Chapter II: Binary 2-Deletion/Insertion Correcting Codes
2.3 Protecting 1 10 Indicator Vectors
In this section, we prove Lemma2.2.2. The proof is based on Proposition2.1.3and Proposition2.2.3, which are proved at the end of this section. Sincec โ ๐ต2(cโฒ) it follows that there exist integers๐1, ๐2, ๐1, and ๐2such that
cdelโโโ๐1 ddelโ
๐1
โโ e cโฒdelโโโ๐2 dโฒdelโ
๐2
โโ e,
and by Proposition 2.2.1it follows that there exist integers โ1, โ2, ๐1, and ๐2 such that
110(c) delโโโโ1110(d)delโโโ๐1 110(e) 110(cโฒ) delโโโโ2110(dโฒ) delโโโ๐2 110(e).
Due to symmetry betweencandcโฒ, we distinguish between the following three cases.
In each case, the difference between the ๐ values ofcandcโฒare given in terms of the function๐ (2.4). Further, the computation of these three differences, a somewhat tedious but straightforward task, is deferred to the appendix of this chapter.
Case (a). Ifโ1 โคโ2 < ๐2 โค ๐1(Fig.2.2), then
110(c)๐ก =110(cโฒ)๐ก if๐ก < โ1 orโ2 < ๐ก < ๐2 or๐ก > ๐1,
110(c)๐ก+1 =110(cโฒ)๐ก ifโ1 โค ๐ก โค โ2โ1, 110(c)๐ก =110(cโฒ)๐ก+1 if๐2 โค ๐ก โค ๐1โ1. Thus, for๐ โ {0,1,2},
(110(c) โ110(cโฒ)) ยทm(๐)
=๐
m(๐)(โ1,(110(c)(โ1,โ2),110(cโฒ)โ2))โ
๐m(๐)(๐2,(110(cโฒ)(๐2, ๐1),110(c)๐1)). (2.13) Case (b). Ifโ1 โคโ2 < ๐1 โค ๐2(Fig.2.3), then
110(c)๐ก =110(cโฒ)๐ก if๐ก < ๐1 or๐2 < ๐ก < ๐1. or๐ก > ๐2.
110(c)๐ก+1=110(cโฒ)๐ก ifโ1 โค๐ก โค โ2โ1 or๐1โค ๐ก โค ๐2โ1. Thus, for๐ โ {0,1,2},
(110(c) โ110(cโฒ)) ยทm(๐)
=๐
m(๐)(โ1,(110(c)(โ1,โ2),110(cโฒ)โ2))+
๐m(๐)(๐1,(110(c)(๐1, ๐2),110(cโฒ)๐2)). (2.14) Case (c). Ifโ1< ๐1 โค โ2< ๐2(Fig.2.4), then
110(c)๐ก =110(cโฒ)๐ก if๐ก < ๐1 or๐ก > ๐2,
110(c)
110(cโฒ) โ
โ โ
= = โ =
= = =
โ1 โ2 ๐2 ๐1
Figure 2.2: Case (a), whereโ1 โค โ2 < ๐2 โค ๐1. The diagonal lines indicate equality between the respective entries of110(c)and110(cโฒ).
110(c)
110(cโฒ) โ
โ
โ
โ
= = =
= = =
โ1 โ2 ๐1 ๐2
Figure 2.3: Case (b), whereโ1 โค โ2< ๐1 โค ๐2. The diagonal lines indicate equality between the respective entries of110(c)and110(cโฒ).
110(c)๐ก+1 =110(cโฒ)๐ก ifโ1 โค๐ก โค ๐1โ2 orโ2+1 โค ๐ก โค ๐2โ1, 110(c)๐ก+2 =110(cโฒ)๐ก if๐1โ1 โค ๐ก โค โ2โ1. Thus, for๐ โ {0,1,2},
(110(c) โ110(cโฒ)) ยทm(๐)
=๐
m(๐)(โ1,(110(c)(โ1, ๐1โ1),110(c)(๐1+1,โ2+1),110(cโฒ)โ2))+
๐m(๐)(๐1,(110(c)(๐1, ๐2),110(cโฒ)๐2)). (2.15)
110(c) 110(cโฒ)
โ
โ
โ
= โ =
= =
โ1 ๐1 โ2 ๐2
Figure 2.4: Case (c), whereโ1 < ๐1 โคโ2< ๐2. The diagonal lines indicate equality between the respective entries of110(c)and110(cโฒ).
Note that if ๐(c) = ๐(cโฒ), then 110(c) ยทm(๐) โก 110(cโฒ) ยทm(๐) mod๐๐, where ๐0 = 2๐, ๐1 =๐2,and๐2=๐3. Hence, from (2.13)โ(2.15) we have that
๐m(๐)(โ1,(110(c)(โ1,โ2),110(cโฒ)โ2))
โ๐
m(๐)(๐2,(110(cโฒ)(๐2, ๐1),110(c)๐1)) โก0 mod๐๐,
๐m(๐)(โ1,(110(c)(โ1,โ2),110(cโฒ)โ2)) +๐
m(๐)(๐1,(110(c)(๐1, ๐2),110(cโฒ)๐2)) โก0 mod๐๐, and ๐m(๐)(โ1,(110(c)(โ1, ๐1โ1),110(c)(๐1+1,โ2+1),110(cโฒ)โ2)) +๐
m(๐)(๐1,(110(c)(๐1, ๐2),110(cโฒ)๐2)) โก0 mod๐๐, (2.16) for Case (a), Case (b), and Case (c), respectively.
In what follows, we show that these equalities also hold in their non modular version.
Specifically, we prove the following,
๐m(๐)(โ1,(110(c)(โ1,โ2),110(cโฒ)โ2))
โ๐
m(๐)(๐2,(110(cโฒ)(๐2, ๐1),110(c)๐1))=0, (2.17) ๐m(๐)(โ1,(110(c)(โ1,โ2),110(cโฒ)โ2))
+๐
m(๐)(๐1,(110(c)(๐1, ๐2),110(cโฒ)๐2))=0, and (2.18) ๐m(๐)(โ1,(110(c)(โ1, ๐1โ1),110(c)(๐1+1,โ2+1),110(cโฒ)โ2))
+๐
m(๐)(๐1,(110(c)(๐1, ๐2),110(cโฒ)๐2))=0. (2.19) From (2.8), we have that
โm๐+๐ โ2(๐) โค ๐
m(๐)(๐ ,x) โค m๐+๐ โ2(๐)
for anyxโ {0,1}๐ and any integer๐that satisfies๐+๐ โ2โค ๐โ1. Therefore,
โm(๐)โ
2 โm(๐๐)
1 โค๐
m(๐)(โ1,(110(c)(โ1,โ2),110(cโฒ)โ2))โ
๐m(๐)(๐2,(110(cโฒ)(๐2, ๐1),110(c)๐1))
โคmโ(๐)
2 +m๐(๐)
1
,
โm(๐)โ
2 โm(๐๐)
2 โค๐
m(๐)(โ1,(110(c)(โ1,โ2),110(cโฒ)โ2))+
๐m(๐)(๐1,(110(c)(๐1, ๐2),110(cโฒ)๐2))
โคmโ(๐)
2 +m๐(๐)
2
, and
โm(๐)โ
2 โm(๐๐)
2 โค๐
m(๐)(โ1,(110(c)(โ1, ๐1โ1),
110(c)(๐1+1,โ2+1),110(cโฒ)โ2)) +๐
m(๐)(๐1,(110(c)(๐1, ๐2),110(cโฒ)๐2))
โคmโ(๐)
2 +m๐(๐)
2
, (2.20)
for Case (a)โ(c) respectively. Further, note that m(โ๐)
2 +m(๐๐)
1
< ๐๐ andm(โ๐)
2 +m(๐๐)
2
< ๐๐. (2.21)
Combining (2.16), (2.20), and (2.21), we conclude that if ๐(c) = ๐(cโฒ), then Eq. (2.17), (2.18), and (2.19) hold for Case (a), Case (b), and Case (c) respectively.
For Case (a), Equation (2.17) and Proposition2.1.3imply that 110(c)โ1 =. . .=110(c)โ2 =110(cโฒ)โ2
110(cโฒ)๐2 =. . .=110(cโฒ)๐1 =110(c)๐1, which readily implies that
110(cโฒ)๐ก =110(c)๐ก+1 =110(c)๐ก
forโ1 โค๐ก < โ2and
110(c)๐ก =110(cโฒ)๐ก+1=110(cโฒ)๐ก
for ๐2 โค ๐ก < ๐1. Together with 110(c)โ2 = 110(cโฒ)โ2 and 110(cโฒ)๐1 = 110(c)๐1, we have that110(c) =110(cโฒ).
For Case (b), Equation (2.18) and Proposition2.1.3implies that 110(c)โ1 =. . .=110(c)โ2 =110(cโฒ)โ2
110(cโฒ)๐1 =. . .=110(cโฒ)๐2 =110(c)๐2
and hence
110(cโฒ)๐ก =110(c)๐ก+1 =110(c)๐ก
forโ1 โค๐ก < โ2and ๐1 โค๐ก < ๐2, and thus110(c)=110(cโฒ).
Note that in Case (a) and (b) we used Proposition2.1.3, which implies that only two parity checks with weightsm(0) andm(1) are needed. Case (c) is the most involved case and the only case when the parity check with weightm(2) is needed. Hence, Proposition2.2.3is required. According to Equation (2.19) and Proposition2.2.3, we have either
110(c)โ1 =. . .=110(c)๐2 =110(cโฒ)โ2 =110(cโฒ)๐2 (2.22) or
110(c)โ1 =. . .=110(c)๐1โ1=110(c)๐1+1, 110(c)๐+110(c)๐+1=1 for๐ โ {๐1, . . . , โ2},
110(cโฒ)โ2+110(cโฒ)๐2 =1, and
110(c)โ2+1 =. . .=110(c)๐2 =110(cโฒ)๐2. (2.23) If (2.22) is true, we can obtainc=cโฒby following steps similar to those of Case (a) and Case (b). If (2.23) is true, we have
110(cโฒ)๐ก =110(c)๐ก+1 =110(c)๐ก
forโ1 โค๐ก โค ๐1โ2 andโ2+1โค ๐ก โค ๐2โ1. Furthermore, we have that 110(cโฒ)๐ก =110(c)๐ก+2=1โ110(c)๐ก+1=110(c)๐ก
for๐1 โค๐ก โค โ2โ1. In addition, we have110(cโฒ)๐1โ1=110(c)๐1+1=110(c)๐1โ1,110(cโฒ)โ2 = 1โ110(cโฒ)๐2 =1โ110(c)โ2+1=110(c)โ2 and110(cโฒ)๐2 =110(c)๐2. Hence, we have that110(c) = 110(cโฒ). This concludes the proof of Cases (a), (b), and (c), and thus the proof of Lemma2.2.2is completed.
We now prove Proposition2.1.3and Proposition2.2.3.
Proof. (of Proposition2.1.3) According to Eq. (2.12), if๐ =1, then Eq. (2.9) can be written as
๐m(0)(๐1,x) โ๐
m(0)(๐2,y) =0, and ๐m(1)(๐1,x) โ๐
m(1)(๐2,y) =0.
Therefore, it suffices to prove the claim for ๐ = โ1. We distinguish between four cases according to the value of (๐ฆ1, ๐ฆ๐
2).
Case (a). (๐ฆ1, ๐ฆ๐
2) =(0,1). We have that ๐m(๐)(๐1,x) โ๐
m(๐)(๐2,y)
=m๐(๐)1 ๐ฅ1+
๐ 1โ1
โ๏ธ
๐ก=2
(m๐ก(๐)+๐
1โ1โm๐ก(๐)+๐
1โ2)๐ฅ๐กโm(๐๐)
1+๐ 1โ2๐ฅ๐
1โ m๐(๐)2 ๐ฆ1โ
๐ 2โ1
โ๏ธ
๐ก=2
(m(๐)๐ก+๐
2โ1โm(๐)๐ก+๐
2โ2)๐ฆ๐ก +m๐(๐)
2+๐ 2โ2๐ฆ๐
2
โฅ โm๐(๐)
1+๐ 1โ2โ
๐ 2โ1
โ๏ธ
๐ก=2
(m๐ก(๐)+๐
2โ1โm๐ก(๐)+๐
2โ2) + m๐(๐)
2+๐ 2โ2
=m๐(2๐) โm๐(๐)
1+๐ 1โ2 > 0, a contradiction.
Case (b). (๐ฆ1, ๐ฆ๐
2) = (1,0). From Proposition2.2.4and (2.9) we have๐
m(๐)(๐1,x) โ ๐m(๐)(๐2,y) =0 for ๐ โ {0,1}, wherex โ 1โx andy โ 1โy. Since (๐ฆ
1, ๐ฆ
๐ 2) = (0,1), from the previous case this leads to a contradiction.
Case (c). (๐ฆ1, ๐ฆ๐
2) =(1,1). Let ๐1โ {๐ :๐ฆ๐โ๐
2+1=1, ๐2+1โค ๐ โค๐2+๐ 2โ2}, and ๐๐
1โ {๐ :๐ฆ๐โ๐
2+1=0, ๐2+1โค ๐ โค๐2+๐ 2โ2}, and notice that
๐m(0)(๐2,y)
=m๐(0)2 โm๐(0)
2+๐ 2โ2+
๐ 2โ1
โ๏ธ
๐=2
(m(0)๐+๐
2โ1โm(0)๐+๐
2โ2)๐ฆ๐
=โ
๐2+๐ 2โ2
โ๏ธ
๐=๐2+1
(m(๐0) โm(๐0โ1) ) +
๐ 2โ1
โ๏ธ
๐=2
(m(๐0+)๐
2โ1โm(๐0+)๐
2โ2)๐ฆ๐
=โ
๐2+๐ 2โ2
โ๏ธ
๐=๐2+1
(m(0)๐ โm(0)๐โ1) (1โ๐ฆ๐)
=โ โ๏ธ
๐โ๐๐
1
(m(๐0) โm(๐0โ1) ) =โโ๏ธ
๐โ๐๐
1
1, and similarly, ๐m(1)(๐2,y)
=โ โ๏ธ
๐โ๐๐
1
(m(๐1) โm(๐1โ1) ) =โโ๏ธ
๐โ๐๐
1
๐ . (2.24)
Now, on the one hand, if๐ฅ๐
1 =0 we have ๐m(0)(๐1,x) =m๐(01)๐ฅ1+
๐ 1โ1
โ๏ธ
๐ก=2
(m๐ก(+0)๐
1โ1โm๐ก(+0)๐
1โ2)๐ฅ๐ก
โฅ0, (2.25)
and hence, (2.24) and (2.25) imply that๐
m(0)(๐1,x) โ๐
m(0)(๐2,y) โฅ0, and equality holds only when๐
m(0)(๐1,x)and๐
m(0)(๐2,y)are both 0, which by Proposition2.1.2 implies thatxandyare constant vectors. On the other hand, if๐ฅ๐
1 =1 let๐2 ={๐ก : ๐ฅmax{๐กโ๐
1+1,1} =0,1 โค๐ก โค ๐1+๐ 1โ2}, and notice that ๐m(0)(๐1,x)
=m๐(0)1 ๐ฅ1+
๐ 1โ1
โ๏ธ
๐ก=2
(m(0)๐ก+๐
1โ1โm(0)๐ก+๐
1โ2)๐ฅ๐กโm๐(0)
1+๐ 1โ2
=m๐(0)1 (๐ฅ1โ1) +
๐ 1โ1
โ๏ธ
๐ก=2
(m(0)๐ก+๐
1โ1โm๐ก+๐(0)
1โ2) (๐ฅ๐กโ1)
=โโ๏ธ
๐กโ๐2
1, and similarly, ๐m(1)(๐1,x) =โโ๏ธ
๐กโ๐2
๐ก . (2.26)
Inserting (2.24) and (2.26) into (2.9), we have
โโ๏ธ
๐กโ๐2
1+ โ๏ธ
๐โ๐๐
1
1=0,
โโ๏ธ
๐กโ๐2
๐ก+ โ๏ธ
๐โ๐๐
1
๐ =0. This implies that the sets ๐๐
1 and ๐2 have the same cardinality and the same sum of elements. However, the maximum element in ๐2 is smaller than the minimum element in๐๐
1. Therefore,๐๐
1and๐2are empty, which implies thatxis the 0 vector andyis the all 1โs vector.
Case (d). (๐ฆ1, ๐ฆ๐
2) = (0,0). From Proposition 2.2.4 and Eq. (2.9) we have ๐m(๐)(๐1,x) โ๐
m(๐)(๐2,y) = 0 for ๐ โ {0,1}, where x โ 1โ x and y โ 1โ y.
Since (๐ฆ
1, ๐ฆ
๐ 2) = (1,1), from the previous casex and y are constant vectors, and
thus so arexandy. โก
Proof. (of Proposition2.2.3) We distinguish between four cases according to the value of(๐ฅ๐
1+๐ 2+1, ๐ฆ๐
2+๐ 3+1).
Case (a). (๐ฅ๐
1+๐ 2+1, ๐ฆ๐
2+๐ 3+1) = (0,0). Similar to (2.25), we have that๐
m(0)(๐1,x) + ๐m(0)(๐2,y) โฅ 0, where equality holds only ifxandyare constant 0 vectors.
Case (b). (๐ฅ๐
1+๐ 2+1, ๐ฆ๐
2+๐ 3+1) = (1,1). From Proposition 2.2.4 and Eq. (2.10) we have that๐
m(0)(๐1,x)+๐
m(0)(๐2,y) =0. On the other hand, since (๐ฅ๐
1+๐ 2+1, ๐ฆ
๐ 2+๐ 3+1) = (0,0) , it follows that ๐
m(0)(๐1,x) +๐
m(0)(๐2,y) โฅ 0 where equality holds whenx andyare constant 1 vectors.
Case (c). (๐ฅ๐
1+๐ 2+1, ๐ฆ๐
2+๐ 3+1) = (0,1). On the one hand, for๐ฆ1=0 we have ๐m(0)(๐1,x) +๐
m(0)(๐2,y)
=m๐(0)1 ๐ฅ1+
๐ 1+1
โ๏ธ
๐ก=2
(m๐ก(0)+๐
1โ1โm๐ก(0)+๐
1โ2)๐ฅ๐ก+
๐ 1+๐ 2โ1
โ๏ธ
๐ก=๐ 1+1
(m๐ก(0)+๐1 โm๐ก+๐(0)
1โ1)๐ฅ๐ก+1 +
๐ 2
โ๏ธ
๐ก=2
(m๐ก(+0๐)
2โ1โm(๐ก+0๐)
2โ2)๐ฆ๐ก+
๐ 2+๐ 3
โ๏ธ
๐ก=๐ 2+1
(m(0)๐ก+๐
2โ1โm๐ก(0)+๐
2โ2)๐ฆ๐กโm(0)๐
2+๐ 2+๐ 3โ1
=m๐(0)1 ๐ฅ1+
๐ 1+1
โ๏ธ
๐ก=2
(m๐ก+๐(0)
1โ1โm๐ก+๐(0)
1โ2)๐ฅ๐ก+
๐ 1+๐ 2โ1
โ๏ธ
๐ก=๐ 1+1
(m๐ก(0)+๐1 โm๐ก+๐(0)
1โ1) (๐ฅ๐ก+๐ฅ๐ก+1) +
๐ 2+๐ 3
โ๏ธ
๐ก=๐ 2+1
(m(0)๐ก+๐
2โ1โm(0)๐ก+๐
2โ2)๐ฆ๐กโm(0)
๐2+๐ 2+๐ 3โ1
โคm๐(01)+
๐ 1+1
โ๏ธ
๐ก=2
(m๐ก(+0)๐
1โ1โm๐ก(+0)๐
1โ2)+
๐ 1+๐ 2โ1
โ๏ธ
๐ก=๐ 1+1
(m๐ก+๐(0)
1 โm๐ก(+0)๐
1โ1) +
๐ 2+๐ 3
โ๏ธ
๐ก=๐ 2+1
(m(0)๐ก+๐
2โ1โm(0)๐ก+๐
2โ2) โm๐(0)
2+๐ 2+๐ 3โ1 =0, where equality equality holds when
๐ฅ๐ก =1 for๐ก โ {1, . . . , ๐ 1+1},
๐ฅ๐ก+๐ฅ๐ก+1 =1 for๐ก โ {๐ 1+1, . . . , ๐ 1+๐ 2โ1}, and ๐ฆ๐ก =1 for๐ก โ {๐ 2+1, . . . , ๐ 2+๐ 3},
and hence (2.11) holds. On the other hand, when๐ฆ1=1, let ๐1={๐ก :๐ฅmax{๐กโ๐
1+1,1} =1,1โค ๐ก โค ๐ 1+๐1}, ๐2={๐ก :๐ฅ๐กโ๐
1 +๐ฅ๐กโ๐
1+1=0, ๐2+1 โค๐ก โค ๐2+๐ 2โ1}, ๐3={๐ก :๐ฆ๐กโ๐
2+1 =0, ๐2+๐ 2โค ๐ก โค๐2+๐ 2+๐ 3โ1}, and notice that
๐m(0)(๐1,x) +๐
m(0)(๐2,y)
=m๐(0)1 ๐ฅ1+
๐ 1+1
โ๏ธ
๐ก=2
(m๐ก+๐(0)
1โ1โm๐ก+๐(0)
1โ2)๐ฅ๐ก+
m(0)๐ 1+๐1+
๐ 1+๐ 2โ1
โ๏ธ
๐ก=๐ 1+1
(m๐ก(0)+๐1โm(0)๐ก+๐
1โ1) (๐ฅ๐ก+๐ฅ๐ก+1)+
๐ 2+๐ 3
โ๏ธ
๐ก=๐ 2+1
(m๐ก(+0๐)
2โ1โm๐ก(+0๐)
1โ2)๐ฆ๐กโm(๐0)
2+๐ 2+๐ 3โ1
= โ๏ธ
๐กโ๐1
(m(0)๐ก โm๐ก(0)โ1) โโ๏ธ
๐กโ๐2
(m(0)๐ก โm๐ก(0)โ1)โ
โ๏ธ
๐กโ๐3
(m(0)๐ก โm๐กโ1(0))
=โ๏ธ
๐กโ๐1
1โโ๏ธ
๐กโ๐2
1โโ๏ธ
๐กโ๐3
1. (2.27)
Similarly, we have that
๐m(1)(๐1,x) +๐
m(1)(๐2,y) =โ๏ธ
๐กโ๐1
๐กโโ๏ธ
๐กโ๐2
๐กโโ๏ธ
๐กโ๐3
๐ก . (2.28)
Equations (2.10), (2.27), and (2.28) imply that the cardinality of๐1equals the sum of cardinalities of๐2and๐3, and in addition, the sum of elements of๐1equals the sum of elements of๐2and๐3. Note that the minimum element of๐2โช๐3is larger than the maximum element of๐1. This is impossible, unless๐1, ๐2, and๐3are empty, which implies that๐ฅ๐ก =0 for๐ก โ {1, . . . , ๐ 1+1},๐ฅ๐ก+๐ฅ๐ก+1=1 for๐ก โ {๐ 1+1, . . . , ๐ 1+๐ 2โ1}, and๐ฆ๐ก =1 for๐ก โ {๐ 2+1, . . . , ๐ 2+๐ 3}, and hence (2.11) holds.
Case (d). (๐ฅ๐
1+๐ 2+1, ๐ฆ๐
2+๐ 3+1) = (1,0). On the one hand, for๐ฆ1=0, let ๐1={๐ก :๐ฅmax{๐กโ๐
1+1,1} =0,1โค ๐ก โค ๐ 1+๐1}, ๐2={๐ก :๐ฅ๐กโ๐
1 +๐ฅ๐กโ๐
1+1=0, ๐2+1 โค๐ก โค ๐2+๐ 2โ1}, ๐3={๐ก :๐ฆ๐กโ๐
2+1 =1, ๐2+๐ 2โค ๐ก โค๐2+๐ 2+๐ 3โ1}. We have
๐m(0)(๐1,x) +๐
m(0)(๐2,y)
=m๐(0)1 ๐ฅ1+
๐ 1+1
โ๏ธ
๐ก=2
(m(0)๐ก+๐
1โ1โm(0)๐ก+๐
1โ2)๐ฅ๐ก+
๐ 1+๐ 2โ1
โ๏ธ
๐ก=๐ 1+1
(m(0)๐ก+๐1โm(0)๐ก+๐
1โ1) (๐ฅ๐ก+๐ฅ๐ก+1)โ
m๐(0)
1+๐ 1+๐ 2โ1+
๐ 2+๐ 3
โ๏ธ
๐ก=๐ 2+1
(m(๐ก+0๐)
2โ1โm๐ก(+0๐)
1โ2)๐ฆ๐ก
=โm๐(0)1 (1โ๐ฅ1) โ
๐ 1+1
โ๏ธ
๐ก=2
(m๐ก+๐(0)
1โ1โm๐ก+๐(0)
1โ2) (1โ๐ฅ๐ก)โ
๐ 1+๐ 2โ1
โ๏ธ
๐ก=๐ 1+1
(m(0)๐ก+๐1โm(0)๐ก+๐
1โ1) (1โ๐ฅ๐กโ๐ฅ๐ก+1)+
๐ 2+๐ 3
โ๏ธ
๐ก=๐ 2+1
(m๐ก(+0)๐
2โ1โm๐ก(+0)๐
1โ2)๐ฆ๐ก
=โโ๏ธ
๐กโ๐1
(m๐ก(0) โm๐กโ(0)1) โโ๏ธ
๐กโ๐2
(m(0)๐ก โm๐กโ(0)1)+
โ๏ธ
๐กโ๐3
(m๐ก(0)โm(0)๐กโ1)
=โโ๏ธ
๐กโ๐1
1โโ๏ธ
๐กโ๐2
1+โ๏ธ
๐กโ๐3
1=0.
Then similar to the previous case, we obtain sets with identical cardinalities and sum of elements, and yet the smallest element in one is greater than the largest element in the others. Therefore, it follows that ๐1, ๐2, and ๐3 are empty. Then we have ๐ฅ๐ก = 1 for๐ก โ {1, . . . , ๐ 1+1}, ๐ฅ๐ก +๐ฅ๐ก+1 = 1 for๐ก โ {๐ 1+1, . . . , ๐ 1+๐ 2โ1}, and ๐ฆ๐ก =0 for๐ก โ {๐ 2+1, . . . , ๐ 2+๐ 3}, and hence (2.11) holds.
On the other hand, for๐ฆ1=1, let ๐1={๐ก :๐ฅmax{๐กโ๐
1+1,1} =1,1โค ๐ก โค ๐ 1+๐1}, ๐2={๐ก :๐ฅ๐กโ๐
1 +๐ฅ๐กโ๐
1+1=0, ๐2+1 โค๐ก โค ๐2+๐ 2โ1}, ๐3={๐ก :๐ฆ๐กโ๐
2+1=1, ๐2+๐ 2 โค ๐ก โค ๐2+๐ 2+๐ 3โ1}. We have
๐m(0)(๐1,x) +๐
m(0)(๐2,y)
=m๐(01)๐ฅ1+
๐ 1+1
โ๏ธ
๐ก=2
(m๐ก(+0)๐
1โ1โm๐ก(+0)๐
1โ2)๐ฅ๐ก+m(๐ 01)+๐1+
๐ 1+๐ 2โ1
โ๏ธ
๐ก=๐ 1+1
(m๐ก+๐(0)
1 โm๐ก(+0)๐
1โ1) (๐ฅ๐ก+๐ฅ๐ก+1)โ
m๐(0)
1+๐ 1+๐ 2โ1+
๐ 2+๐ 3
โ๏ธ
๐ก=๐ 2+1
(m๐ก+๐(0)
2โ1โm๐ก+๐(0)
1โ2)๐ฆ๐ก
=m๐(0)1 ๐ฅ1+
๐ 1+1
โ๏ธ
๐ก=2
(m๐ก+๐(0)
1โ1โm๐ก+๐(0)
1โ2)๐ฅ๐กโ
๐ 1+๐ 2โ1
โ๏ธ
๐ก=๐ 1+1
(m๐ก(0)+๐1 โm๐ก+๐(0)
1โ1) (1โ๐ฅ๐กโ๐ฅ๐ก+1)+
๐ 2+๐ 3
โ๏ธ
๐ก=๐ 2+1
(m(๐ก+0๐)
2โ1โm๐ก(+0๐)
1โ2)๐ฆ๐ก
=โ๏ธ
๐กโ๐1
(m๐ก(0) โm๐ก(0)โ1) โโ๏ธ
๐กโ๐2
(m(0)๐ก โm๐ก(0)โ1)+
โ๏ธ
๐กโ๐3
(m๐ก(0) โm๐กโ1(0))
=โ๏ธ
๐กโ๐1
1โโ๏ธ
๐กโ๐2
1+โ๏ธ
๐กโ๐3
1=0. (2.29)
Similarly, we have
๐m(1)(๐1,x) +๐
m(1)(๐2,y) =โ๏ธ
๐กโ๐1
๐กโโ๏ธ
๐กโ๐2
๐ก+โ๏ธ
๐กโ๐3
๐ก ๐m(2)(๐1,x) +๐
m(2)(๐2,y) =โ๏ธ
๐กโ๐1
๐ก2โโ๏ธ
๐กโ๐2
๐ก2+โ๏ธ
๐กโ๐3
๐ก2. (2.30) According to (2.29) and (2.30), the following linear equation
๐ดx=0, (2.31)
where
๐ด=
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ ร
๐กโ๐11 ร
๐กโ๐21 ร
๐กโ๐31 ร
๐กโ๐1๐ก ร
๐กโ๐2๐ก ร
๐กโ๐3๐ก ร
๐กโ๐1๐ก2 ร
๐กโ๐2๐ก2 ร
๐กโ๐3๐ก2
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป , x=
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ ๐ฅ1 ๐ฅ2 ๐ฅ3
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป ,
has a nonzero solution (๐ฅ1, ๐ฅ2, ๐ฅ3) = (1,โ1,1)โค. We show that this is impossible unless ๐ด =0. Suppose on the other hand, ๐ด โ 0. If all columns of ๐ดare not zero columns, then according to the multi-linearity of the determinant,
det(๐ด) = โ๏ธ
๐โ๐1, ๐โ๐2, ๐โ๐3
detยฉ
ยญ
ยญ
ยซ
1 1 1
๐ ๐ ๐
๐2 ๐2 ๐2 ยช
ยฎ
ยฎ
ยฌ
= โ๏ธ
๐โ๐1, ๐โ๐2, ๐โ๐3
(๐โ๐) (๐โ๐) (๐ โ ๐) (2.32) is strictly positive since max๐โ๐1๐ < min๐โ๐2 ๐ < min๐โ๐3๐. Hence the equation cannot have nonzero solutions. It is also obvious that the equation (2.31) cannot have solution(๐ฅ1, ๐ฅ2, ๐ฅ3) = (1,โ1,1)โคwhen only one column๐ดis non-zero. For the
case when ๐ดcontains two non-zero columns, e.g., the first column and the second column, then we have that
๐ดโฒx=
"
ร
๐กโ๐11 ร
๐กโ๐21 ร
๐กโ๐1๐ก ร
๐กโ๐2๐ก
# "
๐ฅ1 ๐ฅ2
#
=0. (2.33)
Again, similar to Eq. (2.32), we have det(๐ดโฒ)= โ๏ธ
๐โ๐1, ๐โ๐2, ๐โ๐3
det 1 1 ๐ ๐
!
= โ๏ธ
๐โ๐1, ๐โ๐2
(๐โ๐) > 0, (2.34)
which implies that the equation Eq. (2.33) cannot have nonzero solutions. Thus, Eq. (2.31) cannot have solution (๐ฅ1, ๐ฅ2, ๐ฅ3) = (1,โ1,1)โค unless ๐ด = 0, which implies that ๐1, ๐2, and ๐3 are empty. Therefore, ๐ฅ๐ก = 0 for ๐ก โ {1, . . . , ๐ 1+1}, ๐ฅ๐ก+๐ฅ๐ก+1=1 for๐ก โ {๐ 1+1, . . . , ๐ 1+๐ 2โ1}, and๐ฆ๐ก =0 for๐ก โ {๐ 2+1, . . . , ๐ 2+๐ 3},
which implies (2.11). โก