• Tidak ada hasil yang ditemukan

Perturbative solution to the optical fields: Effective operator for atoms Typically, in an interferometric process, the light-atom interaction time is very

ATOM INTERFEROMETRY: LINEAR QUANTUM MEASUREMENT THEORY AND THE PRECISION LIMIT

5.5 Dynamics of the effective operators: A more exact treatment

5.5.1 Perturbative solution to the optical fields: Effective operator for atoms Typically, in an interferometric process, the light-atom interaction time is very

short compared to the free evolution time of the atom cloud, and the center-of-mass velocity of the atom cloud is very low, typically∼ 2 cm/s. Therefore to the leading order, we can treat the atom center-of-mass motion to be static during the interaction process, that is,𝑣𝐴 β‰ˆ 𝑣𝐡 β‰ˆ 0. We also note that the spatial size of optical fields is much larger than the size of the atom cloud, therefore we can approximate the mean value of the optical fields to be almost constants during the interaction process. For this calculation, we only care about control field because it transfers noise to the next atom-light interaction kernel, while different kernels interact with different passive fields, as shown in Fig. 5.3.

These equations can be solved in a perturbative way. For the equation of motion of the control field, the formal solution of the first-order perturbation is given by:

𝛿 πœ™+

𝑐(𝑑+𝑧, 𝑧)βˆ’π›Ώ πœ™+

𝑐(π‘‘βˆ’πœ– ,βˆ’πœ–) = 𝑔𝑐

∫ 𝑧

βˆ’πœ–

𝑑𝑦 𝛿[πœ™βˆ’

𝐴(𝑑+𝑦, 𝑦)πœ™+

𝐡(𝑑+𝑦, 𝑦)πœ™+

𝑝(𝑑+𝑦, 𝑦)],

(5.49)

where the atom cloud mostly distributed in [βˆ’πœ– , πœ–], as shown in Fig. 5.5 (we move the coordinate origin to the atom center-of-mass position). For brevity, we remove the tilde on the operators. In the following, all operators are the slowly varying

✏ ✏

z

t atom cloud

(y, t+y) passive field

In Out

control field

Figure 5.5: Atom-light interaction kernel. The atoms are undergoing the state swapping interaction, and during the very short interaction time (typically∼ πœ‡s), the A and B atoms do not have enough time to fly apart. Our effective atom operators Ξ¦ are defined through integration over the atomic cloud profile on the spatial direction. The discussion in the Section II will reduce the problem to be an effective model describing the interaction of the effective atom operators with the incoming light fields.

amplitude operators. Expanding the r.h.s. to the first order, we obtain:

𝑔𝑐

∫ 𝑧

βˆ’πœ–

π‘‘π‘¦πœ™Β―+

π‘πœ™Β―+

𝐡(𝑑+𝑦, 𝑦)𝛿 πœ™βˆ’

𝐴(𝑑+𝑦, 𝑦) +𝑔𝑐

∫ 𝑧

βˆ’πœ–

π‘‘π‘¦πœ™Β―+

π‘πœ™Β―βˆ’

𝐴(𝑑+𝑦, 𝑦)𝛿 πœ™+

𝐡(𝑑+𝑦, 𝑦) +𝑔𝑐

∫ 𝑧

βˆ’πœ–

π‘‘π‘¦πœ™Β―+

𝐡(𝑑+𝑦, 𝑦)πœ™Β―βˆ’

𝐴(𝑑+𝑦, 𝑦)𝛿 πœ™+

𝑝(𝑑+𝑦, 𝑦).

(5.50)

The classical atomic fields can be written as (under the slow motion approximation):

Β― πœ™+(βˆ’)

𝐴/𝐡(𝑑 , 𝑦) = π‘“π‘Ž(𝑦)𝛼¯(βˆ—)

𝐴/𝐡(𝑑), (5.51)

where

π‘“π‘Ž(𝑦)= Ξ”1/2π‘Ž

(2πœ‹)1/4exp

βˆ’1 4Ξ”2π‘Žπ‘¦2

. (5.52)

Since𝑦 ∈ [βˆ’πœ– , πœ–]andπœ– 1, we can expand

Β―

𝛼𝐴/𝐡(𝑑+𝑦) β‰ˆπ›ΌΒ―π΄/𝐡(𝑑) +𝑦𝛼€¯𝐴/𝐡(𝑑). (5.53)

Note that |𝑦𝛼€¯𝐴/𝐡(𝑑) | ∼ Ω𝑦𝛼¯𝐡/𝐴(𝑑) and Ω𝑦 1, we can simplify the terms in Eq. (5.50) to be:

π‘”π‘πœ™Β―+

𝑝

Β― 𝛼𝐡(𝑑)

∫ 𝑧

βˆ’πœ–

𝑑𝑦 π‘“π‘Ž(𝑦)𝛿 πœ™βˆ’

𝐴(𝑑 , 𝑦) +π›ΌΒ―βˆ—

𝐴(𝑑)

∫ 𝑧

βˆ’πœ–

π‘“π‘Ž(𝑦)𝛿 πœ™+

𝐡(𝑑 , 𝑦)

+𝑔𝑐

∫ 𝑧

βˆ’πœ–

π‘‘π‘¦π›ΌΒ―βˆ—

𝐴(𝑑)𝛼¯𝐡(𝑑)𝑓2

π‘Ž(𝑦)𝛿 πœ™+

𝑝(𝑑+𝑦, 𝑦).

(5.54)

Now let us define theeffective atom operatorsto be:

𝛿Φ±𝐴/𝐡(𝑑) =limπ‘§β†’πœ–

∫ 𝑧

βˆ’πœ–

𝑑𝑦 π‘“π‘Ž(𝑦)𝛿 πœ™Β±

𝐴/𝐡(𝑑 , 𝑦). (5.55) As we shall see later, these effective operators have a nice property that the com- mutation relation of the associated creation and annihilation operators normalizes to one. The physical interpretation of the effective operators is that it describes the whole wavepacket of the atom field. Using these effective operators, the input- output relation for a light ray passing through the atomic cloud can be written as (for the passive field, it can be calculated in the same way):

𝛿 πœ™+

𝑐out(𝑑) βˆ’π›Ώ πœ™+

𝑐in(𝑑) =π‘”π‘πœ™Β―+

𝑝[𝛼¯𝐡(𝑑)π›ΏΞ¦βˆ’π΄(𝑑) +π›ΌΒ―βˆ—

𝐴(𝑑)Ξ¦+𝐡(𝑑)]

+π‘”π‘π›ΌΒ―βˆ—

𝐴(𝑑)𝛼¯𝐡(𝑑)

∫ πœ–

βˆ’πœ–

𝑑𝑦 𝑓2

π‘Ž(𝑦)𝛿 πœ™+

𝑝(𝑑+𝑦, 𝑦), 𝛿 πœ™+

𝑝out(𝑑) βˆ’π›Ώ πœ™+

𝑝in(𝑑) =π‘”π‘πœ™Β―+

𝑐[π›ΌΒ―βˆ—

𝐡(𝑑)𝛿Φ+𝐴(𝑑) +𝛼¯𝐴(𝑑)Ξ¦βˆ’π΅(𝑑)]

+𝑔𝑝𝛼¯𝐴(𝑑)π›ΌΒ―βˆ—

𝐡(𝑑)

∫ πœ–

βˆ’πœ–

𝑑𝑦 𝑓2

π‘Ž(𝑦)𝛿 πœ™+

𝑝(π‘‘βˆ’π‘¦, 𝑦).

(5.56)

The negative frequency branches simply obey the Hermitian conjugate of the above equations. The ratio between the second term and the first term on the r.h.s. of the equation is∼p

π‘π‘Ž/𝑁𝐿 1, therefore it can be safely ignored.

Furthermore, we introduce the creation and annihilation operators that correspond to those effective atom operators and also the optical operators. Remember that the operators here are related to the creation and annihilation operators as follows:

𝛿Φ+𝐴/𝐡 = Λ† 𝐴𝐴/𝐡(𝑑)

√2πœ”π‘Ž

, 𝛿 πœ™+

𝑐/𝑝in = π‘ŽΛ†π‘/𝑝in(𝑧, 𝑑)

√2πœ”πΏ

, (5.57)

where we take assumptions πœ”π‘0 β‰ˆ πœ”π‘0 = πœ”πΏ and note that Β―Ξ¦+

𝐴/𝐡 = 𝛼¯𝐴/𝐡/(2πœ”π‘Ž). Now we want to rewrite the equations of motion of the atom fields in a more concise way, using these creation and annihilation operators. First, let us check the dimension of the above defined creation and annihilation operators. We have

𝐴ˆ𝐴/𝐡(𝑑) =

∫

𝑑 𝑧 π‘“π‘Ž(𝑧)π‘ŽΛ†π΄/𝐡(𝑧, 𝑑), (5.58)

where Λ†π‘Žπ΄/𝐡(𝑧, 𝑑)has the standard commutation relation on one time slice𝑑: [π‘ŽΛ†π΄/𝐡(𝑧, 𝑑),π‘ŽΛ†β€ 

𝐴/𝐡(𝑧0, 𝑑)] =𝛿(π‘§βˆ’π‘§0). (5.59) Using this commutation relation and the normalization condition for π‘“π‘Ž(𝑧), it is straightforward to show that:

[𝐴ˆ𝐴/𝐡(𝑑),𝐴ˆ†

𝐴/𝐡(𝑑)]=1. (5.60)

Note that ˆ𝐴is a dimensionless operator, while Λ†π‘Žπ‘in(𝑧, 𝑑)has the dimension[Length]βˆ’1/2. The gravitational wave community is more familiar with the operator satisfying [π‘ŽΛœ(𝑑),π‘ŽΛœβ€ (𝑑0)] = 𝛿(𝑑 βˆ’ 𝑑0), so it is important to note that this is an equal time commutation relation for propagating fields, and the operators here are related by

˜

π‘Žπ‘in/π‘ŽΛ†π‘in = 𝑐1/2 where 𝑐 is the speed of light. In the following, we will use the Λœπ‘Ž and replace the tilde with hat, i.e., Λœπ‘Žβ†’ π‘ŽΛ†. Then Eqs. (5.56) can be translated to:

Λ†

π‘Žπ‘outβˆ’π‘ŽΛ†π‘i=𝑖 πœ’πΏπ‘’βˆ’π‘– πœ‘π‘[𝛼¯𝐡(𝑑)𝐴ˆ†

𝐴+π›ΌΒ―βˆ—

𝐴(𝑑)𝐴ˆ𝐡], Λ†

π‘Žπ‘outβˆ’π‘ŽΛ†π‘i =𝑖 πœ’πΏπ‘’βˆ’π‘– πœ‘π‘[π›ΌΒ―βˆ—

𝐡(𝑑)𝐴ˆ𝐴+𝛼¯𝐴(𝑑)𝐴ˆ†

𝐡],

(5.61)

where we have πœ’πΏ = |𝑔𝑐|πœ™Β―πΏp

πœ”πΏ/πœ”π‘Ž under the approximation thatπœ”π‘ = πœ”π‘ = πœ”πΏ and |πœ™Β―+

𝑝| = |πœ™Β―+

𝑐| = πœ™Β―πΏ = π‘ŽΒ―πΏ/√

2πœ”πΏ. Comparing this equation with Eq. (5.10), we know that the πœ’in the effective Hamiltonian has the form:

πœ’β†’ βˆ’π‘”/(2πœ”πΏ) =𝑔𝑐 =𝑔𝑝. (5.62) 5.5.2 Deriving the evolution of atom fields using field theory

Using Eq. (5.55), we integrate the perturbation equations of atom fields to obtain the perturbation equations ofeffective atomic operators:

πœ•π‘‘π›ΏΞ¦+𝐴+𝑖Ω𝑒𝑖 πœ‘π›ΏΞ¦+𝐡 =π‘”π‘Žπœ™Β―+

𝑝

∫ πœ–

βˆ’πœ–

𝑑 𝑧 π‘“π‘Ž(𝑧)Φ¯+𝐡(𝑑 , 𝑧)𝛿 πœ™βˆ’

𝑐(𝑑 , 𝑧) +π‘”π‘Žπœ™Β―βˆ’

𝑐

∫ πœ–

βˆ’πœ–

π‘“π‘Ž(𝑧)Φ¯+𝐡(𝑑 , 𝑧)𝛿 πœ™+

𝑝(𝑑 , 𝑧),

πœ•π‘‘π›ΏΞ¦+𝐡+π‘–Ξ©π‘’βˆ’π‘– πœ‘π›ΏΞ¦+𝐴 =π‘”π‘Žπœ™Β―βˆ’

𝑝

∫ πœ–

βˆ’πœ–

𝑑 𝑧 π‘“π‘Ž(𝑧)Φ¯+𝐴(𝑑 , 𝑧)𝛿 πœ™+

𝑐(𝑑 , 𝑧) +π‘”π‘Žπœ™Β―+

𝑐

∫ πœ–

βˆ’πœ–

π‘“π‘Ž(𝑧)Φ¯+𝐴(𝑑 , 𝑧)𝛿 πœ™βˆ’

𝑝(𝑑 , 𝑧).

(5.63)

Now, we substitute the formal solution of𝛿 πœ™Β±

𝑐/𝑝into the above equations, which will reveal the structure of the optical back-action on the atom fields.

Let us take the first term on the r.h.s. of the𝛿Φ𝐴equation as an example. It has the following form after substituting𝛿 πœ™βˆ’

𝑐(𝑑 , 𝑧): π‘”π‘Žπœ™Β―+

𝑝

∫ πœ–

βˆ’πœ–

𝑑 𝑧 π‘“π‘Ž(𝑧)Φ¯+𝐡(𝑑 , 𝑧)𝛿 πœ™βˆ’

𝑐(𝑑 , 𝑧)

=π‘”π‘Žπœ™Β―+

𝑝𝛼𝐡(𝑑)

∫ πœ–

βˆ’πœ–

𝑑 𝑧 𝑓2

π‘Ž(𝑧)

𝛿 πœ™βˆ’

𝑐in(𝑑) +𝑔𝑐𝛼𝐴(𝑑)π›Όβˆ—

𝐡(𝑑)

∫ 𝑧

βˆ’πœ–

𝑑𝑦 𝑓2

π‘Ž(𝑦)𝛿 πœ™βˆ’

𝑝(𝑦) +π‘”π‘πœ™Β―βˆ’

𝑝

∫ 𝑧

βˆ’πœ–

𝑑𝑦 π‘“π‘Ž(𝑦) [𝛼𝐴(𝑑)𝛿 πœ™βˆ’

𝐡(𝑦, 𝑑) +π›Όβˆ—

𝐡(𝑑)𝛿 πœ™+

𝐴(𝑦, 𝑑)]

.

(5.64)

Note that the π‘“π‘Ž(𝑦) takes a Gaussian form symmetric around 𝑦 = 0, which means that we can write:

∫ πœ–

βˆ’πœ–

𝑑 𝑧 𝑓2

π‘Ž(𝑧)

∫ 𝑧

βˆ’πœ–

𝑑𝑦 π‘“π‘Ž(𝑦)𝛿 πœ™+

𝐴(𝑦, 𝑑)= 1

2𝛿Φ+𝐴(𝑑), (5.65) where we have used the normalization condition for π‘“π‘Ž(𝑧), and we have:

π‘”π‘Žπœ™Β―+

𝑝

∫ πœ–

βˆ’πœ–

𝑑 𝑧 π‘“π‘Ž(𝑧)Φ¯+𝐡(𝑑 , 𝑧)𝛿 πœ™βˆ’

𝑐(𝑑 , 𝑧) (5.66)

=π‘”π‘Žπœ™Β―+

𝑝𝛼𝐡(𝑑)𝛿 πœ™βˆ’

𝑐in(𝑑) + 1

2|π‘”π‘Žπ‘”π‘||πœ™Β―π‘|2

𝛼𝐴(𝑑)𝛼𝐡(𝑑)π›ΏΞ¦βˆ’π΅(𝑑) + |𝛼𝐡(𝑑) |2𝛿Φ+𝐴(𝑑) . Here, we ignore the Β―πœ™βˆ’

𝑝 term since it is much smaller than the other terms. In a similar way, we have:

π‘”π‘Žπœ™Β―βˆ’

𝑐

∫ πœ–

βˆ’πœ–

𝑑 𝑧 π‘“π‘Ž(𝑧)Φ¯+𝐡(𝑑 , 𝑧)𝛿 πœ™+

𝑝(𝑑 , 𝑧) (5.67)

=π‘”π‘Žπœ™Β―βˆ’

𝑐𝛼𝐡(𝑑)𝛿 πœ™+

𝑝in(𝑑) βˆ’ 1

2|π‘”π‘Žπ‘”π‘||πœ™Β―π‘|2

𝛼𝐴(𝑑)𝛼𝐡(𝑑)π›ΏΞ¦βˆ’π΅(𝑑) + |𝛼𝐡(𝑑) |2𝛿Φ+𝐴(𝑑) . Finally, we have the equations of motion for atom fields as:

πœ•π‘‘π›ΏΞ¦+𝐴+𝑖Ω𝑒𝑖 πœ‘π›ΏΞ¦+𝐡 =π‘”π‘Žπœ™Β―πΏπ›Όπ΅(𝑑) [π‘’βˆ’π‘– πœ‘π‘π›Ώ πœ™βˆ’

𝑐in(𝑑) +𝑒𝑖 πœ‘π‘π›Ώ πœ™+

𝑝in(𝑑)],

πœ•π‘‘π›ΏΞ¦+𝐡+π‘–Ξ©π‘’βˆ’π‘– πœ‘π›ΏΞ¦+𝐴 =π‘”π‘Žπœ™Β―πΏπ›Όπ΄(𝑑) [𝑒𝑖 πœ‘π‘π›Ώ πœ™+

𝑐in(𝑑) +π‘’βˆ’π‘– πœ‘π‘π›Ώ πœ™βˆ’

𝑝in(𝑑)].

(5.68)

Then we can obtain the exact form of equations of motion for atom cloud:

πœ•π‘‘π΄Λ†π΄+𝑖Ω𝑒𝑖 πœ‘π΄Λ†π΅ =𝑖 πœ’π΅(𝑑) [π‘’βˆ’π‘– πœ‘π‘π‘ŽΛ†β€ 

𝑐in(𝑑) +𝑒𝑖 πœ‘π‘π‘ŽΛ†π‘in(𝑑)],

πœ•π‘‘π΄Λ†π΅+π‘–Ξ©π‘’βˆ’π‘– πœ‘π΄Λ†π΄ =𝑖 πœ’π΄(𝑑) [𝑒𝑖 πœ‘π‘π‘ŽΛ†π‘in(𝑑) +π‘’βˆ’π‘– πœ‘π‘π‘ŽΛ†β€ 

𝑝in(𝑑)],

(5.69) whereπœ‘=πœ‘π‘βˆ’πœ‘π‘is the phase difference between control and passive lights, and

πœ’π΄/𝐡(𝑑) = r πœ”π‘Ž

π‘πœ”πΏ

|π‘”π‘Ž|πœ™Β―πΏπ›Όπ΄/𝐡(𝑑). (5.70) The 𝛼±(𝑑) = 𝛼±(0)exp[βˆ“Ξ©π‘‘] and πœ’0 := p

πœ”π‘Ž/π‘πœ”πΏ|π‘”π‘Ž|πœ™Β―πΏ. Using the relation Eq. (5.62), we can also map Eq. (5.69) to Eq. (5.7).

5.6 Conceptual comparison with the laser interferometer GW detector