• Tidak ada hasil yang ditemukan

Protecting 1 10 Indicator Vectors

Chapter II: Binary 2-Deletion/Insertion Correcting Codes

2.3 Protecting 1 10 Indicator Vectors

In this section, we prove Lemma2.2.2. The proof is based on Proposition2.1.3and Proposition2.2.3, which are proved at the end of this section. Sincec โˆˆ ๐ต2(cโ€ฒ) it follows that there exist integers๐‘–1, ๐‘–2, ๐‘—1, and ๐‘—2such that

cdelโ€™โˆ’โ†’๐‘–1 ddelโ€™

๐‘—1

โˆ’โ†’ e cโ€ฒdelโ€™โˆ’โ†’๐‘–2 dโ€ฒdelโ€™

๐‘—2

โˆ’โ†’ e,

and by Proposition 2.2.1it follows that there exist integers โ„“1, โ„“2, ๐‘˜1, and ๐‘˜2 such that

110(c) delโ€™โˆ’โ†’โ„“1110(d)delโ€™โˆ’โ†’๐‘˜1 110(e) 110(cโ€ฒ) delโ€™โˆ’โ†’โ„“2110(dโ€ฒ) delโ€™โˆ’โ†’๐‘˜2 110(e).

Due to symmetry betweencandcโ€ฒ, we distinguish between the following three cases.

In each case, the difference between the ๐‘“ values ofcandcโ€ฒare given in terms of the function๐‘” (2.4). Further, the computation of these three differences, a somewhat tedious but straightforward task, is deferred to the appendix of this chapter.

Case (a). Ifโ„“1 โ‰คโ„“2 < ๐‘˜2 โ‰ค ๐‘˜1(Fig.2.2), then

110(c)๐‘ก =110(cโ€ฒ)๐‘ก if๐‘ก < โ„“1 orโ„“2 < ๐‘ก < ๐‘˜2 or๐‘ก > ๐‘˜1,

110(c)๐‘ก+1 =110(cโ€ฒ)๐‘ก ifโ„“1 โ‰ค ๐‘ก โ‰ค โ„“2โˆ’1, 110(c)๐‘ก =110(cโ€ฒ)๐‘ก+1 if๐‘˜2 โ‰ค ๐‘ก โ‰ค ๐‘˜1โˆ’1. Thus, for๐‘’ โˆˆ {0,1,2},

(110(c) โˆ’110(cโ€ฒ)) ยทm(๐‘’)

=๐‘”

m(๐‘’)(โ„“1,(110(c)(โ„“1,โ„“2),110(cโ€ฒ)โ„“2))โˆ’

๐‘”m(๐‘’)(๐‘˜2,(110(cโ€ฒ)(๐‘˜2, ๐‘˜1),110(c)๐‘˜1)). (2.13) Case (b). Ifโ„“1 โ‰คโ„“2 < ๐‘˜1 โ‰ค ๐‘˜2(Fig.2.3), then

110(c)๐‘ก =110(cโ€ฒ)๐‘ก if๐‘ก < ๐‘™1 or๐‘™2 < ๐‘ก < ๐‘˜1. or๐‘ก > ๐‘˜2.

110(c)๐‘ก+1=110(cโ€ฒ)๐‘ก ifโ„“1 โ‰ค๐‘ก โ‰ค โ„“2โˆ’1 or๐‘˜1โ‰ค ๐‘ก โ‰ค ๐‘˜2โˆ’1. Thus, for๐‘’ โˆˆ {0,1,2},

(110(c) โˆ’110(cโ€ฒ)) ยทm(๐‘’)

=๐‘”

m(๐‘’)(โ„“1,(110(c)(โ„“1,โ„“2),110(cโ€ฒ)โ„“2))+

๐‘”m(๐‘’)(๐‘˜1,(110(c)(๐‘˜1, ๐‘˜2),110(cโ€ฒ)๐‘˜2)). (2.14) Case (c). Ifโ„“1< ๐‘˜1 โ‰ค โ„“2< ๐‘˜2(Fig.2.4), then

110(c)๐‘ก =110(cโ€ฒ)๐‘ก if๐‘ก < ๐‘™1 or๐‘ก > ๐‘˜2,

110(c)

110(cโ€ฒ) โ˜…

โ˜… โ˜…

= = โ˜… =

= = =

โ„“1 โ„“2 ๐‘˜2 ๐‘˜1

Figure 2.2: Case (a), whereโ„“1 โ‰ค โ„“2 < ๐‘˜2 โ‰ค ๐‘˜1. The diagonal lines indicate equality between the respective entries of110(c)and110(cโ€ฒ).

110(c)

110(cโ€ฒ) โ˜…

โ˜…

โ˜…

โ˜…

= = =

= = =

โ„“1 โ„“2 ๐‘˜1 ๐‘˜2

Figure 2.3: Case (b), whereโ„“1 โ‰ค โ„“2< ๐‘˜1 โ‰ค ๐‘˜2. The diagonal lines indicate equality between the respective entries of110(c)and110(cโ€ฒ).

110(c)๐‘ก+1 =110(cโ€ฒ)๐‘ก ifโ„“1 โ‰ค๐‘ก โ‰ค ๐‘˜1โˆ’2 orโ„“2+1 โ‰ค ๐‘ก โ‰ค ๐‘˜2โˆ’1, 110(c)๐‘ก+2 =110(cโ€ฒ)๐‘ก if๐‘˜1โˆ’1 โ‰ค ๐‘ก โ‰ค โ„“2โˆ’1. Thus, for๐‘’ โˆˆ {0,1,2},

(110(c) โˆ’110(cโ€ฒ)) ยทm(๐‘’)

=๐‘”

m(๐‘’)(โ„“1,(110(c)(โ„“1, ๐‘˜1โˆ’1),110(c)(๐‘˜1+1,โ„“2+1),110(cโ€ฒ)โ„“2))+

๐‘”m(๐‘’)(๐‘˜1,(110(c)(๐‘˜1, ๐‘˜2),110(cโ€ฒ)๐‘˜2)). (2.15)

110(c) 110(cโ€ฒ)

โ˜…

โ˜…

โ˜…

= โ˜… =

= =

โ„“1 ๐‘˜1 โ„“2 ๐‘˜2

Figure 2.4: Case (c), whereโ„“1 < ๐‘˜1 โ‰คโ„“2< ๐‘˜2. The diagonal lines indicate equality between the respective entries of110(c)and110(cโ€ฒ).

Note that if ๐‘“(c) = ๐‘“(cโ€ฒ), then 110(c) ยทm(๐‘’) โ‰ก 110(cโ€ฒ) ยทm(๐‘’) mod๐‘›๐‘’, where ๐‘›0 = 2๐‘›, ๐‘›1 =๐‘›2,and๐‘›2=๐‘›3. Hence, from (2.13)โ€“(2.15) we have that

๐‘”m(๐‘’)(โ„“1,(110(c)(โ„“1,โ„“2),110(cโ€ฒ)โ„“2))

โˆ’๐‘”

m(๐‘’)(๐‘˜2,(110(cโ€ฒ)(๐‘˜2, ๐‘˜1),110(c)๐‘˜1)) โ‰ก0 mod๐‘›๐‘’,

๐‘”m(๐‘’)(โ„“1,(110(c)(โ„“1,โ„“2),110(cโ€ฒ)โ„“2)) +๐‘”

m(๐‘’)(๐‘˜1,(110(c)(๐‘˜1, ๐‘˜2),110(cโ€ฒ)๐‘˜2)) โ‰ก0 mod๐‘›๐‘’, and ๐‘”m(๐‘’)(โ„“1,(110(c)(โ„“1, ๐‘˜1โˆ’1),110(c)(๐‘˜1+1,โ„“2+1),110(cโ€ฒ)โ„“2)) +๐‘”

m(๐‘’)(๐‘˜1,(110(c)(๐‘˜1, ๐‘˜2),110(cโ€ฒ)๐‘˜2)) โ‰ก0 mod๐‘›๐‘’, (2.16) for Case (a), Case (b), and Case (c), respectively.

In what follows, we show that these equalities also hold in their non modular version.

Specifically, we prove the following,

๐‘”m(๐‘’)(โ„“1,(110(c)(โ„“1,โ„“2),110(cโ€ฒ)โ„“2))

โˆ’๐‘”

m(๐‘’)(๐‘˜2,(110(cโ€ฒ)(๐‘˜2, ๐‘˜1),110(c)๐‘˜1))=0, (2.17) ๐‘”m(๐‘’)(โ„“1,(110(c)(โ„“1,โ„“2),110(cโ€ฒ)โ„“2))

+๐‘”

m(๐‘’)(๐‘˜1,(110(c)(๐‘˜1, ๐‘˜2),110(cโ€ฒ)๐‘˜2))=0, and (2.18) ๐‘”m(๐‘’)(โ„“1,(110(c)(โ„“1, ๐‘˜1โˆ’1),110(c)(๐‘˜1+1,โ„“2+1),110(cโ€ฒ)โ„“2))

+๐‘”

m(๐‘’)(๐‘˜1,(110(c)(๐‘˜1, ๐‘˜2),110(cโ€ฒ)๐‘˜2))=0. (2.19) From (2.8), we have that

โˆ’m๐‘Ÿ+๐‘ โˆ’2(๐‘’) โ‰ค ๐‘”

m(๐‘’)(๐‘Ÿ ,x) โ‰ค m๐‘Ÿ+๐‘ โˆ’2(๐‘’)

for anyxโˆˆ {0,1}๐‘  and any integer๐‘Ÿthat satisfies๐‘Ÿ+๐‘ โˆ’2โ‰ค ๐‘›โˆ’1. Therefore,

โˆ’m(๐‘’)โ„“

2 โˆ’m(๐‘˜๐‘’)

1 โ‰ค๐‘”

m(๐‘’)(โ„“1,(110(c)(โ„“1,โ„“2),110(cโ€ฒ)โ„“2))โˆ’

๐‘”m(๐‘’)(๐‘˜2,(110(cโ€ฒ)(๐‘˜2, ๐‘˜1),110(c)๐‘˜1))

โ‰คmโ„“(๐‘’)

2 +m๐‘˜(๐‘’)

1

,

โˆ’m(๐‘’)โ„“

2 โˆ’m(๐‘˜๐‘’)

2 โ‰ค๐‘”

m(๐‘’)(โ„“1,(110(c)(โ„“1,โ„“2),110(cโ€ฒ)โ„“2))+

๐‘”m(๐‘’)(๐‘˜1,(110(c)(๐‘˜1, ๐‘˜2),110(cโ€ฒ)๐‘˜2))

โ‰คmโ„“(๐‘’)

2 +m๐‘˜(๐‘’)

2

, and

โˆ’m(๐‘’)โ„“

2 โˆ’m(๐‘˜๐‘’)

2 โ‰ค๐‘”

m(๐‘’)(โ„“1,(110(c)(โ„“1, ๐‘˜1โˆ’1),

110(c)(๐‘˜1+1,โ„“2+1),110(cโ€ฒ)โ„“2)) +๐‘”

m(๐‘’)(๐‘˜1,(110(c)(๐‘˜1, ๐‘˜2),110(cโ€ฒ)๐‘˜2))

โ‰คmโ„“(๐‘’)

2 +m๐‘˜(๐‘’)

2

, (2.20)

for Case (a)โ€“(c) respectively. Further, note that m(โ„“๐‘’)

2 +m(๐‘˜๐‘’)

1

< ๐‘›๐‘’ andm(โ„“๐‘’)

2 +m(๐‘˜๐‘’)

2

< ๐‘›๐‘’. (2.21)

Combining (2.16), (2.20), and (2.21), we conclude that if ๐‘“(c) = ๐‘“(cโ€ฒ), then Eq. (2.17), (2.18), and (2.19) hold for Case (a), Case (b), and Case (c) respectively.

For Case (a), Equation (2.17) and Proposition2.1.3imply that 110(c)โ„“1 =. . .=110(c)โ„“2 =110(cโ€ฒ)โ„“2

110(cโ€ฒ)๐‘˜2 =. . .=110(cโ€ฒ)๐‘˜1 =110(c)๐‘˜1, which readily implies that

110(cโ€ฒ)๐‘ก =110(c)๐‘ก+1 =110(c)๐‘ก

forโ„“1 โ‰ค๐‘ก < โ„“2and

110(c)๐‘ก =110(cโ€ฒ)๐‘ก+1=110(cโ€ฒ)๐‘ก

for ๐‘˜2 โ‰ค ๐‘ก < ๐‘˜1. Together with 110(c)โ„“2 = 110(cโ€ฒ)โ„“2 and 110(cโ€ฒ)๐‘˜1 = 110(c)๐‘˜1, we have that110(c) =110(cโ€ฒ).

For Case (b), Equation (2.18) and Proposition2.1.3implies that 110(c)โ„“1 =. . .=110(c)โ„“2 =110(cโ€ฒ)โ„“2

110(cโ€ฒ)๐‘˜1 =. . .=110(cโ€ฒ)๐‘˜2 =110(c)๐‘˜2

and hence

110(cโ€ฒ)๐‘ก =110(c)๐‘ก+1 =110(c)๐‘ก

forโ„“1 โ‰ค๐‘ก < โ„“2and ๐‘˜1 โ‰ค๐‘ก < ๐‘˜2, and thus110(c)=110(cโ€ฒ).

Note that in Case (a) and (b) we used Proposition2.1.3, which implies that only two parity checks with weightsm(0) andm(1) are needed. Case (c) is the most involved case and the only case when the parity check with weightm(2) is needed. Hence, Proposition2.2.3is required. According to Equation (2.19) and Proposition2.2.3, we have either

110(c)โ„“1 =. . .=110(c)๐‘˜2 =110(cโ€ฒ)โ„“2 =110(cโ€ฒ)๐‘˜2 (2.22) or

110(c)โ„“1 =. . .=110(c)๐‘˜1โˆ’1=110(c)๐‘˜1+1, 110(c)๐‘–+110(c)๐‘–+1=1 for๐‘– โˆˆ {๐‘˜1, . . . , โ„“2},

110(cโ€ฒ)โ„“2+110(cโ€ฒ)๐‘˜2 =1, and

110(c)โ„“2+1 =. . .=110(c)๐‘˜2 =110(cโ€ฒ)๐‘˜2. (2.23) If (2.22) is true, we can obtainc=cโ€ฒby following steps similar to those of Case (a) and Case (b). If (2.23) is true, we have

110(cโ€ฒ)๐‘ก =110(c)๐‘ก+1 =110(c)๐‘ก

forโ„“1 โ‰ค๐‘ก โ‰ค ๐‘˜1โˆ’2 andโ„“2+1โ‰ค ๐‘ก โ‰ค ๐‘˜2โˆ’1. Furthermore, we have that 110(cโ€ฒ)๐‘ก =110(c)๐‘ก+2=1โˆ’110(c)๐‘ก+1=110(c)๐‘ก

for๐‘˜1 โ‰ค๐‘ก โ‰ค โ„“2โˆ’1. In addition, we have110(cโ€ฒ)๐‘˜1โˆ’1=110(c)๐‘˜1+1=110(c)๐‘˜1โˆ’1,110(cโ€ฒ)โ„“2 = 1โˆ’110(cโ€ฒ)๐‘˜2 =1โˆ’110(c)โ„“2+1=110(c)โ„“2 and110(cโ€ฒ)๐‘˜2 =110(c)๐‘˜2. Hence, we have that110(c) = 110(cโ€ฒ). This concludes the proof of Cases (a), (b), and (c), and thus the proof of Lemma2.2.2is completed.

We now prove Proposition2.1.3and Proposition2.2.3.

Proof. (of Proposition2.1.3) According to Eq. (2.12), if๐œ† =1, then Eq. (2.9) can be written as

๐‘”m(0)(๐‘Ÿ1,x) โˆ’๐‘”

m(0)(๐‘Ÿ2,y) =0, and ๐‘”m(1)(๐‘Ÿ1,x) โˆ’๐‘”

m(1)(๐‘Ÿ2,y) =0.

Therefore, it suffices to prove the claim for ๐œ† = โˆ’1. We distinguish between four cases according to the value of (๐‘ฆ1, ๐‘ฆ๐‘ 

2).

Case (a). (๐‘ฆ1, ๐‘ฆ๐‘ 

2) =(0,1). We have that ๐‘”m(๐‘’)(๐‘Ÿ1,x) โˆ’๐‘”

m(๐‘’)(๐‘Ÿ2,y)

=m๐‘Ÿ(๐‘’)1 ๐‘ฅ1+

๐‘ 1โˆ’1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก(๐‘’)+๐‘Ÿ

1โˆ’1โˆ’m๐‘ก(๐‘’)+๐‘Ÿ

1โˆ’2)๐‘ฅ๐‘กโˆ’m(๐‘Ÿ๐‘’)

1+๐‘ 1โˆ’2๐‘ฅ๐‘ 

1โˆ’ m๐‘Ÿ(๐‘’)2 ๐‘ฆ1โˆ’

๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=2

(m(๐‘’)๐‘ก+๐‘Ÿ

2โˆ’1โˆ’m(๐‘’)๐‘ก+๐‘Ÿ

2โˆ’2)๐‘ฆ๐‘ก +m๐‘Ÿ(๐‘’)

2+๐‘ 2โˆ’2๐‘ฆ๐‘ 

2

โ‰ฅ โˆ’m๐‘Ÿ(๐‘’)

1+๐‘ 1โˆ’2โˆ’

๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก(๐‘’)+๐‘Ÿ

2โˆ’1โˆ’m๐‘ก(๐‘’)+๐‘Ÿ

2โˆ’2) + m๐‘Ÿ(๐‘’)

2+๐‘ 2โˆ’2

=m๐‘Ÿ(2๐‘’) โˆ’m๐‘Ÿ(๐‘’)

1+๐‘ 1โˆ’2 > 0, a contradiction.

Case (b). (๐‘ฆ1, ๐‘ฆ๐‘ 

2) = (1,0). From Proposition2.2.4and (2.9) we have๐‘”

m(๐‘’)(๐‘Ÿ1,x) โˆ’ ๐‘”m(๐‘’)(๐‘Ÿ2,y) =0 for ๐‘’ โˆˆ {0,1}, wherex โ‰œ 1โˆ’x andy โ‰œ 1โˆ’y. Since (๐‘ฆ

1, ๐‘ฆ

๐‘ 2) = (0,1), from the previous case this leads to a contradiction.

Case (c). (๐‘ฆ1, ๐‘ฆ๐‘ 

2) =(1,1). Let ๐‘†1โ‰œ {๐‘— :๐‘ฆ๐‘—โˆ’๐‘Ÿ

2+1=1, ๐‘Ÿ2+1โ‰ค ๐‘— โ‰ค๐‘Ÿ2+๐‘ 2โˆ’2}, and ๐‘†๐‘

1โ‰œ {๐‘— :๐‘ฆ๐‘—โˆ’๐‘Ÿ

2+1=0, ๐‘Ÿ2+1โ‰ค ๐‘— โ‰ค๐‘Ÿ2+๐‘ 2โˆ’2}, and notice that

๐‘”m(0)(๐‘Ÿ2,y)

=m๐‘Ÿ(0)2 โˆ’m๐‘Ÿ(0)

2+๐‘ 2โˆ’2+

๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘—=2

(m(0)๐‘—+๐‘Ÿ

2โˆ’1โˆ’m(0)๐‘—+๐‘Ÿ

2โˆ’2)๐‘ฆ๐‘—

=โˆ’

๐‘Ÿ2+๐‘ 2โˆ’2

โˆ‘๏ธ

๐‘—=๐‘Ÿ2+1

(m(๐‘—0) โˆ’m(๐‘—0โˆ’1) ) +

๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘—=2

(m(๐‘—0+)๐‘Ÿ

2โˆ’1โˆ’m(๐‘—0+)๐‘Ÿ

2โˆ’2)๐‘ฆ๐‘—

=โˆ’

๐‘Ÿ2+๐‘ 2โˆ’2

โˆ‘๏ธ

๐‘—=๐‘Ÿ2+1

(m(0)๐‘— โˆ’m(0)๐‘—โˆ’1) (1โˆ’๐‘ฆ๐‘—)

=โˆ’ โˆ‘๏ธ

๐‘—โˆˆ๐‘†๐‘

1

(m(๐‘—0) โˆ’m(๐‘—0โˆ’1) ) =โˆ’โˆ‘๏ธ

๐‘—โˆˆ๐‘†๐‘

1

1, and similarly, ๐‘”m(1)(๐‘Ÿ2,y)

=โˆ’ โˆ‘๏ธ

๐‘—โˆˆ๐‘†๐‘

1

(m(๐‘—1) โˆ’m(๐‘—1โˆ’1) ) =โˆ’โˆ‘๏ธ

๐‘—โˆˆ๐‘†๐‘

1

๐‘— . (2.24)

Now, on the one hand, if๐‘ฅ๐‘ 

1 =0 we have ๐‘”m(0)(๐‘Ÿ1,x) =m๐‘Ÿ(01)๐‘ฅ1+

๐‘ 1โˆ’1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก(+0)๐‘Ÿ

1โˆ’1โˆ’m๐‘ก(+0)๐‘Ÿ

1โˆ’2)๐‘ฅ๐‘ก

โ‰ฅ0, (2.25)

and hence, (2.24) and (2.25) imply that๐‘”

m(0)(๐‘Ÿ1,x) โˆ’๐‘”

m(0)(๐‘Ÿ2,y) โ‰ฅ0, and equality holds only when๐‘”

m(0)(๐‘Ÿ1,x)and๐‘”

m(0)(๐‘Ÿ2,y)are both 0, which by Proposition2.1.2 implies thatxandyare constant vectors. On the other hand, if๐‘ฅ๐‘ 

1 =1 let๐‘†2 ={๐‘ก : ๐‘ฅmax{๐‘กโˆ’๐‘Ÿ

1+1,1} =0,1 โ‰ค๐‘ก โ‰ค ๐‘Ÿ1+๐‘ 1โˆ’2}, and notice that ๐‘”m(0)(๐‘Ÿ1,x)

=m๐‘Ÿ(0)1 ๐‘ฅ1+

๐‘ 1โˆ’1

โˆ‘๏ธ

๐‘ก=2

(m(0)๐‘ก+๐‘Ÿ

1โˆ’1โˆ’m(0)๐‘ก+๐‘Ÿ

1โˆ’2)๐‘ฅ๐‘กโˆ’m๐‘Ÿ(0)

1+๐‘ 1โˆ’2

=m๐‘Ÿ(0)1 (๐‘ฅ1โˆ’1) +

๐‘ 1โˆ’1

โˆ‘๏ธ

๐‘ก=2

(m(0)๐‘ก+๐‘Ÿ

1โˆ’1โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’2) (๐‘ฅ๐‘กโˆ’1)

=โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

1, and similarly, ๐‘”m(1)(๐‘Ÿ1,x) =โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

๐‘ก . (2.26)

Inserting (2.24) and (2.26) into (2.9), we have

โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

1+ โˆ‘๏ธ

๐‘—โˆˆ๐‘†๐‘

1

1=0,

โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

๐‘ก+ โˆ‘๏ธ

๐‘—โˆˆ๐‘†๐‘

1

๐‘— =0. This implies that the sets ๐‘†๐‘

1 and ๐‘†2 have the same cardinality and the same sum of elements. However, the maximum element in ๐‘†2 is smaller than the minimum element in๐‘†๐‘

1. Therefore,๐‘†๐‘

1and๐‘†2are empty, which implies thatxis the 0 vector andyis the all 1โ€™s vector.

Case (d). (๐‘ฆ1, ๐‘ฆ๐‘ 

2) = (0,0). From Proposition 2.2.4 and Eq. (2.9) we have ๐‘”m(๐‘’)(๐‘Ÿ1,x) โˆ’๐‘”

m(๐‘’)(๐‘Ÿ2,y) = 0 for ๐‘’ โˆˆ {0,1}, where x โ‰œ 1โˆ’ x and y โ‰œ 1โˆ’ y.

Since (๐‘ฆ

1, ๐‘ฆ

๐‘ 2) = (1,1), from the previous casex and y are constant vectors, and

thus so arexandy. โ–ก

Proof. (of Proposition2.2.3) We distinguish between four cases according to the value of(๐‘ฅ๐‘ 

1+๐‘ 2+1, ๐‘ฆ๐‘ 

2+๐‘ 3+1).

Case (a). (๐‘ฅ๐‘ 

1+๐‘ 2+1, ๐‘ฆ๐‘ 

2+๐‘ 3+1) = (0,0). Similar to (2.25), we have that๐‘”

m(0)(๐‘Ÿ1,x) + ๐‘”m(0)(๐‘Ÿ2,y) โ‰ฅ 0, where equality holds only ifxandyare constant 0 vectors.

Case (b). (๐‘ฅ๐‘ 

1+๐‘ 2+1, ๐‘ฆ๐‘ 

2+๐‘ 3+1) = (1,1). From Proposition 2.2.4 and Eq. (2.10) we have that๐‘”

m(0)(๐‘Ÿ1,x)+๐‘”

m(0)(๐‘Ÿ2,y) =0. On the other hand, since (๐‘ฅ๐‘ 

1+๐‘ 2+1, ๐‘ฆ

๐‘ 2+๐‘ 3+1) = (0,0) , it follows that ๐‘”

m(0)(๐‘Ÿ1,x) +๐‘”

m(0)(๐‘Ÿ2,y) โ‰ฅ 0 where equality holds whenx andyare constant 1 vectors.

Case (c). (๐‘ฅ๐‘ 

1+๐‘ 2+1, ๐‘ฆ๐‘ 

2+๐‘ 3+1) = (0,1). On the one hand, for๐‘ฆ1=0 we have ๐‘”m(0)(๐‘Ÿ1,x) +๐‘”

m(0)(๐‘Ÿ2,y)

=m๐‘Ÿ(0)1 ๐‘ฅ1+

๐‘ 1+1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก(0)+๐‘Ÿ

1โˆ’1โˆ’m๐‘ก(0)+๐‘Ÿ

1โˆ’2)๐‘ฅ๐‘ก+

๐‘ 1+๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=๐‘ 1+1

(m๐‘ก(0)+๐‘Ÿ1 โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’1)๐‘ฅ๐‘ก+1 +

๐‘ 2

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก(+0๐‘Ÿ)

2โˆ’1โˆ’m(๐‘ก+0๐‘Ÿ)

2โˆ’2)๐‘ฆ๐‘ก+

๐‘ 2+๐‘ 3

โˆ‘๏ธ

๐‘ก=๐‘ 2+1

(m(0)๐‘ก+๐‘Ÿ

2โˆ’1โˆ’m๐‘ก(0)+๐‘Ÿ

2โˆ’2)๐‘ฆ๐‘กโˆ’m(0)๐‘Ÿ

2+๐‘ 2+๐‘ 3โˆ’1

=m๐‘Ÿ(0)1 ๐‘ฅ1+

๐‘ 1+1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก+๐‘Ÿ(0)

1โˆ’1โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’2)๐‘ฅ๐‘ก+

๐‘ 1+๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=๐‘ 1+1

(m๐‘ก(0)+๐‘Ÿ1 โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’1) (๐‘ฅ๐‘ก+๐‘ฅ๐‘ก+1) +

๐‘ 2+๐‘ 3

โˆ‘๏ธ

๐‘ก=๐‘ 2+1

(m(0)๐‘ก+๐‘Ÿ

2โˆ’1โˆ’m(0)๐‘ก+๐‘Ÿ

2โˆ’2)๐‘ฆ๐‘กโˆ’m(0)

๐‘Ÿ2+๐‘ 2+๐‘ 3โˆ’1

โ‰คm๐‘Ÿ(01)+

๐‘ 1+1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก(+0)๐‘Ÿ

1โˆ’1โˆ’m๐‘ก(+0)๐‘Ÿ

1โˆ’2)+

๐‘ 1+๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=๐‘ 1+1

(m๐‘ก+๐‘Ÿ(0)

1 โˆ’m๐‘ก(+0)๐‘Ÿ

1โˆ’1) +

๐‘ 2+๐‘ 3

โˆ‘๏ธ

๐‘ก=๐‘ 2+1

(m(0)๐‘ก+๐‘Ÿ

2โˆ’1โˆ’m(0)๐‘ก+๐‘Ÿ

2โˆ’2) โˆ’m๐‘Ÿ(0)

2+๐‘ 2+๐‘ 3โˆ’1 =0, where equality equality holds when

๐‘ฅ๐‘ก =1 for๐‘ก โˆˆ {1, . . . , ๐‘ 1+1},

๐‘ฅ๐‘ก+๐‘ฅ๐‘ก+1 =1 for๐‘ก โˆˆ {๐‘ 1+1, . . . , ๐‘ 1+๐‘ 2โˆ’1}, and ๐‘ฆ๐‘ก =1 for๐‘ก โˆˆ {๐‘ 2+1, . . . , ๐‘ 2+๐‘ 3},

and hence (2.11) holds. On the other hand, when๐‘ฆ1=1, let ๐‘†1={๐‘ก :๐‘ฅmax{๐‘กโˆ’๐‘Ÿ

1+1,1} =1,1โ‰ค ๐‘ก โ‰ค ๐‘ 1+๐‘Ÿ1}, ๐‘†2={๐‘ก :๐‘ฅ๐‘กโˆ’๐‘Ÿ

1 +๐‘ฅ๐‘กโˆ’๐‘Ÿ

1+1=0, ๐‘Ÿ2+1 โ‰ค๐‘ก โ‰ค ๐‘Ÿ2+๐‘ 2โˆ’1}, ๐‘†3={๐‘ก :๐‘ฆ๐‘กโˆ’๐‘Ÿ

2+1 =0, ๐‘Ÿ2+๐‘ 2โ‰ค ๐‘ก โ‰ค๐‘Ÿ2+๐‘ 2+๐‘ 3โˆ’1}, and notice that

๐‘”m(0)(๐‘Ÿ1,x) +๐‘”

m(0)(๐‘Ÿ2,y)

=m๐‘Ÿ(0)1 ๐‘ฅ1+

๐‘ 1+1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก+๐‘Ÿ(0)

1โˆ’1โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’2)๐‘ฅ๐‘ก+

m(0)๐‘ 1+๐‘Ÿ1+

๐‘ 1+๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=๐‘ 1+1

(m๐‘ก(0)+๐‘Ÿ1โˆ’m(0)๐‘ก+๐‘Ÿ

1โˆ’1) (๐‘ฅ๐‘ก+๐‘ฅ๐‘ก+1)+

๐‘ 2+๐‘ 3

โˆ‘๏ธ

๐‘ก=๐‘ 2+1

(m๐‘ก(+0๐‘Ÿ)

2โˆ’1โˆ’m๐‘ก(+0๐‘Ÿ)

1โˆ’2)๐‘ฆ๐‘กโˆ’m(๐‘Ÿ0)

2+๐‘ 2+๐‘ 3โˆ’1

= โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

(m(0)๐‘ก โˆ’m๐‘ก(0)โˆ’1) โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

(m(0)๐‘ก โˆ’m๐‘ก(0)โˆ’1)โˆ’

โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

(m(0)๐‘ก โˆ’m๐‘กโˆ’1(0))

=โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

1โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

1โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

1. (2.27)

Similarly, we have that

๐‘”m(1)(๐‘Ÿ1,x) +๐‘”

m(1)(๐‘Ÿ2,y) =โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

๐‘กโˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

๐‘กโˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

๐‘ก . (2.28)

Equations (2.10), (2.27), and (2.28) imply that the cardinality of๐‘†1equals the sum of cardinalities of๐‘†2and๐‘†3, and in addition, the sum of elements of๐‘†1equals the sum of elements of๐‘†2and๐‘†3. Note that the minimum element of๐‘†2โˆช๐‘†3is larger than the maximum element of๐‘†1. This is impossible, unless๐‘†1, ๐‘†2, and๐‘†3are empty, which implies that๐‘ฅ๐‘ก =0 for๐‘ก โˆˆ {1, . . . , ๐‘ 1+1},๐‘ฅ๐‘ก+๐‘ฅ๐‘ก+1=1 for๐‘ก โˆˆ {๐‘ 1+1, . . . , ๐‘ 1+๐‘ 2โˆ’1}, and๐‘ฆ๐‘ก =1 for๐‘ก โˆˆ {๐‘ 2+1, . . . , ๐‘ 2+๐‘ 3}, and hence (2.11) holds.

Case (d). (๐‘ฅ๐‘ 

1+๐‘ 2+1, ๐‘ฆ๐‘ 

2+๐‘ 3+1) = (1,0). On the one hand, for๐‘ฆ1=0, let ๐‘†1={๐‘ก :๐‘ฅmax{๐‘กโˆ’๐‘Ÿ

1+1,1} =0,1โ‰ค ๐‘ก โ‰ค ๐‘ 1+๐‘Ÿ1}, ๐‘†2={๐‘ก :๐‘ฅ๐‘กโˆ’๐‘Ÿ

1 +๐‘ฅ๐‘กโˆ’๐‘Ÿ

1+1=0, ๐‘Ÿ2+1 โ‰ค๐‘ก โ‰ค ๐‘Ÿ2+๐‘ 2โˆ’1}, ๐‘†3={๐‘ก :๐‘ฆ๐‘กโˆ’๐‘Ÿ

2+1 =1, ๐‘Ÿ2+๐‘ 2โ‰ค ๐‘ก โ‰ค๐‘Ÿ2+๐‘ 2+๐‘ 3โˆ’1}. We have

๐‘”m(0)(๐‘Ÿ1,x) +๐‘”

m(0)(๐‘Ÿ2,y)

=m๐‘Ÿ(0)1 ๐‘ฅ1+

๐‘ 1+1

โˆ‘๏ธ

๐‘ก=2

(m(0)๐‘ก+๐‘Ÿ

1โˆ’1โˆ’m(0)๐‘ก+๐‘Ÿ

1โˆ’2)๐‘ฅ๐‘ก+

๐‘ 1+๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=๐‘ 1+1

(m(0)๐‘ก+๐‘Ÿ1โˆ’m(0)๐‘ก+๐‘Ÿ

1โˆ’1) (๐‘ฅ๐‘ก+๐‘ฅ๐‘ก+1)โˆ’

m๐‘Ÿ(0)

1+๐‘ 1+๐‘ 2โˆ’1+

๐‘ 2+๐‘ 3

โˆ‘๏ธ

๐‘ก=๐‘ 2+1

(m(๐‘ก+0๐‘Ÿ)

2โˆ’1โˆ’m๐‘ก(+0๐‘Ÿ)

1โˆ’2)๐‘ฆ๐‘ก

=โˆ’m๐‘Ÿ(0)1 (1โˆ’๐‘ฅ1) โˆ’

๐‘ 1+1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก+๐‘Ÿ(0)

1โˆ’1โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’2) (1โˆ’๐‘ฅ๐‘ก)โˆ’

๐‘ 1+๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=๐‘ 1+1

(m(0)๐‘ก+๐‘Ÿ1โˆ’m(0)๐‘ก+๐‘Ÿ

1โˆ’1) (1โˆ’๐‘ฅ๐‘กโˆ’๐‘ฅ๐‘ก+1)+

๐‘ 2+๐‘ 3

โˆ‘๏ธ

๐‘ก=๐‘ 2+1

(m๐‘ก(+0)๐‘Ÿ

2โˆ’1โˆ’m๐‘ก(+0)๐‘Ÿ

1โˆ’2)๐‘ฆ๐‘ก

=โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

(m๐‘ก(0) โˆ’m๐‘กโˆ’(0)1) โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

(m(0)๐‘ก โˆ’m๐‘กโˆ’(0)1)+

โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

(m๐‘ก(0)โˆ’m(0)๐‘กโˆ’1)

=โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

1โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

1+โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

1=0.

Then similar to the previous case, we obtain sets with identical cardinalities and sum of elements, and yet the smallest element in one is greater than the largest element in the others. Therefore, it follows that ๐‘†1, ๐‘†2, and ๐‘†3 are empty. Then we have ๐‘ฅ๐‘ก = 1 for๐‘ก โˆˆ {1, . . . , ๐‘ 1+1}, ๐‘ฅ๐‘ก +๐‘ฅ๐‘ก+1 = 1 for๐‘ก โˆˆ {๐‘ 1+1, . . . , ๐‘ 1+๐‘ 2โˆ’1}, and ๐‘ฆ๐‘ก =0 for๐‘ก โˆˆ {๐‘ 2+1, . . . , ๐‘ 2+๐‘ 3}, and hence (2.11) holds.

On the other hand, for๐‘ฆ1=1, let ๐‘†1={๐‘ก :๐‘ฅmax{๐‘กโˆ’๐‘Ÿ

1+1,1} =1,1โ‰ค ๐‘ก โ‰ค ๐‘ 1+๐‘Ÿ1}, ๐‘†2={๐‘ก :๐‘ฅ๐‘กโˆ’๐‘Ÿ

1 +๐‘ฅ๐‘กโˆ’๐‘Ÿ

1+1=0, ๐‘Ÿ2+1 โ‰ค๐‘ก โ‰ค ๐‘Ÿ2+๐‘ 2โˆ’1}, ๐‘†3={๐‘ก :๐‘ฆ๐‘กโˆ’๐‘ 

2+1=1, ๐‘Ÿ2+๐‘ 2 โ‰ค ๐‘ก โ‰ค ๐‘Ÿ2+๐‘ 2+๐‘ 3โˆ’1}. We have

๐‘”m(0)(๐‘Ÿ1,x) +๐‘”

m(0)(๐‘Ÿ2,y)

=m๐‘Ÿ(01)๐‘ฅ1+

๐‘ 1+1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก(+0)๐‘Ÿ

1โˆ’1โˆ’m๐‘ก(+0)๐‘Ÿ

1โˆ’2)๐‘ฅ๐‘ก+m(๐‘ 01)+๐‘Ÿ1+

๐‘ 1+๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=๐‘ 1+1

(m๐‘ก+๐‘Ÿ(0)

1 โˆ’m๐‘ก(+0)๐‘Ÿ

1โˆ’1) (๐‘ฅ๐‘ก+๐‘ฅ๐‘ก+1)โˆ’

m๐‘Ÿ(0)

1+๐‘ 1+๐‘ 2โˆ’1+

๐‘ 2+๐‘ 3

โˆ‘๏ธ

๐‘ก=๐‘ 2+1

(m๐‘ก+๐‘Ÿ(0)

2โˆ’1โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’2)๐‘ฆ๐‘ก

=m๐‘Ÿ(0)1 ๐‘ฅ1+

๐‘ 1+1

โˆ‘๏ธ

๐‘ก=2

(m๐‘ก+๐‘Ÿ(0)

1โˆ’1โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’2)๐‘ฅ๐‘กโˆ’

๐‘ 1+๐‘ 2โˆ’1

โˆ‘๏ธ

๐‘ก=๐‘ 1+1

(m๐‘ก(0)+๐‘Ÿ1 โˆ’m๐‘ก+๐‘Ÿ(0)

1โˆ’1) (1โˆ’๐‘ฅ๐‘กโˆ’๐‘ฅ๐‘ก+1)+

๐‘ 2+๐‘ 3

โˆ‘๏ธ

๐‘ก=๐‘ 2+1

(m(๐‘ก+0๐‘Ÿ)

2โˆ’1โˆ’m๐‘ก(+0๐‘Ÿ)

1โˆ’2)๐‘ฆ๐‘ก

=โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

(m๐‘ก(0) โˆ’m๐‘ก(0)โˆ’1) โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

(m(0)๐‘ก โˆ’m๐‘ก(0)โˆ’1)+

โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

(m๐‘ก(0) โˆ’m๐‘กโˆ’1(0))

=โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

1โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

1+โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

1=0. (2.29)

Similarly, we have

๐‘”m(1)(๐‘Ÿ1,x) +๐‘”

m(1)(๐‘Ÿ2,y) =โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

๐‘กโˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

๐‘ก+โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

๐‘ก ๐‘”m(2)(๐‘Ÿ1,x) +๐‘”

m(2)(๐‘Ÿ2,y) =โˆ‘๏ธ

๐‘กโˆˆ๐‘†1

๐‘ก2โˆ’โˆ‘๏ธ

๐‘กโˆˆ๐‘†2

๐‘ก2+โˆ‘๏ธ

๐‘กโˆˆ๐‘†3

๐‘ก2. (2.30) According to (2.29) and (2.30), the following linear equation

๐ดx=0, (2.31)

where

๐ด=

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ร

๐‘กโˆˆ๐‘†11 ร

๐‘กโˆˆ๐‘†21 ร

๐‘กโˆˆ๐‘†31 ร

๐‘กโˆˆ๐‘†1๐‘ก ร

๐‘กโˆˆ๐‘†2๐‘ก ร

๐‘กโˆˆ๐‘†3๐‘ก ร

๐‘กโˆˆ๐‘†1๐‘ก2 ร

๐‘กโˆˆ๐‘†2๐‘ก2 ร

๐‘กโˆˆ๐‘†3๐‘ก2

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป , x=

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ,

has a nonzero solution (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = (1,โˆ’1,1)โŠค. We show that this is impossible unless ๐ด =0. Suppose on the other hand, ๐ด โ‰  0. If all columns of ๐ดare not zero columns, then according to the multi-linearity of the determinant,

det(๐ด) = โˆ‘๏ธ

๐‘–โˆˆ๐‘†1, ๐‘—โˆˆ๐‘†2, ๐‘˜โˆˆ๐‘†3

detยฉ

ยญ

ยญ

ยซ

1 1 1

๐‘– ๐‘— ๐‘˜

๐‘–2 ๐‘—2 ๐‘˜2 ยช

ยฎ

ยฎ

ยฌ

= โˆ‘๏ธ

๐‘–โˆˆ๐‘†1, ๐‘—โˆˆ๐‘†2, ๐‘˜โˆˆ๐‘†3

(๐‘—โˆ’๐‘–) (๐‘˜โˆ’๐‘–) (๐‘˜ โˆ’ ๐‘—) (2.32) is strictly positive since max๐‘–โˆˆ๐‘†1๐‘– < min๐‘—โˆˆ๐‘†2 ๐‘— < min๐‘˜โˆˆ๐‘†3๐‘˜. Hence the equation cannot have nonzero solutions. It is also obvious that the equation (2.31) cannot have solution(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = (1,โˆ’1,1)โŠคwhen only one column๐ดis non-zero. For the

case when ๐ดcontains two non-zero columns, e.g., the first column and the second column, then we have that

๐ดโ€ฒx=

"

ร

๐‘กโˆˆ๐‘†11 ร

๐‘กโˆˆ๐‘†21 ร

๐‘กโˆˆ๐‘†1๐‘ก ร

๐‘กโˆˆ๐‘†2๐‘ก

# "

๐‘ฅ1 ๐‘ฅ2

#

=0. (2.33)

Again, similar to Eq. (2.32), we have det(๐ดโ€ฒ)= โˆ‘๏ธ

๐‘–โˆˆ๐‘†1, ๐‘—โˆˆ๐‘†2, ๐‘˜โˆˆ๐‘†3

det 1 1 ๐‘– ๐‘—

!

= โˆ‘๏ธ

๐‘–โˆˆ๐‘†1, ๐‘—โˆˆ๐‘†2

(๐‘—โˆ’๐‘–) > 0, (2.34)

which implies that the equation Eq. (2.33) cannot have nonzero solutions. Thus, Eq. (2.31) cannot have solution (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = (1,โˆ’1,1)โŠค unless ๐ด = 0, which implies that ๐‘†1, ๐‘†2, and ๐‘†3 are empty. Therefore, ๐‘ฅ๐‘ก = 0 for ๐‘ก โˆˆ {1, . . . , ๐‘ 1+1}, ๐‘ฅ๐‘ก+๐‘ฅ๐‘ก+1=1 for๐‘ก โˆˆ {๐‘ 1+1, . . . , ๐‘ 1+๐‘ 2โˆ’1}, and๐‘ฆ๐‘ก =0 for๐‘ก โˆˆ {๐‘ 2+1, . . . , ๐‘ 2+๐‘ 3},

which implies (2.11). โ–ก