๐œŽโ€ฒ

๐‘– is a profitable deviation for player๐‘–at information setI๐‘– = (โ„Ž๐‘ก, ๐œƒ๐‘–), which contradicts(๐œ‡๐‘˜, ๐œŽ๐‘˜) โˆˆฮฆ(๐œ’๐‘˜). Therefore, (๐œ‡โˆ—, ๐œŽโˆ—) โˆˆฮฆ(๐œ’โˆ—), as desired. โ–  Proof of Proposition 3

Fix any ๐œ’ โˆˆ [0,1] and let (๐œ‡, ๐œŽ) be a ๐œ’-consistent assessment. We prove the result by contradiction. Suppose (๐œ‡, ๐œŽ) does not satisfy ๐œ’-dampened updating property. Then there exists ๐‘– โˆˆ ๐‘, หœ๐œƒ โˆˆ ฮ˜ and a non-terminal history โ„Ž๐‘ก such that ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘ก,๐œƒหœ๐‘–) < ๐œ’ ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘กโˆ’1,๐œƒหœ๐‘–).

Since (๐œ‡, ๐œŽ) is ๐œ’-consistent, there exists a sequence {(๐œ‡๐‘˜, ๐œŽ๐‘˜)} โІ ฮจ๐œ’ such that (๐œ‡๐‘˜, ๐œŽ๐‘˜) โ†’ (๐œ‡, ๐œŽ) as ๐‘˜ โ†’ โˆž. By Lemma 1, we know for this ๐‘–,๐œƒหœ and โ„Ž๐‘ก, ๐œ‡๐‘˜

๐‘–(๐œƒหœโˆ’๐‘–|โ„Ž๐‘ก,๐œƒหœ๐‘–)equals to ๐œ’ ๐œ‡๐‘˜

๐‘– (๐œƒหœโˆ’๐‘–|โ„Ž๐‘กโˆ’1,๐œƒหœ๐‘–) + (1โˆ’ ๐œ’)

"

๐œ‡๐‘˜

๐‘– (๐œƒหœโˆ’๐‘–|โ„Ž๐‘กโˆ’1,๐œƒหœ๐‘–)๐œŽ๐‘˜

โˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1,๐œƒหœโˆ’๐‘–) ร

๐œƒโ€ฒ

โˆ’๐‘–

๐œ‡๐‘˜

๐‘– (๐œƒโ€ฒ

โˆ’๐‘–|โ„Ž๐‘กโˆ’1,๐œƒหœ๐‘–)๐œŽ๐‘˜

โˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒโ€ฒ

โˆ’๐‘–)

#

โ‰ฅ ๐œ’ ๐œ‡๐‘˜

๐‘–(๐œƒหœโˆ’๐‘–|โ„Ž๐‘กโˆ’1,๐œƒหœ๐‘–). There will be a contradiction as we take the limit๐‘˜ โ†’ โˆžon both sides:

๐œ‡๐‘–(๐œƒหœโˆ’๐‘–|โ„Ž๐‘ก,๐œƒหœ๐‘–) = lim

๐‘˜โ†’โˆž

๐œ‡๐‘˜

๐‘–(๐œƒหœโˆ’๐‘–|โ„Ž๐‘ก,๐œƒหœ๐‘–) โ‰ฅ lim

๐‘˜โ†’โˆž

๐œ’ ๐œ‡๐‘˜

๐‘– (๐œƒหœโˆ’๐‘–|โ„Ž๐‘กโˆ’1,๐œƒหœ๐‘–) = ๐œ’ ๐œ‡๐‘–(๐œƒหœโˆ’๐‘–|โ„Ž๐‘กโˆ’1,๐œƒหœ๐‘–). โ– 

Proof of Corollary 2

We prove the statement by induction on๐‘ก. For๐‘ก =1, by Proposition 3,๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž1, ๐œƒ๐‘–) โ‰ฅ ๐œ’ ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Žโˆ…, ๐œƒ๐‘–) = ๐œ’F (๐œƒโˆ’๐‘–|๐œƒ๐‘–).Next, suppose there is๐‘กโ€ฒsuch that the statement holds for all 1โ‰ค ๐‘ก โ‰ค ๐‘กโ€ฒโˆ’1. At stage๐‘กโ€ฒ, by Proposition 3 and the induction hypothesis, we can find that

๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘ก

โ€ฒ

, ๐œƒ๐‘–) โ‰ฅ ๐œ’ ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘ก

โ€ฒโˆ’1

, ๐œƒ๐‘–) โ‰ฅ ๐œ’ h

๐œ’๐‘ก

โ€ฒโˆ’1F (๐œƒโˆ’๐‘–|๐œƒ๐‘–)i

= ๐œ’๐‘ก

โ€ฒF (๐œƒโˆ’๐‘–|๐œƒ๐‘–). โ– 

Proof of Proposition 5

Let the assessment(๐œ‡, ๐œŽ)be a pooling๐œ’-CSE. We want to show that for any๐œ’โ€ฒ โ‰ค ๐œ’, the assessment(๐œ‡, ๐œŽ)is also a๐œ’โ€ฒ-CSE. Consider any non-terminal historyโ„Ž๐‘กโˆ’1, any player๐‘–, any๐‘Ž๐‘ก

๐‘– โˆˆ ๐ด๐‘–(โ„Ž๐‘กโˆ’1) and any๐œƒ โˆˆฮ˜. We can first observe that

ยฏ

๐œŽโˆ’๐‘–(๐‘Ž๐‘กโˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–) = โˆ‘๏ธ

๐œƒโ€ฒ

โˆ’๐‘–

๐œ‡๐‘–(๐œƒโ€ฒโˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–)๐œŽโˆ’๐‘–(๐‘Ž๐‘กโˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒโ€ฒโˆ’๐‘–)

=๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒโˆ’๐‘–)

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

โˆ‘๏ธ

๐œƒโ€ฒ

โˆ’๐‘–

๐œ‡๐‘–(๐œƒโ€ฒ

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–)

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

= ๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒโˆ’๐‘–) where the second equality holds because๐œŽ is a pooling behavioral strategy profile, so๐œŽโˆ’๐‘–is independent of other playersโ€™ types. For this pooling ๐œ’-CSE, let๐บ๐œŽbe the set of on-path histories and หœ๐บ๐œŽ be the set of off-path histories. We can first show that for everyโ„Ž โˆˆ๐บ๐œŽ,๐‘– โˆˆ ๐‘and๐œƒ โˆˆฮ˜, ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž, ๐œƒ๐‘–) =F (๐œƒโˆ’๐‘–|๐œƒ๐‘–).

This can be shown by induction on๐‘ก. For๐‘ก =1, any โ„Ž1 = (โ„Žโˆ…, ๐‘Ž1)and any ๐œƒ โˆˆ ฮ˜, by Lemma 1, we can obtain that

๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž1, ๐œƒ๐‘–) = ๐œ’ ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Žโˆ…, ๐œƒ๐‘–) + (1โˆ’ ๐œ’)

"

๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Žโˆ…, ๐œƒ๐‘–)๐œŽโˆ’๐‘–(๐‘Ž1

โˆ’๐‘–|โ„Žโˆ…, ๐œƒโˆ’๐‘–)

ยฏ ๐œŽโˆ’๐‘–(๐‘Ž1

โˆ’๐‘–|โ„Žโˆ…, ๐œƒ๐‘–)

#

= ๐œ’F (๐œƒโˆ’๐‘–|๐œƒ๐‘–) + (1โˆ’ ๐œ’)F (๐œƒโˆ’๐‘–|๐œƒ๐‘–)

"

๐œŽโˆ’๐‘–(๐‘Ž1

โˆ’๐‘–|โ„Žโˆ…, ๐œƒโˆ’๐‘–)

ยฏ ๐œŽโˆ’๐‘–(๐‘Ž1

โˆ’๐‘–|โ„Žโˆ…, ๐œƒ๐‘–)

#

| {z }

=1

= F (๐œƒโˆ’๐‘–|๐œƒ๐‘–).

Now, suppose there is๐‘กโ€ฒsuch that the statement holds for 1 โ‰ค ๐‘ก โ‰ค ๐‘กโ€ฒโˆ’1. At stage ๐‘กโ€ฒand โ„Ž๐‘ก

โ€ฒ = (โ„Ž๐‘ก

โ€ฒโˆ’1, ๐‘Ž๐‘ก

โ€ฒ) โˆˆ ๐บ๐œŽ, by Lemma 1 and the induction hypothesis, we can

again obtain that the posterior belief is the prior belief ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘ก

โ€ฒ

, ๐œƒ๐‘–) = ๐œ’ ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘ก

โ€ฒโˆ’1

, ๐œƒ๐‘–) + (1โˆ’ ๐œ’)

"

๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘ก

โ€ฒโˆ’1, ๐œƒ๐‘–)๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โ€ฒ

โˆ’๐‘–|โ„Ž๐‘ก

โ€ฒโˆ’1, ๐œƒโˆ’๐‘–)

ยฏ ๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โ€ฒ

โˆ’๐‘–|โ„Ž๐‘กโ€ฒโˆ’1, ๐œƒ๐‘–)

#

= ๐œ’F (๐œƒโˆ’๐‘–|๐œƒ๐‘–) + (1โˆ’ ๐œ’)F (๐œƒโˆ’๐‘–|๐œƒ๐‘–)

"

๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โ€ฒ

โˆ’๐‘–|โ„Ž๐‘ก

โ€ฒโˆ’1, ๐œƒโˆ’๐‘–)

ยฏ ๐œŽโˆ’๐‘–(๐‘Ž๐‘ก

โ€ฒ

โˆ’๐‘–|โ„Ž๐‘กโ€ฒโˆ’1, ๐œƒ๐‘–)

#

| {z }

=1

=F (๐œƒโˆ’๐‘–|๐œƒ๐‘–).

Therefore, we have shown that players will not update their beliefs at every on-path information set, so the belief system is independent of ๐œ’. Finally, for any off-path history โ„Ž๐‘ก โˆˆ ๐บหœ๐œŽ, by Proposition 3, we can find that the belief system satisfies for any๐œƒ โˆˆฮ˜,

๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘ก, ๐œƒ๐‘–) โ‰ฅ ๐œ’ ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–) โ‰ฅ ๐œ’โ€ฒ๐œ‡๐‘–(๐œƒโˆ’๐‘–|โ„Ž๐‘กโˆ’1, ๐œƒ๐‘–),

implying that when ๐œ’โ€ฒ โ‰ค ๐œ’, ๐œ‡ will still satisfy the dampened updating property.

Therefore, (๐œ‡, ๐œŽ) remains a ๐œ’โ€ฒ-CSE.โ–  A.2 Omitted Proofs of Section 2.4 Pooling Equilibria in Signaling Games

Proof of Claim 1 First observe that after player 1 chooses ๐ต, it is strictly optimal for player 2 to choose๐‘… for all beliefs ๐œ‡2(๐œƒ1|๐ต), and after player 1 chooses ๐ด, it is optimal for player 2 to choose๐ฟif and only if

2๐œ‡2(๐œƒ1|๐ด) + [1โˆ’๐œ‡2(๐œƒ1|๐ด)] โ‰ฅ 4๐œ‡2(๐œƒ1|๐ด) โ‡โ‡’ ๐œ‡2(๐œƒ1|๐ด) โ‰ค1/3. Equilibrium 1.

If both types of player 1 choose ๐ด, then ๐œ‡2(๐œƒ1|๐ด) =1/4, so it is optimal for player 2 to choose ๐ฟ. Given๐‘Ž(๐ด) =๐ฟand๐‘Ž(๐ต) =๐‘…, it is optimal for both types of player 1 to choose ๐ดas 2 > 1. Hence ๐‘š(๐œƒ1) =๐‘š(๐œƒ2) = ๐ด, ๐‘Ž(๐ด) = ๐ฟ and๐‘Ž(๐ต) = ๐‘… is a pooling ๐œ’-CSE for any ๐œ’ โˆˆ [0,1].

Equilibrium 2.

In order to support๐‘š(๐œƒ1) =๐‘š(๐œƒ2)= ๐ตto be an equilibrium, player 2 has to choose ๐‘…at the off-path information set๐ด,which is optimal if and only if๐œ‡2(๐œƒ1|๐ด) โ‰ฅ1/3.

In addition, by Proposition 3, we know in a ๐œ’-CSE, the belief system satisfies ๐œ‡2(๐œƒ2|๐ด) โ‰ฅ 3

4๐œ’ โ‡โ‡’ ๐œ‡2(๐œƒ1|๐ด) โ‰ค1โˆ’ 3 4๐œ’ .

Therefore, the belief system has to satisfy that ๐œ‡2(๐œƒ1|๐ด) โˆˆ 1

3,1โˆ’ 3

4๐œ’

, which requires๐œ’ โ‰ค 8/9.

Finally, it is straightforward to verify that for any ๐œ‡ โˆˆ 1

3,1โˆ’ 3

4๐œ’

, ๐œ‡2(๐œƒ1|๐ด) = ๐œ‡ satisfies ๐œ’-consistency. Suppose type ๐œƒ1 player 1 chooses ๐ด with probability ๐‘ and type๐œƒ2 player 1 chooses ๐ด with probability๐‘ž where ๐‘, ๐‘ž โˆˆ (0,1). Given this behavioral strategy profile for player 1, by Lemma 1, we have:

๐œ‡2(๐œƒ1|๐ด) = 1

4๐œ’+ (1โˆ’ ๐œ’) ๐‘

๐‘+3๐‘ž

. In other words, as long as(๐‘, ๐‘ž) satisfies

๐‘ž =

4โˆ’4๐œ‡โˆ’3๐œ’ 12โˆ’3๐œ’

๐‘,

we can find that๐œ‡2(๐œƒ1|๐ด)= ๐œ‡. Therefore, if{(๐‘๐‘˜, ๐‘ž๐‘˜)} โ†’ (0,0)such that ๐‘ž๐‘˜ =

4โˆ’4๐œ‡โˆ’3๐œ’ 12โˆ’3๐œ’

๐‘๐‘˜, then ๐œ‡๐‘˜

2(๐œƒ1|๐ด) = ๐œ‡ for all ๐‘˜. Hence, lim๐‘˜โ†’โˆž๐œ‡๐‘˜

2(๐œƒ1|๐ด) = ๐œ‡, suggesting that ๐œ‡2(๐œƒ1|๐ด)= ๐œ‡is indeed ๐œ’-consistent. This completes the proof. โ– 

Proof of Proposition 6 Here we provide a characterization of ๐œ’-CSE of Game 1 and Game 2. For the analysis of both games, we denote ๐œ‡๐ผ โ‰ก ๐œ‡2(๐œƒ1|๐‘š = ๐ผ) and ๐œ‡๐‘† โ‰ก ๐œ‡2(๐œƒ1|๐‘š =๐‘†).

Analysis of Game BH 3.

At information set๐‘†, given๐œ‡๐‘†, the expected payoffs of๐ถ, ๐ท,๐ธare 90๐œ‡๐‘†, 30โˆ’15๐œ‡๐‘† and 15, respectively. Therefore, for any ๐œ‡๐‘†, ๐ธ is never a best response. Moreover, ๐ถ is the best response if and only if 90๐œ‡๐‘† โ‰ฅ 30โˆ’15๐œ‡๐‘† or ๐œ‡๐‘† โ‰ฅ 2/7. Similarly, at information set ๐ผ, given๐œ‡๐ผ, the expected payoffs of๐ถ, ๐ท, ๐ธ are 30, 45โˆ’45๐œ‡๐ผ and 15, respectively. Therefore, ๐ธ is strictly dominated, and๐ถ is the best response if and only if 30โ‰ฅ 45โˆ’45๐œ‡๐ผ or ๐œ‡๐ผ โ‰ฅ 1/3. Now we consider four cases.

Case 1 [๐‘š(๐œƒ1) = ๐ผ , ๐‘š(๐œƒ2) =๐‘†]:

By Lemma 1, ๐œ‡๐ผ =1โˆ’ ๐œ’/2 and ๐œ‡๐‘† = ๐œ’/2. Moreover, since ๐œ‡๐ผ = 1โˆ’ ๐œ’/2 โ‰ฅ 1/2 for any ๐œ’, player 2 will choose๐ถat information set๐ผ. To support this equilibrium, player 2 has to choose๐ถ at information set ๐‘†. In other words, [(๐ผ , ๐‘†);(๐ถ , ๐ถ)] is separating ๐œ’-CSE if and only if๐œ‡๐‘† โ‰ฅ 2/7 or ๐œ’ โ‰ฅ 4/7.

Case 2 [๐‘š(๐œƒ1) =๐‘†, ๐‘š(๐œƒ2) =๐ผ]:

By Lemma 1,๐œ‡๐ผ = ๐œ’/2 and๐œ‡๐‘† =1โˆ’๐œ’/2. Because๐œ‡๐‘† โ‰ฅ 1โˆ’๐œ’/2โ‰ฅ 1/2, it is optimal for player 2 to choose ๐ถ at information set ๐‘†. To support this as an equilibrium, player 2 has to choose๐ทat information set๐ผ. Yet, in this case, type๐œƒ2player 1 will deviate to๐‘†. Therefore, this profile cannot be supported as an equilibrium.

Case 3 [๐‘š(๐œƒ1) = ๐ผ , ๐‘š(๐œƒ2) =๐ผ]:

Since player 1 follows a pooling strategy, player 2 will not update his belief at information set ๐ผ, i.e., ๐œ‡๐ผ = 1/2. ๐œ’-dampened updating property implies ๐œ’/2 โ‰ค ๐œ‡๐‘† โ‰ค 1โˆ’ ๐œ’/2. Since ๐œ‡๐ผ > 1/3, player 2 will choose ๐ถ at information set ๐ผ. To support this profile to be an equilibrium, player 2 has to choose๐ทat information set ๐‘†, and hence, it must be the case that๐œ‡๐‘† โ‰ค 2/7. Coupled with the requirement from ๐œ’-dampened updating, the off-path belief has to satisfy ๐œ’/2 โ‰ค ๐œ‡๐‘† โ‰ค 2/7. That is, [(๐ผ , ๐ผ);(๐ถ , ๐ท)] is pooling ๐œ’-CSE if and only if ๐œ’/2 โ‰ค 2/7 or ๐œ’ โ‰ค 4/7.

Case 4 [๐‘š(๐œƒ1) =๐‘†, ๐‘š(๐œƒ2) =๐‘†]:

Similar to the previous case, since player 1 follows a pooling strategy, player 2 will not update his belief at information set ๐‘†, i.e., ๐œ‡๐‘† = 1/2. Also, the ๐œ’-dampened updating property suggests ๐œ’/2 โ‰ค ๐œ‡๐ผ โ‰ค 1โˆ’ ๐œ’/2. Because ๐œ‡๐‘† > 2/7, it is optimal for player 2 to choose ๐ถ at information set ๐‘†. To support this as an equilibrium, player 2 has to choose ๐ท at information set๐ผ. Therefore, it must be that ๐œ‡๐ผ โ‰ค 1/3.

Combined with the requirement of ๐œ’-dampened updating, the off-path belief has to satisfy ๐œ’/2 โ‰ค ๐œ‡๐ผ โ‰ค 1/3. As a result, [(๐‘†, ๐‘†);(๐ท , ๐ถ)] is a pooling ๐œ’-CSE if and only if ๐œ’ โ‰ค 2/3.

Analysis of Game BH 4.

At information set ๐ผ, given ๐œ‡๐ผ, the expected payoffs of๐ถ, ๐ท, ๐ธ are 30, 45โˆ’45๐œ‡๐ผ and 35๐œ‡๐ผ. Hence,๐ทis the best response if and only if๐œ‡๐ผ โ‰ค 1/3 while๐ธ is the best response if ๐œ‡๐ผ โ‰ฅ 6/7. For 1/3 โ‰ค ๐œ‡๐ผ โ‰ค 6/7, ๐ถ is the best response. On the other hand, since player 2โ€™s payoffs at information set๐‘†are the same as in Game 1, player 2 will adopt the same decision ruleโ€”player 2 will choose๐ถif and only if๐œ‡๐‘† โ‰ฅ 2/7, and choose๐ท if and only if๐œ‡๐‘† โ‰ค 2/7. Now, we consider the following four cases.

Case 1 [๐‘š(๐œƒ1) = ๐ผ , ๐‘š(๐œƒ2) =๐‘†]:

In this case, by Lemma 1, ๐œ‡๐ผ = 1โˆ’ ๐œ’/2 and ๐œ‡๐‘† = ๐œ’/2. To support this profile to be an equilibrium, player 2 has to choose ๐ธ and๐ถ at information set ๐ผ and ๐‘†, respectively. To make it profitable for player 2 to choose ๐ธ at information set๐ผ, it must be that:

๐œ‡๐ผ =1โˆ’ ๐œ’/2โ‰ฅ 6/7 โ‡โ‡’ ๐œ’ โ‰ค 2/7.

On the other hand, player 2 will choose๐ถat information set๐‘†if and only if๐œ’/2 โ‰ฅ 2/7 or ๐œ’ โ‰ฅ 4/7, which is not compatible with the previous inequality. Therefore, this profile cannot be supported as an equilibrium.

Case 2 [๐‘š(๐œƒ1) =๐‘†, ๐‘š(๐œƒ2) =๐ผ]:

In this case, by Lemma 1, ๐œ‡๐ผ = ๐œ’/2 and ๐œ‡๐‘† = 1โˆ’ ๐œ’/2. To support this as an equilibrium, player 2 has to choose๐ทat both information sets. Yet,๐œ‡๐‘† =1โˆ’๐œ’/2>

2/7, implying that it is not a best reply for player 2 to choose ๐ท at information set ๐‘†. Hence this profile also cannot be supported as an equilibrium.

Case 3 [๐‘š(๐œƒ1) = ๐ผ , ๐‘š(๐œƒ2) =๐ผ]:

Since player 1 follows a pooling strategy, player 2 will not update his belief at information set ๐ผ, i.e., ๐œ‡๐ผ = 1/2. The ๐œ’-dampened updating property implies ๐œ’/2 โ‰ค ๐œ‡๐‘† โ‰ค 1โˆ’ ๐œ’/2. Because 1/3 < ๐œ‡๐ผ = 1/2 < 6/7, player 2 will choose ๐ถ at information set ๐ผ. To support this profile as an equilibrium, player 2 has to choose ๐ท at information set ๐‘†, and hence, it must be the case that ๐œ‡๐‘† โ‰ค 2/7.

Coupled with the requirement of ๐œ’-dampened updating, the off-path belief has to satisfy ๐œ’/2 โ‰ค ๐œ‡๐‘† โ‰ค 2/7. That is, [(๐ผ , ๐ผ);(๐ถ , ๐ท)] is pooling ๐œ’-CSE if and only if ๐œ’/2 โ‰ค 2/7 or ๐œ’ โ‰ค 4/7.

Case 4 [๐‘š(๐œƒ1) =๐‘†, ๐‘š(๐œƒ2) =๐‘†]:

Similar to the previous case, since player 1 follows a pooling strategy, player 2 will not update his belief at information set ๐‘†, i.e., ๐œ‡๐‘† = 1/2. Also, the ๐œ’-dampened updating property implies๐œ’/2โ‰ค ๐œ‡๐ผ โ‰ค 1โˆ’๐œ’/2. Because๐œ‡๐‘† > 2/7, it is optimal for player 2 to choose๐ถ at information set๐‘†. To support this as an equilibrium, player 2 can choose either๐ถor๐ท at information set๐ผ.

Case 4.1: To make it a best reply for player 2 to choose ๐ท at information set ๐ผ, it must be that๐œ‡๐ผ โ‰ค 1/3. Combined with the requirement from๐œ’-dampened updating, the off-path belief has to satisfy ๐œ’/2 โ‰ค ๐œ‡๐ผ โ‰ค 1/3. As a result,[(๐‘†, ๐‘†);(๐ท , ๐ถ)]is a pooling ๐œ’-CSE if and only if ๐œ’ โ‰ค 2/3.

Case 4.2: To make it a best reply for player 2 to choose๐ถ at information set ๐ผ, it must be that 1/3 โ‰ค ๐œ‡๐ผ โ‰ค 6/7. Combined with the requirement from ๐œ’-dampened updating, the off-path belief has to satisfy

max 1

2๐œ’, 1 3

โ‰ค ๐œ‡๐ผ โ‰ค min 6

7,1โˆ’ 1 2๐œ’

.

For any ๐œ’ โˆˆ [0,1], one can find ๐œ‡๐ผ that satisfies both inequalities. Hence [(๐‘†, ๐‘†);(๐ถ , ๐ถ)] is a pooling๐œ’-CSE for any ๐œ’.

This completes the analysis of Game BH 3 and Game BH 4. โ–  A Public Goods Game with Communication

Proof of Proposition 7 To prove this set of cost cutoffs form a ๐œ’-CSE, we need to show that there is no profitable deviation for any type at any subgame. First, at the second stage where there are exactly 0 โ‰ค ๐‘˜ โ‰ค ๐‘ โˆ’1 players sending 1 in the first stage, since no players will contribute, setting๐ถ๐œ’

๐‘˜ =0 is indeed a best response.

At the subgame where all ๐‘ players send 1 in the first stage, we use ๐œ‡

๐œ’

๐‘– (๐‘โˆ’๐‘–|๐‘) to denote player๐‘–โ€™s cursed belief density. By Lemma 1, the cursed belief about all other players having a cost lower than๐‘is simply:

๐น๐œ’(๐‘) โ‰ก

โˆซ

{๐‘๐‘—โ‰ค๐‘,โˆ€๐‘—โ‰ ๐‘–}

๐œ‡

๐œ’

๐‘– (๐‘โ€ฒโˆ’๐‘–|๐‘)๐‘‘๐‘โ€ฒโˆ’๐‘–

=

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

๐œ’(๐‘/๐พ)๐‘โˆ’1+ (1โˆ’ ๐œ’) ๐‘/๐ถ

๐œ’ ๐‘

๐‘โˆ’1

if๐‘ โ‰ค ๐ถ

๐œ’ ๐‘

1โˆ’ ๐œ’+ ๐œ’ ๐‘/๐ถ

๐œ’ ๐‘

๐‘โˆ’1

if๐‘ > ๐ถ

๐œ’ ๐‘, and๐ถ

๐œ’

๐‘ is the solution of the fixed point problem of๐ถ

๐œ’

๐‘ =๐น๐œ’(๐ถ

๐œ’ ๐‘).

Moreover, in equilibrium,๐ถ

๐œ’

๐‘ type of players would be indifferent between sending 1 and 0 in the communication stage. Thus, given ๐ถ

๐œ’ ๐‘, ๐ถ

๐œ’

๐‘ is the solution of the following equation

0= ๐ถ

๐œ’ ๐‘

๐พ ๐‘โˆ’1

โˆ’๐ถ

๐œ’

๐‘ +๐น๐œ’(๐ถ

๐œ’ ๐‘)

. As a result, we obtain that in equilibrium,๐ถ

๐œ’

๐‘ =๐ถ

๐œ’

๐‘ =๐น๐œ’(๐ถ

๐œ’

๐‘) โ‰ค 1 and denote this cost cutoff by๐ถโˆ—(๐‘ , ๐พ , ๐œ’). Substituting it into๐น๐œ’(๐‘), gives:

๐ถโˆ—(๐‘ , ๐พ , ๐œ’) โˆ’ ๐œ’

๐ถโˆ—(๐‘ , ๐พ , ๐œ’) ๐พ

๐‘โˆ’1

=1โˆ’ ๐œ’ .

In the following, we show that for any ๐‘ โ‰ฅ 2 and ๐œ’, the cutoff ๐ถโˆ—(๐‘ , ๐พ , ๐œ’) is unique.

Case 1: When ๐‘ = 2, the cutoff ๐ถโˆ—(2, ๐พ , ๐œ’) is the unique solution of the linear equation

๐ถโˆ—(2, ๐พ , ๐œ’) โˆ’๐œ’

๐ถโˆ—(2, ๐พ , ๐œ’) ๐พ

=1โˆ’ ๐œ’ โ‡โ‡’ ๐ถโˆ—(2, ๐พ , ๐œ’) = ๐พ โˆ’๐พ ๐œ’ ๐พ โˆ’๐œ’

.

Case 2: For๐‘ โ‰ฅ 3, we define the function โ„Ž(๐‘ฆ) : [0,1] โ†’Rwhere โ„Ž(๐‘ฆ)= ๐‘ฆโˆ’ ๐œ’

๐‘ฆ ๐พ

๐‘โˆ’1

โˆ’ (1โˆ’ ๐œ’).

It suffices to show that โ„Ž(๐‘ฆ)has a unique root in [0,1]. When ๐œ’=0, โ„Ž(๐‘ฆ) = ๐‘ฆโˆ’1 which has a unique root at ๐‘ฆ = 1. In the following, we will focus on the case where ๐œ’ > 0. Since โ„Ž(๐‘ฆ) is continuous, โ„Ž(0) = โˆ’(1 โˆ’ ๐œ’) < 0 and โ„Ž(1) = ๐œ’

1โˆ’ (1/๐พ)๐‘โˆ’1

> 0, there exists a root ๐‘ฆโˆ— โˆˆ (0,1) by the intermediate value theorem. Moreover, as we take the second derivative, we can find that for any ๐‘ฆ โˆˆ (0,1),

โ„Žโ€ฒโ€ฒ(๐‘ฆ) =โˆ’ ๐œ’ ๐พ๐‘โˆ’1

(๐‘โˆ’1) (๐‘โˆ’2)๐‘ฆ๐‘โˆ’3 < 0,

implying thatโ„Ž(๐‘ฆ)is strictly concave in[0,1]. Furthermore,โ„Ž(0) < 0 andโ„Ž(1) > 0, so the root is unique, as illustrated in the left panel of Figure 3. This completes the proof. โ– 

Proof of Corollary 3 By Proposition 7, we know the cutoff๐ถโˆ—(๐‘ , ๐พ , ๐œ’) โ‰ค 1 and it satisfies

๐ถโˆ—(๐‘ , ๐พ , ๐œ’) โˆ’ ๐œ’

๐ถโˆ—(๐‘ , ๐พ , ๐œ’) ๐พ

๐‘โˆ’1

=1โˆ’ ๐œ’ .

Therefore, when ๐œ’ =0, the condition becomes๐ถโˆ—(๐‘ , ๐พ ,0) =1. In addition, when ๐œ’ =1, the condition becomes

๐ถโˆ—(๐‘ , ๐พ ,1) โˆ’

๐ถโˆ—(๐‘ , ๐พ ,1) ๐พ

๐‘โˆ’1

=0, implying๐ถโˆ—(๐‘ , ๐พ ,1) =0.

For๐œ’ โˆˆ (0,1), to prove๐ถโˆ—(๐‘ , ๐พ , ๐œ’)is strictly decreasing in๐‘,๐พand๐œ’, we consider a function๐‘”(๐‘ฆ;๐‘ , ๐พ , ๐œ’) : (0,1) โ†’ Rwhere๐‘”(๐‘ฆ;๐‘ , ๐พ , ๐œ’) = ๐‘ฆโˆ’ ๐œ’[๐‘ฆ/๐พ]๐‘โˆ’1.For any ๐‘ฆ โˆˆ (0,1)and fix any๐พ and ๐œ’, we can observe that when ๐‘ โ‰ฅ2,

๐‘”(๐‘ฆ;๐‘ +1, ๐พ) โˆ’๐‘”(๐‘ฆ;๐‘ , ๐พ) =โˆ’๐œ’ h๐‘ฆ

๐พ i๐‘

+๐œ’ h๐‘ฆ

๐พ i๐‘โˆ’1

> 0,

so ๐‘”(ยท;๐‘ , ๐พ , ๐œ’) is strictly increasing in ๐‘. Therefore, the cutoff ๐ถโˆ—(๐‘ , ๐พ , ๐œ’) is strictly decreasing in ๐‘. Similarly, for any๐‘ฆ โˆˆ (0,1) and fix any๐‘ and ๐œ’, observe that when๐พ >1,

๐œ• ๐‘”

๐œ• ๐พ

= ๐œ’(๐‘โˆ’1) ๐‘ฆ๐‘โˆ’1

๐พ๐‘

> 0,

which implies that cutoff ๐ถโˆ—(๐‘ , ๐พ , ๐œ’) is also strictly decreasing in ๐พ. For the comparative statics of ๐œ’, we can rearrange the equilibrium condition where

1โˆ’๐ถโˆ—(๐‘ , ๐พ , ๐œ’) ๐œ’

=1โˆ’

๐ถโˆ—(๐‘ , ๐พ , ๐œ’) ๐พ

๐‘โˆ’1

.

Since LHS is strictly decreasing in๐œ’, the equilibrium cutoff is also strictly decreasing in ๐œ’. Finally, taking the limit on both sides of the equilibrium condition, we obtain:

lim

๐‘โ†’โˆž

๐ถโˆ—(๐‘ , ๐พ , ๐œ’) = lim

๐พโ†’โˆž

๐ถโˆ—(๐‘ , ๐พ , ๐œ’) =1โˆ’ ๐œ’ . This completes the proof. โ– 

The Centipede Game with Altruistic Types

Proof of Claim 2 By backward induction, we know selfish player two will choose ๐‘‡4 for sure. Given that player two will choose๐‘‡4 at stage four, it is optimal for selfish player one to choose ๐‘‡3. Now, suppose selfish player one will choose ๐‘ƒ1 with probability๐‘ž1and player two will choose ๐‘ƒ2 with probability ๐‘ž2. Given this behavioral strategy profile, player twoโ€™s belief about the other player being altruistic at stage two is:

๐œ‡= ๐›ผ

๐›ผ+ (1โˆ’๐›ผ)๐‘ž1 .

In this case, it is optimal for selfish player two to pass if and only if 32๐œ‡+4(1โˆ’ ๐œ‡) โ‰ฅ8 โ‡โ‡’ ๐œ‡ โ‰ฅ 1

7.

At the equilibrium, selfish player two is indifferent between๐‘‡2 and๐‘ƒ2. If not, say 32๐œ‡+4(1โˆ’๐œ‡) > 8, player two will choose๐‘ƒ2. Given that player two will choose๐‘ƒ2, it is optimal for selfish player one to choose ๐‘ƒ1, which makes ๐œ‡ =๐›ผand๐›ผ > 1/7.

However, we know ๐›ผ โ‰ค 1/7 which yields a contradiction. On the other hand, if 32๐œ‡+4(1โˆ’๐œ‡) < 8, then it is optimal for player two to choose๐‘‡2 at stage two. As a result, selfish player one would choose ๐‘‡1 at stage one, causing ๐œ‡ = 1. In this case, player two would deviate to choose๐‘ƒ2, which again yields a contradiction. To summarize, in equilibrium, player two has to be indifferent between๐‘‡2 and๐‘ƒ2, i.e., ๐œ‡=1/7. As we rearrange the equality, we can obtain that

๐›ผ ๐›ผ+ (1โˆ’๐›ผ)๐‘žโˆ—

1

= 1

7 โ‡โ‡’ ๐‘žโˆ—

1= 6๐›ผ 1โˆ’๐›ผ

.

Finally, since the equilibrium requires selfish player one to mix at stage one, selfish player one has to be indifferent between๐‘ƒ1 and๐‘‡1. Therefore,

4=16๐‘žโˆ—

2+2(1โˆ’๐‘žโˆ—

2) โ‡โ‡’ ๐‘žโˆ—

2 = 1 7. This completes the proof. โ– 

Proof of Proposition 8 By backward induction, we know selfish player two will choose๐‘‡4 for sure. Given this, it is optimal for selfish player one to choose๐‘‡3. Now, suppose selfish player one will choose ๐‘ƒ1 with probability ๐‘ž1 and player two will choose๐‘ƒ2 with probability๐‘ž2. Given this behavioral strategy profile, by Lemma 1, player twoโ€™scursedbelief about the other player being altruistic at stage 2 is:

๐œ‡๐œ’ = ๐œ’๐›ผ+ (1โˆ’ ๐œ’)

๐›ผ

๐›ผ+ (1โˆ’๐›ผ)๐‘ž1

. In this case, it is optimal for player two to pass if and only if 32๐œ‡๐œ’+4(1โˆ’๐œ‡๐œ’) โ‰ฅ 8 โ‡โ‡’ ๐œ‡๐œ’ โ‰ฅ 1

7.

We can first show that in equilibrium, it must be that ๐œ‡๐œ’ โ‰ค 1/7. If not, then it is strictly optimal for player two to choose ๐‘ƒ2. Therefore, it is optimal for selfish player one to choose๐‘ƒ1 and hence ๐œ‡๐œ’ =๐›ผโ‰ค 1/7, which yields a contradiction. In the following, we separate the discussion into two cases.

Case 1: ๐œ’ โ‰ค 6

7(1โˆ’๐›ผ)

In this case, we argue that player two is indifferent between๐‘ƒ2 and๐‘‡2. If not, then 32๐œ‡๐œ’ +4(1โˆ’ ๐œ‡๐œ’) < 8 and it is strictly optimal for player two to choose๐‘‡2. This would cause selfish player one to choose๐‘‡1 and hence ๐œ‡๐œ’ = 1โˆ’ (1โˆ’๐›ผ)๐œ’. This yields a contradiction because

๐œ‡๐œ’ =1โˆ’ (1โˆ’๐›ผ)๐œ’ < 1

7 โ‡โ‡’ ๐œ’ > 6 7(1โˆ’๐›ผ).

Therefore, in this case, player two is indifferent between๐‘‡2 and๐‘ƒ2 and thus, ๐œ‡๐œ’ = 1

7 โ‡โ‡’ ๐œ’๐›ผ+ (1โˆ’ ๐œ’)

"

๐›ผ ๐›ผ+ (1โˆ’๐›ผ)๐‘ž

๐œ’ 1

#

= 1 7

โ‡โ‡’ ๐œ’+ 1โˆ’ ๐œ’

๐›ผ+ (1โˆ’๐›ผ)๐‘ž

๐œ’ 1

= 1 7๐›ผ

โ‡โ‡’ ๐›ผ+ (1โˆ’๐›ผ)๐‘ž

๐œ’

1 =(1โˆ’ ๐œ’) 1 7๐›ผ

โˆ’ ๐œ’

โ‡โ‡’ ๐‘ž

๐œ’ 1 =

7๐›ผโˆ’7๐›ผ ๐œ’ 1โˆ’7๐›ผ ๐œ’

โˆ’๐›ผ (1โˆ’๐›ผ).

Since the equilibrium requires selfish player one to mix at stage 1, selfish player one has to be indifferent between๐‘ƒ1 and๐‘‡1. Therefore,

4=16๐‘ž

๐œ’

2 +2(1โˆ’๐‘ž

๐œ’

2) โ‡โ‡’ ๐‘ž

๐œ’ 2 = 1

7. Case 2: ๐œ’ > 6

7(1โˆ’๐›ผ)

In this case, we know for any๐‘ž

๐œ’

1 โˆˆ [0,1], ๐œ‡๐œ’ = ๐œ’๐›ผ+ (1โˆ’ ๐œ’)

"

๐›ผ ๐›ผ+ (1โˆ’๐›ผ)๐‘ž

๐œ’ 1

#

โ‰ค 1โˆ’ (1โˆ’๐›ผ)๐œ’ < 1 7,

implying that it is strictly optimal for player two to choose๐‘‡2, and hence it is strictly optimal for selfish player one to choose๐‘‡1 at stage 1. This completes the proof. โ–  Sequential Voting over Binary Agendas

Proof of Proposition 9 If ๐‘Ž1(๐œƒ1) = ๐‘ and all other types of voters as well as type๐œƒ1at stage 2 vote sincerely, voter๐‘–โ€™s ๐œ’-cursed belief in the second stage upon observing๐‘Ž1

โˆ’๐‘–= (๐‘Ž, ๐‘) is

๐œ‡

๐œ’

๐‘– (๐œƒโˆ’๐‘–|๐‘Ž1

โˆ’๐‘– =(๐‘Ž, ๐‘))=

๏ฃฑ๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด

๏ฃณ

๐‘1๐‘3๐œ’+ ๐‘1

๐‘1+๐‘2(1โˆ’ ๐œ’) if๐œƒโˆ’๐‘– =(๐œƒ3, ๐œƒ1) ๐‘2๐‘3๐œ’+ ๐‘2

๐‘1+๐‘2(1โˆ’ ๐œ’) if๐œƒโˆ’๐‘– =(๐œƒ3, ๐œƒ2)

๐‘๐‘˜๐‘๐‘™๐œ’ otherwise.

As mentioned in Section 4.4, a voter would act as if he perceives the other votersโ€™

(behavioral) strategies correctly in the last stage. However, misunderstanding the link between the other votersโ€™ types and actions would distort a voterโ€™s belief updating process. In other words, a voter would perceive the strategies correctly but form beliefs incorrectly. As a result, the continuation value of the ๐‘Ž vs ๐‘ subgame to a type ๐œƒ1voter is simply the voterโ€™s ๐œ’-cursed belief, conditional on being pivotal, about there being at least one type ๐œƒ1 voter among his opponents. Similarly, the continuation value of the ๐‘ vs ๐‘ subgame is equal to the voterโ€™s conditional ๐œ’- cursed belief about there being at least one type๐œƒ1or๐œƒ2voter among his opponents multiplied by ๐‘ฃ. Therefore, the continuation values to a type ๐œƒ1 voter in the two possible subgames of the second stage are (let หœ๐‘2โ‰ก ๐‘1

๐‘1+๐‘2):

๐‘Žvs๐‘ : ๐œ’

1โˆ’ (1โˆ’ ๐‘1)2

+ (1โˆ’ ๐œ’)๐‘หœ2 ๐‘vs๐‘ :

1โˆ’๐‘2

3๐œ’

๐‘ฃ

It is thus optimal for a type๐œƒ1voter to vote for๐‘in the first stage if ๐œ’

1โˆ’ (1โˆ’ ๐‘1)2

+ (1โˆ’๐œ’)๐‘หœ2 โ‰ค 1โˆ’๐‘2

3๐œ’

๐‘ฃ

โ‡โ‡’ [2๐‘1โˆ’๐‘2

1โˆ’ ๐‘หœ2+ ๐‘2

3๐‘ฃ]๐œ’ โ‰ค ๐‘ฃโˆ’๐‘หœ2 (A.1)

Notice that the statement would automatically hold when ๐œ’ =0. In the following, we want to show that given ๐‘ฃ and ๐‘, if condition (A.1) holds for some ๐œ’ โˆˆ (0,1], then it will hold for all ๐œ’โ€ฒ โ‰ค ๐œ’. As๐œ’ > 0, we can rewrite condition (A.1) as

2๐‘1โˆ’ ๐‘2

1โˆ’ ๐‘หœ2+๐‘2

3๐‘ฃ โ‰ค ๐‘ฃโˆ’ ๐‘หœ2 ๐œ’

. (2โ€™)

Case 1: ๐‘ฃโˆ’๐‘หœ2 <0.

In this case, we want to show that voting๐‘in the first stage is never optimal for type ๐œƒ1voter. That is, we want to show condition (2โ€™) never holds for๐‘ฃ < ๐‘หœ2. To see this, we can first observe that the RHS is strictly increasing in๐œ’. Therefore, it suffices to show

2๐‘1โˆ’ ๐‘2

1โˆ’ ๐‘หœ2+๐‘2

3๐‘ฃ > ๐‘ฃโˆ’ ๐‘หœ2. This is true because

2๐‘1โˆ’ ๐‘2

1โˆ’ ๐‘หœ2+๐‘2

3๐‘ฃโˆ’ (๐‘ฃโˆ’ ๐‘หœ2) =2๐‘1โˆ’ ๐‘2

1โˆ’ (1โˆ’ ๐‘2

3)๐‘ฃ

> 2๐‘1โˆ’ ๐‘2

1โˆ’ (1+๐‘3)๐‘1= ๐‘1๐‘2 โ‰ฅ 0 where the second inequality holds as๐‘ฃ <

๐‘1 ๐‘1+๐‘2. Case 2: ๐‘ฃโˆ’๐‘หœ2 โ‰ฅ 0.

Since the RHS of condition (2โ€™) is greater or equal to 0, it will weakly increase as ๐œ’ decreases. Thus, if condition (2โ€™) holds for some ๐œ’ โˆˆ (0,1], it will also hold for all ๐œ’โ€ฒโ‰ค ๐œ’. This completes the proof. โ– 

Proof of Proposition 10 Assuming that all voters vote sincerely in both stages, voter๐‘–โ€™s ๐œ’-cursed belief in the second stage upon observing๐‘Ž1

โˆ’๐‘– =(๐‘Ž, ๐‘) is

๐œ‡

๐œ’

๐‘– (๐œƒโˆ’๐‘–|๐‘Ž1โˆ’๐‘– =(๐‘Ž, ๐‘))=

๏ฃฑ๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด

๏ฃณ

๐‘1๐‘2๐œ’+ ๐‘1

๐‘1+๐‘3(1โˆ’ ๐œ’) if๐œƒโˆ’๐‘– =(๐œƒ1, ๐œƒ2) ๐‘2๐‘3๐œ’+ ๐‘3

๐‘1+๐‘3(1โˆ’ ๐œ’) if๐œƒโˆ’๐‘– =(๐œƒ3, ๐œƒ2)

๐‘๐‘˜๐‘๐‘™๐œ’ otherwise.

Similar to the proof of Proposition 9, the continuation values to a type๐œƒ1 voter in the two possible subgames of the second stage are (let หœ๐‘3โ‰ก ๐‘1

๐‘1+๐‘3):

๐‘Žvs๐‘ : ๐œ’

1โˆ’ (1โˆ’ ๐‘1)2

+ (1โˆ’ ๐œ’)๐‘หœ3 ๐‘vs๐‘ :

1โˆ’๐‘2

3๐œ’

๐‘ฃ

Thus, it is optimal for a type๐œƒ1voter to vote for๐‘Žin the first stage if ๐œ’

1โˆ’ (1โˆ’ ๐‘1)2

+ (1โˆ’๐œ’)๐‘หœ3 โ‰ฅ 1โˆ’๐‘2

3๐œ’

๐‘ฃ

โ‡โ‡’ ๐œ’

2๐‘1โˆ’ ๐‘2

1โˆ’ ๐‘หœ3+๐‘2

3๐‘ฃ

โ‰ฅ ๐‘ฃโˆ’ ๐‘หœ3. (A.2)

Case 1: ๐‘ฃโˆ’๐‘หœ3 >0.

In this case, we want to show that given ๐‘ and๐‘ฃ, there exists หœ๐œ’such that condition (A.2) holds if and only if ๐œ’ โ‰ฅ ๐œ’หœ. Let ๐œ โ‰ก 2๐‘1โˆ’ ๐‘2

1โˆ’ ๐‘หœ3+ ๐‘2

3๐‘ฃ. If ๐œ > 0, then condition (A.2) holds if and only if ๐œ’ โ‰ฅ ๐œ’หœ โ‰ก ๐‘ฃโˆ’๐‘หœ3

๐œ . On the other hand, if ๐œ โ‰ค 0, condition (A.2) will not hold for all ๐œ’ โˆˆ [0,1]and hence we can set หœ๐œ’=2.

Case 2: ๐‘ฃโˆ’๐‘หœ3 โ‰ค 0.

In this case, we want to show that given ๐‘ and๐‘ฃ, there exists หœ๐œ’such that condition (A.2) holds if and only if ๐œ’ โ‰ค ๐œ’หœ. If๐œ <0, then condition (A.2) holds if and only if ๐œ’ โ‰ค ๐‘ฃโˆ’๐‘หœ3

๐œ where the RHS is greater or equal to 0. On the other hand, if๐œ โ‰ฅ 0, then condition (A.2) will hold for any ๐œ’ โˆˆ [0,1]and hence we can again set หœ๐œ’ =2. This completes the proof. โ– 

The Dirty Faces Game

Proof of Proposition 11 When observing a clean face, a player will know that he has a dirty face immediately. Therefore, choosing 1 (i.e., choosing ๐ท at stage 1) when observing a clean face is a strictly dominant strategy. In other words, for any ๐œ’ โˆˆ [0,1], ห†๐œŽ๐œ’(๐‘‚) =1.

The analysis of the case where the player observes a dirty face is separated into two cases.

Case 1: ๐œ’ > ๐›ผยฏ

In this case, we show that ห†๐œŽ๐œ’(๐‘‹) =๐‘‡+1 is the only๐œ’-CE. If not, suppose ห†๐œŽ๐œ’(๐‘‹)=๐‘ก where๐‘ก โ‰ค ๐‘‡can be supported as a๐œ’-CE. We can first notice that ห†๐œŽ๐œ’(๐‘‹) =1 cannot

Dalam dokumen Essays in Behavioral Economics and Game Theory (Halaman 113-134)