• Tidak ada hasil yang ditemukan

PROOFS FOR CHAPTER 3

Dalam dokumen Essays in Behavioral Economics and Game Theory (Halaman 134-145)

Proof of Theorem 1

Proof. Suppose (towards contradiction) that both BUE and CBE do not exist. This implies both inequality (3.1) and inequality (3.2) do not hold, i.e.,

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

2

(2πœƒβˆ’1) (2π‘žβˆ’1) >

π‘žβˆ’πœƒ

πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž 𝛿 and

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

2

<

π‘žβˆ’πœƒ

πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž 𝛿

=β‡’ (2πœƒβˆ’1) (2π‘žβˆ’1) > 1

However, we have 2πœƒβˆ’1 ∈ (0,1) and 2π‘žβˆ’1 ∈ (2πœƒβˆ’1,1) βŠ‚ (0,1), which implies

(2πœƒβˆ’1) (2π‘žβˆ’1) < 1, a contradiction. β–‘

Proofs of Propositions

Before we start the proofs, recall that𝑓(πœƒ , π‘ž, 𝛿)=

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ( πœƒ(1βˆ’π‘ž)

1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

2

(2πœƒβˆ’ 1) (2π‘žβˆ’1)βˆ’πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘žπ‘žβˆ’πœƒ 𝛿and𝑔(πœƒ , π‘ž, 𝛿) =

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘žπœƒ(1βˆ’π‘ž)

2

βˆ’πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘žπ‘žβˆ’πœƒ 𝛿. A Bayesian Updating Equilibrium (BUE) can be sustained if and only if 𝑓(πœƒ , π‘ž, 𝛿) ≀ 0, and a Confirmatory Bias Equilibrium (CBE) can be sustained if and only if 𝑔(πœƒ , π‘ž, 𝛿) β‰₯0.

Proof of Proposition 1

Claim: When𝛿 β‰₯ 1 (andπ‘ž ∈ (0.5,1)), πœ• πœƒπœ• 𝑓(πœƒ , π‘ž, 𝛿) > 0 forπœƒ ∈ (0.5, π‘ž).

Proof. To prove the claim, it is sufficient to show that, given𝛿 β‰₯ 1,12πœ• πœƒπœ• 𝑓(πœƒ , π‘ž, 𝛿) > 0

forπœƒ ∈ (0.5,1). 1

2

πœ•

πœ• πœƒ

𝑓(πœƒ , π‘ž, 𝛿) =(2π‘žβˆ’1)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

2

+π‘ž(1βˆ’π‘ž) (2πœƒβˆ’1)

Γ—

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 βˆ’ 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2 + π‘ž(1βˆ’π‘ž)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝛿

β‰₯ (2π‘žβˆ’1)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

2

+π‘ž(1βˆ’π‘ž) (2πœƒβˆ’1)

Γ—

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 βˆ’ 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2 + π‘ž(1βˆ’π‘ž)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

=(2π‘žβˆ’1)

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

Β·

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ( πœƒ(1βˆ’π‘ž)

1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

+π‘ž(1βˆ’π‘ž) (2πœƒβˆ’1)( 1

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž))2





ο£½



ο£Ύ (1)

βˆ’

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

(2πœƒβˆ’1) (2π‘žβˆ’1)π‘ž(1βˆ’π‘ž) 1

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2

o (2) +π‘ž(1βˆ’π‘ž) 1

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2

o (3)

Note that the first and third term above after the last equality are positive while the second term is negative. However, we know (2π‘ž βˆ’ 1) ∈ (0,1), (2πœƒ βˆ’ 1) ∈ (0,1), and ( πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž) ∈ (0,1), which implies ( πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’

πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž) (2πœƒβˆ’1) (2π‘žβˆ’1) ∈ (0,1). Thus, the sum of the second and the third term is still positive, implying that 12πœ• πœƒπœ• 𝑓(πœƒ , π‘ž, 𝛿) > 0. β–‘ Notice that 𝑓(0.5, π‘ž, 𝛿) = βˆ’(2π‘žβˆ’1)𝛿 < 0 and 𝑓(π‘ž, π‘ž, 𝛿) = ( π‘ž2

π‘ž2+(1βˆ’π‘ž)2 βˆ’ 1

2)2(2π‘ž βˆ’ 1)2 > 0. Therefore, given any 𝛿 β‰₯ 1 and π‘ž0 ∈ (0.5,1), there exists a unique πœƒ0 ∈ (0.5, π‘ž0) such that 𝑓(πœƒ0, π‘ž0, 𝛿) = 0; moreover, since 𝑓(Β·) increases in πœƒ, we have 𝑓(πœƒ , π‘ž0, 𝛿) < 0 forπœƒ ∈ (0.5, πœƒ0), which completes the proof of Proposition 1.

Proof of Proposition 2

Claim: When𝛿 β‰₯ 1 (andπ‘ž ∈ (0.5,1)), πœ• πœƒπœ•π‘”(πœƒ , π‘ž, 𝛿) > 0 forπœƒ ∈ (0.5, π‘ž).

Proof. To prove the claim, it is sufficient to show that, given𝛿 β‰₯ 1,12πœ• πœƒπœ•π‘”(πœƒ , π‘ž, 𝛿) > 0 forπœƒ ∈ (0.5,1).

1 2

πœ•

πœ• πœƒ

𝑔(πœƒ , π‘ž, 𝛿) =π‘ž(1βˆ’π‘ž)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 βˆ’ 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

+ π‘ž(1βˆ’π‘ž)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝛿

β‰₯ π‘ž(1βˆ’π‘ž)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 βˆ’ 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

+ π‘ž(1βˆ’π‘ž)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

=

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

π‘ž(1βˆ’π‘ž) 1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2

βˆ’

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

π‘ž(1βˆ’π‘ž) 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

+π‘ž(1βˆ’π‘ž) 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

Note that the first and third term above after the last equality are positive while the second term is negative. However, since(πœƒ π‘ž+( πœƒ π‘ž

1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ( πœƒ(1βˆ’π‘ž)

1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž) ∈ (0,1), the sum of the second and third term is positive, implying that 12πœ• πœƒπœ• 𝑔(πœƒ , π‘ž, 𝛿) > 0. β–‘ Notice that𝑔(0.5, 𝛿, π‘ž) = (2π‘žβˆ’1) (2π‘žβˆ’1βˆ’π›Ώ) < 0 and 𝑔(π‘ž, π‘ž, 𝛿) = ( π‘ž2

π‘ž2+(1βˆ’π‘ž)2 βˆ’

1

2)2 > 0. Therefore, given any 𝛿 β‰₯ 1 and π‘ž0 ∈ (0.5,1), there exists a unique πœƒ0 ∈ (0.5, π‘ž0) such that 𝑔(πœƒ0, π‘ž0, 𝛿) = 0; moreover, since 𝑔(Β·) increases in πœƒ, we have𝑔(πœƒ , π‘ž0, 𝛿) > 0 forπœƒ ∈ (πœƒ0, π‘ž0), which completes the proof of Proposition 2.

Proof of Proposition 3

Claim: When𝛿 β‰₯ 1 (andπœƒ ∈ (0.5,1)), πœ• π‘žπœ• 𝑓(πœƒ , π‘ž, 𝛿) <0 forπ‘ž ∈ (πœƒ ,1).

Proof. Letβ„Ž(πœƒ , π‘ž) ≑ 1

2πœƒ(1βˆ’πœƒ)(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2. To prove the claim, it is sufficient to show that, given 𝛿 β‰₯ 1, β„Ž(πœƒ , π‘ž) Β· πœ•

πœ• π‘ž 𝑓(πœƒ , π‘ž, 𝛿) < 0 for

π‘ž ∈ (0.5,1). β„Ž(πœƒ , π‘ž) Β· πœ•

πœ• π‘ž

𝑓(πœƒ , π‘ž, 𝛿) =β„Ž(πœƒ , π‘ž) Β·

"

2(2πœƒβˆ’1)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

2

+πœƒ(1βˆ’πœƒ) (2π‘žβˆ’1)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 + 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

βˆ’ 2πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝛿

< β„Ž(πœƒ , π‘ž) Β·

2(2πœƒβˆ’1) πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

+2πœƒ(1βˆ’πœƒ) (2π‘žβˆ’1)

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 + 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

βˆ’ 2πœƒ(1βˆ’πœƒ) (πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

=2(2πœƒβˆ’1)3π‘ž3+2(2πœƒβˆ’1)2(1βˆ’3πœƒ)π‘ž2

+ (2πœƒβˆ’1) (6πœƒ2βˆ’4πœƒ+1)π‘ž+πœƒ(βˆ’2πœƒ2+2πœƒβˆ’1)

≑ 𝛾(π‘ž;πœƒ)

We then complete the proof of claim by showing that𝛾(π‘ž;πœƒ) <0 for anyπœƒ ∈ (0.5,1) andπ‘ž ∈ (0.5,1).

From the discriminant of a cubic polynomial, we know that, ifπœ…(π‘₯) =π‘Žπ‘₯3+𝑏π‘₯2+𝑐π‘₯+𝑑 (where(π‘Ž, 𝑏, 𝑐, 𝑑) ∈R4), then

𝑏 𝑐 6π‘Ž2 βˆ’ 𝑏3

27π‘Ž3 βˆ’ 2𝑑

π‘Ž

2

+

𝑐 3π‘Ž βˆ’ 𝑏2

9π‘Ž2

>0 implies thatπœ…(π‘₯) only has one real root. Since (2πœƒβˆ’1) (6πœƒ2βˆ’4πœƒ+1)

6(2πœƒβˆ’1)3 βˆ’ (2(2πœƒβˆ’1)2(1βˆ’3πœƒ)

6(2πœƒβˆ’1)3 )2 = 1

18(2πœƒβˆ’1)2 > 0, we can conclude that𝛾(π‘ž;πœƒ)only has one real root (with respect toπ‘ž).

Furthermore, we have𝛾(1;πœƒ) =(πœƒβˆ’1) (2πœƒ2βˆ’2πœƒ+1) < 0 forπœƒ ∈ (0.5,1). Notice that the coefficient of the cubic term of 𝛾(π‘ž;πœƒ) is 2(2πœƒ βˆ’1)3 > 0 forπœƒ ∈ (0.5,1). Thus, the (unique) real root of𝛾(π‘ž;πœƒ) is greater than 0, which implies𝛾(π‘ž;πœƒ) < 0 for allπ‘ž ∈ (0.5,1)(givenπœƒ ∈ (0.5,1)), as desired. β–‘ Notice that 𝑓(πœƒ , πœƒ , 𝛿) = ( πœƒ2

πœƒ2+(1βˆ’πœƒ)2 βˆ’ 1

2)2(2πœƒ βˆ’1)2 > 0 and 𝑓(πœƒ ,1, 𝛿) = βˆ’π›Ώ < 0.

Therefore, given any𝛿 β‰₯ 1 andπœƒ0 ∈ (0.5,1), there exists a uniqueπ‘ž0∈ (πœƒ0,1)such that 𝑓(πœƒ0, π‘ž0, 𝛿) =0; moreover, since 𝑓(Β·)decreases inπ‘ž, we have 𝑓(πœƒ0, π‘ž, 𝛿) < 0 forπ‘ž ∈ (π‘ž0,1), which completes the proof of Proposition 3.

Proof of Proposition 4

First, note that𝑔(πœƒ , πœƒ , 𝛿) = ( πœƒ2

πœƒ2+(1βˆ’πœƒ)2 βˆ’ 1

2)2> 0,𝑔(πœƒ ,1, 𝛿)=1βˆ’π›Ώ <0 when𝛿 >1, 𝑔(πœƒ ,1, 𝛿 =1) =0, and πœ• π‘žπœ•π‘”(πœƒ , π‘ž, 𝛿) |π‘ž=1,𝛿=1 = 1βˆ’πœƒ

πœƒ

> 0. Thus, 𝑔(Β·;πœƒ , 𝛿) has at least one root in (πœƒ ,1) given anyπœƒ ∈ (0.5,1) and𝛿 β‰₯ 1. We then complete our proof of Proposition 4 by showing that the following two claims are true.

Claim 1: When𝛿 β‰₯ 2 (andπœƒ ∈ (0.5,1)), πœ• π‘žπœ• 𝑔(πœƒ , π‘ž, 𝛿) < 0 forπ‘ž ∈ (πœƒ ,1).

Proof.

1 2

πœ•

πœ• π‘ž

𝑔(πœƒ , π‘ž, 𝛿) =πœƒ(1βˆ’πœƒ)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 + 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

βˆ’ πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝛿 Thus, we have

1 2

πœ•

πœ• π‘ž

𝑔(πœƒ , π‘ž, 𝛿=2) =πœƒ(1βˆ’πœƒ)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Β· 1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2

βˆ’ πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2 +πœƒ(1βˆ’πœƒ)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Β· 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

βˆ’ πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

< 0

Last, notice that 12πœ• π‘žπœ• 𝑔(πœƒ , π‘ž, 𝛿 = 2) < 0 implies that πœ• π‘žπœ• 𝑔(πœƒ , π‘ž, 𝛿 = 2) < 0 for all

𝛿 β‰₯ 2. β–‘

Claim 2: Given any𝛿 ∈ [1,2]andπœƒ ∈ (0.5,1),𝑔(Β·;πœƒ , 𝛿) only has one (real) root in (πœƒ ,1).

Proof. Letπœ…(π‘ž;πœƒ , 𝛿) = (πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝑔(π‘ž;πœƒ , 𝛿). To prove Claim 2, it is sufficient to show thatπœ…(Β·;πœƒ , 𝛿)only has one root in (πœƒ ,1)since (πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2 >0 forπœƒ ∈ (0.5,1)andπ‘ž ∈ (πœƒ ,1).

Recall that 𝑔(Β·;πœƒ , 𝛿) (and thus πœ…(Β·;πœƒ , 𝛿)) has at least one root in (πœƒ ,1). We then prove that it has at most one root in (πœƒ ,1) by showing that 𝑑2

π‘‘π‘ž2

πœ…(π‘ž;πœƒ , 𝛿) > 0 for 𝛿 ∈ [1,2]andπ‘ž ∈ (πœƒ ,1).

After some tedious algebra, it can be shown that 𝑑2

π‘‘π‘ž2

πœ…(π‘ž;πœƒ , 𝛿) =12π‘ž 𝛿(2πœƒβˆ’1)2( (2πœƒβˆ’1)π‘ž+ (1βˆ’πœƒβˆ’πœƒ2))

+2(4πœƒ2(1βˆ’πœƒ2) +𝛿(2πœƒβˆ’1) (6πœƒ3βˆ’4πœƒ2βˆ’2πœƒ+1))

> 12πœƒ 𝛿(2πœƒβˆ’1)2(πœƒβˆ’1)2

+2(4πœƒ2(1βˆ’πœƒ2) +𝛿(2πœƒβˆ’1) (6πœƒ3βˆ’4πœƒ2βˆ’2πœƒ+1)) [∡ π‘ž > πœƒ]

=8πœƒ2(1βˆ’πœƒ)2+𝛿(2πœƒβˆ’1) (24πœƒ4βˆ’48πœƒ3+40πœƒ2βˆ’16πœƒ+2) ≑Γ(πœƒ;𝛿) When 𝛿 = 2, we have Ξ“(πœƒ; 2) = 96πœƒ5 βˆ’ 232πœƒ4+ 240πœƒ3 βˆ’ 136πœƒ2+ 40πœƒ βˆ’ 4. It can be numerically shown thatΞ“(πœƒ; 2)only has one real root (β‰ˆ 0.183453). Since Ξ“(1; 2) > 0 and Ξ“(0; 2) < 0, we can conclude that Ξ“(πœƒ; 2) > 0 for πœƒ ∈ (0.5,1).

Furthermore, this implies that, given anyπœƒ ∈ (0.5,1) , Ξ“(πœƒ;𝛿) β‰₯ 0 for 𝛿 ∈ [1,2]. If (2πœƒ βˆ’1) (24πœƒ4βˆ’48πœƒ3+40πœƒ2βˆ’16πœƒ +2) < 0, then Ξ“(πœƒ;𝛿) β‰₯ Ξ“(πœƒ; 2) > 0 for 𝛿 ∈ [1,2]; if (2πœƒ βˆ’1) (24πœƒ4βˆ’48πœƒ3+40πœƒ2βˆ’16πœƒ +2) β‰₯ 0, then Ξ“(πœƒ;𝛿) > 0 for 𝛿 ∈ [1,2]since 8πœƒ2(1βˆ’πœƒ)2 > 0. Therefore, we get 𝑑2

π‘‘π‘ž2

πœ…(π‘ž;πœƒ , 𝛿) > Ξ“(πœƒ;𝛿) β‰₯0 for

anyπœƒ ∈ (0.5,1) and𝛿 ∈ (1,2). β–‘

Recall that𝑔(Β·;πœƒ , 𝛿)has at least one root in(πœƒ ,1)given anyπœƒ ∈ (0.5,1)and𝛿 β‰₯ 1;

Claim 1 and Claim 2 imply that 𝑔(Β·;πœƒ , 𝛿) only has one root in (πœƒ ,1). That is, given any 𝛿 β‰₯ 1 and πœƒ0 ∈ (0.5,1), there exists a unique π‘ž0 ∈ (πœƒ0,1) such that 𝑔(πœƒ0, π‘ž0, 𝛿) = 0. Moreover, since 𝑔(πœƒ0, πœƒ0, 𝛿) > 0 and 𝑔(πœƒ0,1, 𝛿) ≀ 0, we have 𝑔(πœƒ0, π‘ž, 𝛿) > 0 forπ‘ž ∈ (πœƒ0, π‘ž0), which completes the proof of Proposition 4.

Proof of Proposition 5

Recall that 𝑓(0.5, π‘ž, 𝛿) =βˆ’(2π‘žβˆ’1)𝛿 <0 and 𝑓(π‘ž, π‘ž, 𝛿) =( π‘ž2

π‘ž2+(1βˆ’π‘ž)2βˆ’1

2)2(2π‘žβˆ’1)2>

0 given any 𝛿 > 0. We then complete the proof of Proposition 5 by showing that, given any𝛿 ∈ (0,1)andπ‘ž ∈ (0.5,1), πœ• πœƒπœ• 𝑓(πœƒ0, π‘ž, 𝛿)must be strictly positive for any πœƒ0 ∈ (0.5, π‘ž) such that 𝑓(πœƒ0, π‘ž, 𝛿) =0 (which implies that 𝑓(Β·;π‘ž, 𝛿)only intersects with theπ‘₯-axis once forπœƒ ∈ (0.5, π‘ž)).

Claim: Given any 𝛿 ∈ (0,1) andπ‘ž ∈ (0.5,1), πœ• πœƒπœ• 𝑓(πœƒ0, π‘ž, 𝛿) > 0 for πœƒ0 ∈ (0.5, π‘ž) such that 𝑓(πœƒ0, π‘ž, 𝛿) =0.

Proof. When 𝑓(πœƒ , π‘ž, 𝛿) = 0, we have 𝛿 =

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

2

(2πœƒ βˆ’ 1) (2π‘ž βˆ’ 1) Β· πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

π‘žβˆ’πœƒ ≑ 𝛿0. To complete the proof, we need to show that

πœ•

πœ• πœƒ 𝑓(πœƒ , π‘ž, 𝛿) |𝛿=𝛿0 > 0.

Recall that 1

2

πœ•

πœ• πœƒ

𝑓(πœƒ , π‘ž, 𝛿) =(2π‘žβˆ’1)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

2

+π‘ž(1βˆ’π‘ž) (2πœƒβˆ’1) Β·

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 βˆ’ 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2 + π‘ž(1βˆ’π‘ž)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝛿

From the above equation, we can derive12(π‘žβˆ’πœƒ) (πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2(πœƒ(1βˆ’π‘ž) + (1βˆ’ πœƒ)π‘ž)2(2π‘ž βˆ’1)βˆ’1

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘žπœƒ(1βˆ’π‘ž)

βˆ’1

πœ•

πœ• πœƒ

𝑓(πœƒ , π‘ž, 𝛿) ≑ 𝑓′(πœƒ , π‘ž, 𝛿). Note that given anyπ‘ž ∈ (0.5,1), the terms preceding πœ• πœƒπœ• 𝑓(πœƒ , π‘ž, 𝛿) are greater than 0 for πœƒ ∈ (0.5, π‘ž). Thus, to complete the proof of the claim, it is sufficient to show that

𝑓′(πœƒ , π‘ž, 𝛿0) > 0 given anyπ‘ž ∈ (0.5,1)andπœƒ ∈ (0.5, π‘ž).

After some tedious algebra, we get

𝑓′(πœƒ , π‘ž, 𝛿0) = βˆ’ (2π‘žβˆ’1)3πœƒ5+ (16π‘ž4βˆ’12π‘ž3βˆ’8π‘ž2+9π‘žβˆ’2)πœƒ4+ (βˆ’32π‘ž4+40π‘ž3βˆ’8π‘ž2βˆ’4π‘ž+1)πœƒ3 + (28π‘ž4βˆ’40π‘ž3+13π‘ž2)πœƒ2+ (βˆ’12π‘ž4+18π‘ž3βˆ’6π‘ž2)πœƒ+ (2π‘ž4βˆ’3π‘ž3+π‘ž2)

≑ 𝐹(πœƒ;π‘ž)

It can be numerically shown that, given any π‘ž ∈ (0.5,1), the largest real root of 𝐹(Β·;π‘ž)is greater than one, whereas the second largest real root (if exists) of𝐹(Β·;π‘ž) is less than zero.1 This implies that𝐹(πœƒ;π‘ž) > 0 forπœƒ ∈ (0.5,1)since the coefficient ofπœƒ5in𝐹(Β·;π‘ž)is negative.2

β–‘

Proof of Proposition 6

We complete the proof by showing that, given any πœƒ ∈ (0.5,1) and 𝛿 ∈ (0,1), 𝑔(πœƒ , π‘ž = 1+2𝛿, 𝛿) > 0 and πœ• π‘žπœ• 𝑔(πœƒ , π‘ž, 𝛿) > 0 forπ‘ž ∈ [1+𝛿

2 ,1]. Claim 1:𝑔(πœƒ , π‘ž = 1+𝛿

2 , 𝛿) >0 for anyπœƒ ∈ (0.5,1)and𝛿 ∈ (0,1).

1We use Mathematica to obtain numerical solutions.

2In fact, our numerical result shows that minπœƒβˆˆ [0.5,1], π‘žβˆˆ [0.5,1]𝐹(πœƒ;π‘ž)=𝐹(1,1)=0, which also indicates that𝐹(πœƒ;π‘ž) >0 forπ‘žβˆˆ (0.5,1)andπœƒβˆˆ (0.5, π‘ž).

Proof. First, after some tedious algebra, we can get 𝑔(πœƒ , π‘ž = 1+𝛿

2 , 𝛿) = (4πœƒ 𝛿(1βˆ’πœƒ))2+ 1βˆ’π›Ώ2

(1+ (2πœƒβˆ’1)𝛿)2(1βˆ’ (2πœƒβˆ’1)𝛿) (1+ (2πœƒβˆ’1)𝛿)2(1βˆ’ (2πœƒβˆ’1)𝛿)2 βˆ’1 Since both the numerator and the denominator of the first term are positive,𝑔(πœƒ , π‘ž=

1+𝛿

2 , 𝛿) > 0 if and only ifπœ‚(𝛿;πœƒ) > 0, where πœ‚(𝛿;πœƒ) =(4πœƒ 𝛿(1βˆ’πœƒ))2+

1βˆ’π›Ώ2

(1+ (2πœƒβˆ’1)𝛿)2(1βˆ’ (2πœƒβˆ’1)𝛿)

βˆ’ (1+ (2πœƒβˆ’1)𝛿)2(1βˆ’ (2πœƒβˆ’1)𝛿)2

=

(2πœƒβˆ’1)3𝛿4+ (2πœƒβˆ’1)2(1βˆ’ (2πœƒβˆ’1)2)𝛿3

βˆ’ (2πœƒβˆ’1) (1+ (2πœƒβˆ’1)2)𝛿2βˆ’ (4πœƒ(1βˆ’πœƒ) βˆ’ (4πœƒ(1βˆ’πœƒ))2)𝛿+ (2πœƒβˆ’1) 𝛿

β‰‘πœ‚Λœ(𝛿;πœƒ) ·𝛿

To complete the proof of Claim 1, it is sufficient to show that, given anyπœƒ ∈ (0.5,1),

˜

πœ‚(𝛿;πœƒ) > 0 for𝛿 ∈ (0,1).

Since the coefficients of𝛿4, 𝛿3, and the constant term in Λœπœ‚(𝛿;πœƒ) are positive while the coefficients of 𝛿2 and 𝛿 are negative, Λœπœ‚(𝛿;πœƒ) has no or two positive roots (by Descartes’ rule of signs). Note that Λœπœ‚(𝛿 = 1;πœƒ) = 0; thus, Λœπœ‚(𝛿;πœƒ) has two positive roots. Moreover, it can be shown that 𝑑 π›Ώπ‘‘πœ‚Λœ(𝛿;πœƒ) < 0 and limπ›Ώβ†’βˆžπœ‚Λœ(𝛿;πœƒ) = +∞

(when πœƒ ∈ (0.5,1)). Hence, one of the positive roots of Λœπœ‚(𝛿;πœƒ) is larger than one. This (along with the fact that 𝑑 𝛿𝑑 πœ‚Λœ(𝛿;πœƒ) < 0) implies that Λœπœ‚(𝛿;πœƒ) > 0 for

𝛿 ∈ (0,1). β–‘

Claim 2: Given anyπœƒ ∈ (0.5,1)and𝛿 ∈ (0,1), πœ• π‘žπœ• 𝑔(πœƒ , π‘ž, 𝛿) >0 forπ‘ž ∈ [1+𝛿

2 ,1].

Proof. Recall that, in the proof of Proposition 4, we have shown that 1

2

πœ•

πœ• π‘ž

𝑔(πœƒ , π‘ž, 𝛿) =πœƒ(1βˆ’πœƒ)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 + 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

βˆ’ πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝛿 Whenπ‘ž = 1+2𝛿, we have

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

= 4πœƒ 𝛿(1βˆ’πœƒ)

1βˆ’π›Ώ2(2πœƒβˆ’1)2 > 4πœƒ 𝛿(1βˆ’πœƒ). In addition, given πœƒ ∈ (0.5,1), we have 4πœƒ 𝛿(1βˆ’πœƒ) βˆ’π›Ώ = 𝛿(4πœƒ(1βˆ’π›Ώ) βˆ’1) > 0.

Thus, we get 1βˆ’4π›Ώπœƒ 𝛿2(2(1βˆ’πœƒβˆ’1)πœƒ) 2 Β· πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2 > 𝛿 Β· πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2.

Furthermore, we knowπœ• π‘žπœ•

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

=

1

(πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž))2 + 1

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2

>

0. Therefore, we get

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

Β· πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2 > 4

πœƒ 𝛿(1βˆ’πœƒ) 1βˆ’π›Ώ2(2πœƒβˆ’1)2 Β·

πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2 > 𝛿· πœƒ(1βˆ’πœƒ)

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2 forπ‘ž ∈ [1+𝛿

2 ,1], which implies πœ• π‘žπœ• 𝑔(πœƒ , π‘ž, 𝛿) > 0 forπ‘ž ∈ [1+𝛿

2 ,1]. β–‘

Proof of Proposition 7

Claim: When𝛿 ∈ (0,1) andπ‘ž ∈ (0.5,1+𝛿

2 ), πœ• πœƒπœ• 𝑔(πœƒ , π‘ž, 𝛿) > 0 forπœƒ ∈ (0.5, π‘ž).

Proof. Recall that 1

2

πœ•

πœ• πœƒ

𝑔(πœƒ , π‘ž, 𝛿) =π‘ž(1βˆ’π‘ž)

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

Γ—

1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2 βˆ’ 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2

+ π‘ž(1βˆ’π‘ž)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝛿

=

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

π‘ž(1βˆ’π‘ž) 1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2

βˆ’

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

π‘ž(1βˆ’π‘ž) 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2 + π‘ž(1βˆ’π‘ž)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2𝛿

>

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

π‘ž(1βˆ’π‘ž) 1

(πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž))2

βˆ’

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

π‘ž(1βˆ’π‘ž) 1

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2 + (2π‘žβˆ’1) π‘ž(1βˆ’π‘ž)

(πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž)2 The last inequality holds sinceπ‘ž < 1+𝛿

2 implies𝛿 >2π‘žβˆ’1.

Moreover, sinceπœ• πœƒπœ•

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž)

πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

2

=π‘ž(1βˆ’π‘ž)

1

(πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž))2 βˆ’ 1

(πœƒ(1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž)2

≀ 0 when πœƒ ∈ [0.5,1], we have 2π‘žβˆ’1βˆ’

πœƒ π‘ž

πœƒ π‘ž+(1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ( πœƒ(1βˆ’π‘ž)

1βˆ’π‘ž)+(1βˆ’πœƒ)π‘ž

β‰₯ 2π‘žβˆ’1βˆ’ (π‘žβˆ’ (1βˆ’π‘ž)) =0, which implies 12πœ• πœƒπœ• 𝑔(πœƒ , π‘ž, 𝛿) > 0. β–‘ Notice that𝑔(0.5, 𝛿, π‘ž) =(2π‘žβˆ’1) (2π‘žβˆ’1βˆ’π›Ώ) < 0 whenπ‘ž < 1+𝛿

2 , and𝑔(π‘ž, π‘ž, 𝛿)= ( π‘ž2

π‘ž2+(1βˆ’π‘ž)2βˆ’1

2)2> 0. Therefore, given any𝛿 ∈ (0,1)andπ‘ž0 ∈ (0.5, 1+𝛿

2 ), there exists a uniqueπœƒ0∈ (0.5, π‘ž0)such that𝑔(πœƒ0, π‘ž0, 𝛿) =0; moreover, since𝑔(Β·)increases in

πœƒ, we have𝑔(πœƒ , π‘ž0, 𝛿) > 0 forπœƒ ∈ (πœƒ0, π‘ž0), which completes the proof of Proposition 7.

Proof of Proposition 9

In the following, we prove the two statements in Proposition 9 separately.

Proof of the first statement (with respect to the BUE):

We first denote the boundary of the equilibrium condition for a BUE as 𝛿𝑓(πœƒ;π‘ž) ≑

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

2

(2πœƒβˆ’1) (2π‘žβˆ’1)Β·πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž π‘žβˆ’πœƒ

whereπ‘ž ∈ (0.5,1). Note that, given Β―π‘ž ∈ (0.5,1), (πœƒ , 𝛿) can support a BUE if and only if𝛿 β‰₯ 𝛿𝑓(πœƒ; Β―π‘ž).

We then complete the proof with the following four statements:

1. 𝛿𝑓(0.5;π‘ž) =0 for anyπ‘ž ∈ (0.5,1).

2. Given π‘žβ€² and π‘žβ€²β€² such that π‘žβ€²β€² > π‘žβ€², we have limπœƒβ†’π‘žβ€²π›Ώπ‘“(πœƒ;π‘žβ€²) = ∞ and 𝛿𝑓(πœƒ =π‘žβ€²;π‘žβ€²β€²) < ∞.

3. It can be numerically shown that π‘‘πœƒπ‘‘ 𝛿𝑓(πœƒ;π‘žβ€²β€²) |πœƒ=0.5 > 𝑑

π‘‘πœƒπ›Ώπ‘“(πœƒ;π‘žβ€²) |πœƒ=0.5 > 0 when 1 > π‘žβ€²β€² > π‘žβ€²> 0.5.

4. It can be numerically shown that 𝑑2

π‘‘πœƒ2

𝛿𝑓(πœƒ;π‘žβ€²) > 𝑑

2

π‘‘πœƒ2

𝛿𝑓(πœƒ;π‘žβ€²β€²)forπœƒ ∈ (0.5, π‘žβ€²) when 1 > π‘žβ€²β€² > π‘žβ€²> 0.5.

Thus,𝛿𝑓(Β·;π‘žβ€²)only intersects with𝛿𝑓(Β·;π‘žβ€²β€²)once forπœƒ ∈ (0.5, π‘žβ€²β€²). Moreover, when 𝛿 is below that intersection point, we have (πœƒ , 𝛿) ∈ BUEπ‘žβ€²β€² =β‡’ (πœƒ , 𝛿) ∈ BUEπ‘žβ€², and when𝛿is above that intersection point, we have (πœƒ , 𝛿) ∈ BUEπ‘žβ€² =β‡’ (πœƒ , 𝛿) ∈ BUEπ‘žβ€²β€², as desired.

Proof of the second statement (with respect to the CBE):

We first denote the boundary of the equilibrium condition for a BUE as 𝛿𝑔(πœƒ;π‘ž) ≑

πœƒ π‘ž

πœƒ π‘ž+ (1βˆ’πœƒ) (1βˆ’π‘ž) βˆ’ πœƒ(1βˆ’π‘ž) πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž

2

Β· πœƒ(1βˆ’π‘ž) + (1βˆ’πœƒ)π‘ž π‘žβˆ’πœƒ

whereπ‘ž ∈ (0.5,1). Note that, given Β―π‘ž ∈ (0.5,1), (πœƒ , 𝛿) can support a CBE if and only if𝛿 ≀ 𝛿𝑔(πœƒ; Β―π‘ž).

We then complete the proof with the following three statements:

1. 𝛿𝑔(0.5, π‘ž) =2π‘žβˆ’1; thus,𝛿𝑔(0.5, π‘žβ€²) < 𝛿𝑔(0.5, π‘žβ€²β€²)when 1> π‘žβ€²β€² > π‘žβ€² > 0.5.

2. limπœƒβ†’π‘žβ€² 𝛿𝑔(πœƒ;π‘žβ€²) =∞and𝛿𝑔(πœƒ =π‘žβ€²;π‘žβ€²β€²) < ∞when 1> π‘žβ€²β€² > π‘žβ€²> 0.5.

3. It can be numerically shown that 𝑑2

π‘‘πœƒ2

𝛿𝑔(πœƒ;π‘žβ€²) > 𝑑

2

π‘‘πœƒ2

𝛿𝑔(πœƒ;π‘žβ€²β€²)forπœƒ ∈ (0.5, π‘žβ€²) when 1 > π‘žβ€²β€² > π‘žβ€²> 0.5.

Thus,𝛿𝑔(Β·;π‘žβ€²)only intersects with𝛿𝑔(Β·;π‘žβ€²β€²)once forπœƒ ∈ (0.5, π‘žβ€²β€²). Moreover, when 𝛿 is below that intersection point, we have (πœƒ , 𝛿) ∈ CBEπ‘žβ€² =β‡’ (πœƒ , 𝛿) ∈ CBEπ‘žβ€²β€², and when𝛿 is above that intersection point, we have (πœƒ , 𝛿) ∈ CBEπ‘žβ€²β€² =β‡’ (πœƒ , 𝛿) ∈ CBEπ‘žβ€², as desired.

Dalam dokumen Essays in Behavioral Economics and Game Theory (Halaman 134-145)