• Tidak ada hasil yang ditemukan

Program Perhitungan Redaman Total dan Link budget

BAB IV ANALISIS DATA CURAH HUJAN DAN PENGEMBANGAN

IV.2. Program Link budget

IV.2.6. Program Perhitungan Redaman Total dan Link budget

Pada sheet untuk menghitung redaman total ini, semua jenis redaman yang telah dijelaskan di atas dimasukkan ke dalam perhitungan redaman total. Parameter yang dimasukkan pada redaman total ini adalah:

- Parameter satelit - Parameter stasiun bumi - Parameter carrier - Total redaman sheet - Total redaman downlink

Lalu kemudian dihitung Eb/N0 dari stasiun bumi pemancar ke satelit, dengan menghitung parameter

- EIRP Station pemancar

- Total Losses pada stasiun bumi pemancar ke satelit - Satellite Noise Figure (G/T)

- C/N0 sheet - C/I sheet - Eb/N0

Lalu kemudian dihitung Eb/N0 dari satelit ke stasiun bumi penerima dengan menghitung parameter

- EIRP Satellite - Total Losses at Jkt - Rx Noise Temperature

- Rx Antenna Noise Temperature - Feeder Noise temperature - Station A Antenna G/T - C/N0 downlink

- C/I downlink - Eb/N0 downlink - C/No total - Eb/N0 total - Eb/N0 required - Margin

Berikut adalah tampilan program total redaman dan link budget.

Gambar 22. Program perhitungan redaman total dan link budget

Gambar 23. Program perhitungan redaman total dan link budget pada parameter redaman sheet dan redaman downlink

Gambar 24. Program perhitungan redaman total dan link budget pada jalur stasiun bumi pemancar ke satelit dan satelit ke stasiun bumi penerima.

BAB V KESIMPULAN

Kesimpulan pada penelitian yang dilakukan ini adalah sebagai berikut:

 Link budget merupakan salah satu hal yang penting pada perencanaan komunikasi satelit dikarenakan link budget akan sangat menentukan seberapa besar daya yang diperlukan dan margin yang didapatkan untuk mendapatkan komunikasi satelit yang layak

 Pada perencanaan link budget pada sistem komunikasi satelit di frekuensi di atas 10 GHz seperti halnya pada Satelit Nusantara Satu, ada beberapa redaman yang harus diperhitungkan antara lain redaman awan/hydrometeor, redaman gas, redaman sintilasi dan redaman hujan.

 Redaman hujan merupakan redaman yang paling mendominasi dibandingkan redaman gas, redaman awan dan redaman sintilasi.

 Pada perhitungan redaman awan/hydrometeor, model yang digunakan adalah model Salonen & Uppala dan model DAH

 Pada perhitungan redaman gas, model yang digunakan adalah model ITU-R dan model DAH

 Pada perhitungan redaman sintilasi, model yang digunakan adalah model Karasawa dan model ITU-R

 Pada perhitungan redaman hujan, model yang digunakan adalah model ITU- R, model DAH dan model Global Crane.

 Pada calculator link budget ini, menggunakan Microsoft Excel untuk menghitung masing-masing redaman dan total redaman keseluruhan. Dan calculator link budget ini sangat mudah untuk dipahami.

DAFTAR PUSTAKA

Chebil, J., & Rahman, T. A. (1999). Development of 1 min rain rate contour maps for microwave applications in Malaysian Peninsula. Electronics Letters, 35(20), 1772. https://doi.org/10.1049/el:19991188

Dissanayake, A., Allnutt, J., & Haidara, F. (1997). A prediction model that combines rain attenuation and other propagation impairments along Earth- satellite paths. IEEE Transactions on Antennas and Propagation, 45(10), 1546–1558. https://doi.org/10.1109/8.633864

Ippolito, L. J. (1981). Radio propagation for space communications systems.

Proceedings of the IEEE, 69(6), 697–727.

https://doi.org/10.1109/PROC.1981.12049

Islam, M. R., Tharek, A. R., & Chebil, J. (n.d.). Comparison between path length reduction factor models based on rain attenuation measurements in Malaysia.

In 2000 Asia-Pacific Microwave Conference. Proceedings (Cat.

No.00TH8522) (pp. 1556–1560). IEEE.

https://doi.org/10.1109/APMC.2000.926136

Karimi, K., Aalo, V., & Helmken, H. (n.d.). A study of satellite channel utilization in the presence of rain attenuation in Florida. In Proceedings of

SOUTHEASTCON ’94 (pp. 196–200). IEEE.

https://doi.org/10.1109/SECON.1994.324296

Li, L. W., Yeo, T. S., Kooi, P. S., & Leong, M. S. (1994). Comment on raindrop size distribution model. IEEE Transactions on Antennas and Propagation, 42(9), 1360. https://doi.org/10.1109/8.318666

Maruddani, B., Kurniawan, A., Sugihartono, S., & Munir, A. (2014). Prediction

Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas. Journal of ICT Research and Applications, 8(2), 85–96. https://doi.org/10.5614/itbj.ict.res.appl.2014.8.2.1 Moupfouma, F., & Martin, L. (1995). Modelling of the rainfall rate cumulative

distribution for the design of satellite and terrestrial communication systems.

International Journal of Satellite Communications, 13(2), 105–115.

https://doi.org/10.1002/sat.4600130203

Salonen, E. T. (1997). A new global rainfall rate model. In Tenth International Conference on Antennas and Propagation (ICAP) (Vol. 1997, pp. v2-182-v2- 182). IEE. https://doi.org/10.1049/cp:19970359

Sweeney, D. G., & Bostian, C. W. (1992). The dynamics of rain-induced fades.

IEEE Transactions on Antennas and Propagation, 40(3), 275–278.

https://doi.org/10.1109/8.135469

Yeo, T. S., Kooi, P. S., Leong, M. S., & Ng, S. S. (1990). Microwave attenuation due to rainfall at 21.255 GHz in the Singapore environment. Electronics Letters, 26(14), 1021. https://doi.org/10.1049/el:19900661

Yuniarti, D. (2013). The Study of Development and Condition of Indonesian Satellites. Buletin Pos Dan Telekomunikasi, 11(2), 121–136.

LAMPIRAN Lampiran 1. Biodata Peneliti

Riwayat Hidup Peneliti A. Identitas Diri

1. Nama Lengkap (dengan gelar) Dr. Baso Maruddani 2. Jabatan Fungsional Lektor

3. Jabatan Struktural -

4. NIP/NIK/Identitas lainnya 19830502 200801 1 001

5. NIDN 0002058301

6. Tempat dan Tanggal Lahir Makassar, 2 Mei 1983

7. Alamat Rumah Jl. Bambu Petung, no 67, Bambu Apus, Cipayung Jakarta Timur

9. Nomor Telepon/Faks / HP 08118058450

10. Alamat Kantor Jurusan Teknik Elektro, Fakultas Teknik Gedung L, Kampus A Universitas Negeri Jakarta

11. Nomor Telepon/Faks -

12. Alamat e-mail [email protected]

13. Mata Kuliah yg Diampu Sistem Telekomunikasi, Komunikasi Wireless, Pemodelan dan Simulasi, Teknik Switching, Saluran Transmisi, Teknik Komunikasi Radio

B. Riwayat Pendidikan

S-1 S-2 S-3

Nama Perguruan Tinggi

Institut Teknologi Bandung

Institut Teknologi Bandung

Institut Teknologi Bandung

Bidang Ilmu Teknik Elektro (Telekomunikasi)

Teknik Elektro (Telekomunikasi)

Teknik Elektro dan Informatika

(Telekomunikasi) Tahun Masuk-

Lulus

2001 – 2005 2006 – 2007 2008 – 2013

Nama

Pembimbing / Promotor

Ir. Sigit Hariyadi Prof. Dr. Adit Kurniawan Prof. Dr. Adit Kurniawan

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

No. Tahun Judul Penelitian Pendanaan

Sumber Jml (Juta Rp) 1 2018 Pengembangan Antena

Kompak (Compact Antenna) Pita Lebar untuk Radar Penembus Tanah (Ground Penetrating Radar)

BLU UNJ 10,000,000

2 2018 Pengembangan Aplikasi Digital Signal Processing pada Radar Penembus Tanah (Ground Penetrating Radar)

BLU UNJ 50,000,000

3 2017 Kinerja Diversitas Ruang pada Sistem Code Division Multiple Access

BLU UNJ 12,000,000

4 2016 Evaluasi Kinerja Adaptive Coding and Modulation sebagai Teknik Mitigasi Redaman Hujan pada Link Komunikasi Satelit Ka-Band

BLU UNJ 10,000,000

5 2014 Prediction method for rain rate and rain propagation attenuation for K-band satellite communications links in Tropical areas

Mandiri

6 2013 Pemodelan Redaman

Propagasi Berdasarkan Curah Hujan Dan Usulan Teknik Mitigasinya Pada

Komunikasi Satelit Pita-Ka Di Daerah Tropis

Mandiri

7 2012 Rain Rate and Rain Attenuation Time Series Synthesizer Based on Hidden Markov Model for K Band Satellite in Tropical Area

Mandiri

D. Pengalaman Pengabdian Kepada Masyarakat Dalam 5 Tahun Terakhir No. Tahun Judul Pengabdian Kpd Masyarakat Pendanaan

Sumber Jml (Juta Rp) 1

2

E. Pengalaman Penulisan Artikel Ilmiah Dalam Jurnal Dalam 5 Tahun Terakhir

No. Judul Artikel Ilmiah Volume / Nomor / Tahun Nama Jurnal 1 Perancangan dan Optimasi

Antena Vivaldi pada Sistem Radar Penembus Permukaan (Ground Penetrating Radar)

2019 Jurnal Nasional

ELKOMNIKA

2 Prediction method for rain rate and rain propagation attenuation for K-band satellite communications links in Tropical areas

2014 Jurnal of ICT

Research and Application

3 Rain Rate and Rain Attenuation Time Series Synthesizer Based on

Hidden Markov Model for K Band Satellite in Tropical Area

2012 Proceeding of 7th

International Conference on Telecommunicati on Systems, Services and Applications (TSSA), Bali, Oktober 2012 F. Pengalaman Penyampaian Makalah Secara Oral Pada Pertemuan /

Seminar Ilmiah Dalam 5 Tahun Terakhir

No. Nama Pertemuan Ilmiah / Seminar Judul Artikel Waktu dan Tempat 1 2019 2nd International Conference on

Signal Processing and Information Communications

Ka-Band Satellite Link budget for Broadband Application in Tropical Area

Grand Mercure Phuket Patong, Thailand, 19 – 21 Januari 2019

2 2019 2nd International Conference on Signal Processing and Information Communications

The

Development of Ground

Penetrating Radar (GPR) Data Processing

Grand Mercure Phuket Patong, Thailand, 19 – 21 Januari 2019

G. Pengalaman Penulisan Buku dalam 5 Tahun Terakhir

No. Judul Buku Tahun Jumlah Halaman Penerbit 1

2

H. Pengalaman Perolehan HKI Dalam 5 – 10 Tahun Terakhir

No. Judul / Tema HKI Tahun Jenis Nomor P / ID 1

2

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya Dalam 5 Tahun Terakhir

No. Judul / Tema / Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan

Tahun Tempat Penerapan

Respons Masyarakat 1

J. Penghargaan yang Pernah Diraih dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No. Jenis Penghargaan Institusi Pemberi Penghargaan Tahun 1 The Best Presenter 2019 2nd International Conference on

Signal Processing and Information Communications Commitee

2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima risikonya.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Fakultas.

Jakarta, Maret 2019 Pengusul,

Dr. Baso Maruddani

NIP. 198305022008011001

Lampiran 2. Bahan Laporan Antara

Lampiran 3. Publikasi

Study of Nusantara Satu Satellite Parameter

Evaluation for Broadband Application in Indonesia

Baso Maruddani1,2*, Efri Sandi1, and Widya Dara1

1 Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Jakarta, Indonesia

2 DJA Institute, The Green Pramuka City Apartment, DKI Jakarta, Indonesia

Email: *[email protected]

Abstract. This study aims to evaluate the performance of Satellite Nusantara Satu which has just been launched. Nusantara Satu Satellite is a broadband satellite that uses High Throughput Satellite (HTS) technology and uses Ku-band transponders to cover all regions in Indonesia. However, the use of Ku-band frequencies in Indonesia, which is located at a tropical region, must be evaluated because of the characteristics of the Ku-band frequency are very vulnerable to rain attenuation. In general, a broadband service requires link availability of 99.9% with a minimum speed of 100 Mbps. Our simulation results show that in the western part of Indonesia, to reach 100 Mbps with 99.9% link availability, the EIRP of the earth station VSAT is minimum at 79 dBW. In the central part of Indonesia, to reach speeds of 100 Mbps with 99.9% link availability, the EIRP of the earth station VSAT is minimum at 83 dBW. And in the eastern part of Indonesia, to reach speeds of 100 Mbps with 99.9% link availability, the EIRP of the earth station VSAT is minimum at 84 dBW.

Introduction

An industrial revolution 4.0 era requires high-speed data services. In order to improve internet quality and broaden the network, Indonesian government launched a satellite called Nusantara Satu Satellite on February 18th, 2019. Nusantara Satu Satellite was placed in a position above the equator at 146°E and moved simultaneously with the earth rotation. To cover all regions in Indonesia, Nusantara Satu Satellite has the capacity of 26 C-band transponders and 12 Extended C-band transponders, as well as 8 Ku-band spot beams with a total bandwidth capacity of 15 Gbps. The use of Ku-band frequencies on Nusantara Satu Satellite is to avoid terrestrial microwave systems interference that use more C-Band frequencies, and Ku-band frequencies also have greater bandwidth. Thus, the use of Ku- band frequencies can support high-speed services. Indonesia is a developing country that has a tropical climate. The implementation of Ku-band satellite in this country is a challenge because Ku-band has a frequency of 12 GHz for downlink and 14 GHz for sheet. The tropics have quite high rainfall, while satellite frequencies above 10 GHz are very vulnerable to rain. This causes greater attenuation to the Ku-Band frequency, increases signal quality in satellite communications, and decreases its availability link. In implementing satellite Ku- bands in the tropical area, a link budget with the right calculation is required.

Rain attenuation limits the communication distance from radio communication systems and also limits the use of higher frequencies, both in terrestrial microwave link communication systems and in satellite communication systems. In general, there are two approaches used in research on rain attenuation, namely theoretical approaches and empirical approaches [1]. In the theoretical approach, the difference in random rainfall (including the shape of the raindrops, the diameter of the raindrops and the distribution of precipitation) causes electromagnetic waves to experience diffraction, absorption and multipath effects on their propagation. Theoretical approach uses a scattering volume model and a rain grain size distribution model to estimate and calculate the amount of rain attenuation. In the empirical approach, the relationship between rainfall and signal attenuation, the influence of climate regional differences and the efficiency of communication are collected statistically to create an empirical model.

In the tropics there have been many studies on attenuation due to raindrops. In Singapore [2,3] conducted several studies of rain attenuation on electromagnetic waves with empirical and theoretical models. Reference [4-7] had carried out several researches about empirical model from cumulative rainfall obtained by changing cumulative rainfall model from rain gauge and rain attenuation. Rainfall attenuation researches were also carried out on satellite links - earth stations on [4,8-11] in contribution to make a satellite channel model - earth station. International Telecommunication Union (ITU) through its other body, International Radio Consultative Committee (CCIR), built several earth stations to observe and analyze various propagation attenuation mechanisms in the atmosphere throughout the world. The rain zones in various parts of the earth have been mapped by the ITU and documented in [7]. The importance of this paper is Nusantara Satu Satellite just launched few months ago and it is important to simulate its performance to cover few places/cities in Indonesia for broadband communication. This paper describes the calculation of a one-way link budget from Jakarta - Medan, Jakarta - Banjarmasin and Jakarta - Jayapura with Ku-band HTS which is divided into 8 spot beams where Jakarta is located on beam 3, Medan on beam 1, Banjarmasin on beam 7 and Jayapura on Beam 8.

Theoretical Foundations

Gain

Gain is how much output power compared to the input power of a system. If there is a strengthening in the system, then the output power will be greater than the input power.

Aeff

G

2 4

max

(1)

where Gmax is the maximum gain, λ is the wavelength (m), Aeff is the effective aperture of the antenna (m2) and π is 3.14. The wavelength value is obtained from λ = c/f where c is the speed of light (3.108 m / s) and f is the frequency used by the antenna. For an antenna with an aperture or a circular reflector, the formula is

4

D2 Aeff

(2)

where η is the efficiency of an antenna with a value of 60% to 75% and D is the antenna diameter (m). Therefore, by combining (1) and (2), the gain in dBi unit is obtained as follows:

c dBi G Df

2 log

max 10

(3)

Transmitted and Received Power

To calculate the transmit power and antenna receiving power, the antenna power value multiplied by the antenna gain will produce an antenna EIRP with the formula as follows [8]:

(W) .Gt Pt

EIRP (4)

where Pt is antenna power (watts) and Gt is antenna gain. Furthermore, a receiving antenna that has an effective area of Ae, will have the power of Pr with the following formula:

4 2 . .

d Ae Gt Pt Pr

(5)

The above equation can also be stated as follows:

2 . 4

.

r d tG tG r P

P

(6)

where Gr is the strengthening of the receiving antenna, is the wavelength used, and (4d/λ)2 is a quantity known as free space loss which can also be stated as follows:

LFSL = 92.45 + 20 log f + 20 log d (7) where LFSL is free space loss (dB), f is the frequency (GHz) and d is the distance between the satellite and the earth station (km).

Rain Attenuation

The rain attenuation formula in general is [9]:

) ( )

(dB aRbL R

A (8)

where A is the attenuation value (dB), a and b are constants that depend on frequency, R is rainfall (mm/h), L(R) is the parameter of the path length which is the R function.

Distance and Elevation Angle

With this data, the elevation angle of the antenna and the actual distance from the earth station to the satellite can be found in [10]:

cos cos

cos 1(cos cos )

cos 1 sin

cos 1 cos

tan s SB

SB s SB Re

SB s Re

r

E





(9)

where E is the elevation angle (°), r is the distance from the center of the earth to the satellite (42164.2 km), Re is the radius of the earth (6378,155 km), is the earth station latitude (°), θS is the satellite longitude (°) and θSB is the longitude of the earth station (°). From the value of the elevation angle obtained, the distance between the earth station and the satellite can be calculated by the following formula:

H

Re e E R E

e H e R e R R e H

R

d2 ( )2 2 2 ( )sin sin 1 cos (10)

where H is the height of the geostationary satellite from the earth surface, which is about 36000 km.

Method and Parameters

Satellite Parameter

Nusantara Satu Satellite is a broadband satellite that uses High Throughput Satellite (HTS) technology and uses Ku-band transponders to cover all regions in Indonesia. There are eight beams to cover all of Indonesia region. Table 1 describes the parameters of the Nusantara Satu Satellite. EIRP and G/T value are vary depending on the beam of satellite.

Table 1. Satellite Parameters

Parameters Value Unit

Beam 1-6 (Jakarta & Medan)

EIRP 59 dBW

Satellite G/T 11.8 dB/K

Beam 7 (Jakarta & Banjarmasin)

EIRP 54 dBW

Satellite G/T 8 dB/K

Beam 8 (Jayapura)

EIRP 53 dBW

Satellite G/T 7 dB/K

Rainfall Rate Measurements Cities in Indonesia

Every place has rainfall rate. In the ITU-R P.837 recommendation [7], it is stated that Indonesia is in the rain zone type P with rainfall values for a percentage of time of more than 0.01% having less or equal rainfall intensity values with 100 mm/hour. The rainfall prediction model Crane [1] stated that Indonesia is in the H type rain area with rainfall values for a percentage of time more than 0.01% having a rainfall intensity value of less than or equal to 209.3 mm/hour [11].

Basically, ITU and Crane rain prediction model are a point rain rate, which means that the intensity of rainfall is measured at a certain point and the cumulative rainfall distribution calculation procedure for rain attenuation calculations can be done by using the point rainfall model. Differences in rainfall prediction models between ITU and Crane can occur due to differences in measurement data held including the place where measurements are made, length of measurement and age of the model.

Table 2 shows the rainfall rates in Jayapura, Jakarta, Medan and Banjarmasin are strong (R0.01). At high frequencies such as Ku-band, satellite performance is affected by high rainfall levels [10].

Table 2. Rainfall Rate

City Altitude Latitude Longitude R0.01

Jayapura 210 -2.37 140.69 113.9

Jakarta 5 -6.15 106.8 120.4

Medan 49 3.57 98.6 126.2

Banjarmasin 0 -5.27 105.1 123.3

Link budget Calculation and Simulation Results

The following tables will shown the parameters in the Ku-band beam of Nusantara Satu Satellite link and the results of the calculation of link budget Ku-Band satellites for broadband applications with 99.9% link availability and 100 Mbps speed. Table 3, Table 4 and Table 5 show link budget calculation for Jakarta – Medan link, Jakarta – Banjarmasin link and Jakarta – Jayapura link, respectively.

Table 3. Link budget calculation for Jakarta – Medan satellite link

No Link Parameters Jakarta – Satellite – Medan

Sheet (Jakarta – Satellite)

1 EIRP Station at Jakarta 79 dBW

2 Total Losses at Jakarta 232.28 dB

Satellite Parameter

3 Satellite Noise Figure (G/T) 11.8 dB/K

4 C/N0 sheet 86.88425045 dB

5 C/I sheet 15 dB

6 Eb/N0 5.980754507 dB

Downlink (Satellite – Medan)

7 Total Losses at Medan 212.368861 dB

8 Rx Noise Temperature 61 K

9 Rx Antenna Noise Temperature 26 K

10 Feeder Noise temperature 290 K

No Link Parameters Jakarta – Satellite – Medan

11 Medan Station Antenna G/T 22.33093212 dB/K

12 C/N0 downlink 97.5620711 dB

13 C/I downlink 15 dB

14 Eb/N0 downlink 11.87 dB

15 C/N0 total 86.52 dB

16 Eb/N0 total 4.98 dB

17 Eb/N0 required 4.7 dB

18 Margin 0.28 dB

From the link budget calculation that shows in Table 3, to reach 100 Mbps with 99.9%

link availability, the EIRP of the earth station VSAT at Jakarta is minimum at 79 dBW.

The greatest attenuation is contributed by free space loss and rain attenuation. With the parameters described in Table 1 and Table 2, Eb/N0 is obtained in the Earth station in Medan about 4.98 dB. The Eb/N0 required setting is 4.7 dB, so the satellite channel link margin is 0.28 dB.

Table 4. Link budget calculation for Jakarta – Banjarmasin satellite link

No Link Parameters Jakarta – Satellite – Banjarmasin Sheet (Jakarta – Satellite)

1 EIRP Station at Jakarta 83 dBW

2 Total Losses at Jakarta 32.23 dB

Satellite Parameter

3 Satellite Noise Figure (G/T) 8 dB/K

4 C/N0 sheet 87.27 dBHz

5 C/I sheet 15 dB

6 Eb/N0 6.29 dB

Downlink (Satellite – Banjarmasin)

7 Total Losses at Banjarmasin 212.07 dB

8 Rx Noise Temperature 61 K

9 Rx Antenna Noise Temperature 26 K

10 Feeder Noise temperature 290 K

11 Banjarmasin Station Antenna G/T 22.33 dB/K

12 C/N0 downlink 92.85 dB

13 C/I downlink 15 dB

14 Eb/N0 downlink 10.03 dB

15 C/N0 total 86.21 dB

16 Eb/N0 total 4.76 dB

17 Eb/N0 required 4.7 dB

18 Margin 0.06 dB

From the link budget calculation that shows in Table 4, to reach 100 Mbps with 99.9%

link availability, the EIRP of the earth station VSAT at Jakarta is minimum at 83 dBW.

Same with the other link, the greatest attenuation is contributed by free space loss and rain attenuation. With the parameters described in Table 1 and Table 2, Eb/N0 is obtained in the Earth station in Banjarmasin about 4.76 dB. The Eb/N0 required setting is 4.7 dB, so the satellite channel link margin is 0.06 dB.

Table 5. Link budget calculation for Jakarta – Jayapura satellite link

No Link Parameters Jakarta – Satellite - Jayapura Sheet (Jakarta – Satellite)

1 EIRP Station at Jakarta 84 dBW

2 Total Losses at Jakarta 231.48 dB

Satellite Parameter

3 Satellite Noise Figure (G/T) 7 dB/K

4 C/N0 sheet 88.96 dBHz

5 C/I sheet 15 dB

6 Eb/N0 7.58 dB

Downlink (Satellite – Jayapura)

7 Total Losses at Jayapura 211.82 dB

Dokumen terkait