• Tidak ada hasil yang ditemukan

Protecting the Synchronization Vectors

Chapter III: Binary Codes Correcting ๐‘˜ Deletions/Insertions

3.4 Protecting the Synchronization Vectors

In this section we present a hash function with size 4๐‘˜log๐‘›+๐‘œ(log๐‘›) to protect the synchronization vector1๐‘  ๐‘ฆ๐‘›๐‘(c) from ๐‘˜ deletions in cand prove Lemma3.2.2.

We first prove Lemma3.2.1, which is decomposed to Proposition3.4.1and Propo- sition 3.4.2. In Proposition 3.4.1 we present an upper bound on the radius of the deletion ball for the synchronization vector. In Proposition3.4.2, we prove that the higher order parity check helps correct multiple deletions for sequences in which the there is a 0-run of length at least 3๐‘˜โˆ’1 between any two 1โ€™s. Since1๐‘  ๐‘ฆ๐‘›๐‘(c)is such a sequence, we conclude that the higher order parity check helps recover1๐‘  ๐‘ฆ๐‘›๐‘(c).

After obtaining a bound on the difference between the higher order parity checks of two ambiguous sequence, we then apply Proposition3.4.2 on the synchronization vector1๐‘  ๐‘ฆ๐‘›๐‘(c)to prove Lemma3.2.1, which replaces the higher order parity checks in Proposition3.4.2by the higher parity checks modulo a numbers. After proving Lemma3.2.1, we use Lemma3.2.7to further compress the size of the higher order parity check that protects1๐‘  ๐‘ฆ๐‘›๐‘(c)and then prove Lemma3.2.2.

Proposition 3.4.1. Forc,cโ€ฒ โˆˆ {0,1}๐‘›, ifcโ€ฒโˆˆ B๐‘˜(c), then1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) โˆˆ B3๐‘˜(1๐‘  ๐‘ฆ๐‘›๐‘(c)). Proof. Since cโ€ฒ โˆˆ B๐‘˜(c), the sequences cโ€ฒ and c share a common subsequence after ๐‘˜ deletions in both. We now show that a single deletion in c causes at most two deletions and one insertion in its synchronization vector 1๐‘  ๐‘ฆ๐‘›๐‘(c). We first show that a deletion inccan destroy and generate at most 1 synchronization pattern.

This is because for any synchronization pattern that is destroyed or generated, there must be a deletion that occurs within the synchronization pattern. Hence any two destroyed or generated synchronization patterns cannot be caused by the same deletion. Therefore, we need to consider four cases in total. Let dโ€ฒ be the subsequence ofcafter a single deletion.

1. The deletion destroys a synchronization pattern (๐‘๐‘–+1, . . . , ๐‘๐‘–+3๐‘˜+โŒˆlog๐‘˜โŒ‰+4) for some๐‘–and no synchronization pattern is generated. Then the sequence1๐‘  ๐‘ฆ๐‘›๐‘(dโ€ฒ) can be obtained by deleting the 1 entry1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘–+3๐‘˜ in1๐‘  ๐‘ฆ๐‘›๐‘(c).

2. The deletion generates a new synchronization pattern(๐‘โ€ฒ

๐‘–โ€ฒ+1, . . . , ๐‘โ€ฒ

๐‘–โ€ฒ+3๐‘˜+โŒˆlog๐‘˜โŒ‰+4) for some๐‘–โ€ฒ and destroys a synchronization pattern (๐‘๐‘–+1, . . . , ๐‘๐‘–+3๐‘˜+โŒˆlog๐‘˜โŒ‰+4). The sequence1๐‘  ๐‘ฆ๐‘›๐‘(dโ€ฒ)can be obtained by deleting the 1 entry1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘–+3๐‘˜and the 0 entry1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘–+3๐‘˜โˆ’1in1๐‘  ๐‘ฆ๐‘›๐‘(c) and inserting a 1 entry at1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘–โ€ฒ+3๐‘˜. 3. The deletion generates a new synchronization pattern(๐‘โ€ฒ

๐‘–โ€ฒ+1, . . . , ๐‘โ€ฒ

๐‘–โ€ฒ+3๐‘˜+โŒˆlog๐‘˜โŒ‰+4) for some๐‘–โ€ฒand no synchronization pattern is destroyed. Then the 1๐‘  ๐‘ฆ๐‘›๐‘(dโ€ฒ) can be obtained by deleting two 0 entries 1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘–โ€ฒ+3๐‘˜ and 1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘–โ€ฒ+3๐‘˜+1

in1๐‘  ๐‘ฆ๐‘›๐‘(c) and inserting a 1 entry at1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘–โ€ฒ+3๐‘˜.

4. No synchronization pattern is generated or destroyed. Then1๐‘  ๐‘ฆ๐‘›๐‘(dโ€ฒ)can be obtained by deleting a 0 entry1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘—, where๐‘—is the location of the deletion.

In summary, in each of the above cases, a single deletion in c causes at most two deletions and one insertion in 1๐‘  ๐‘ฆ๐‘›๐‘(c). Hence ๐‘˜ deletions in c and cโ€ฒ cause at

most 2๐‘˜deletions and๐‘˜insertions in1๐‘  ๐‘ฆ๐‘›๐‘(c)and1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)respectively. According to Lemma3.2.6, we have that1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) โˆˆ B3๐‘˜(1๐‘  ๐‘ฆ๐‘›๐‘(c)) whencโ€ฒ โˆˆ B๐‘˜(c). Hence,

Proposition3.4.1is proved. โ–ก

Let R๐‘š be the set of length ๐‘› sequences in which there is a 0 run of length at least ๐‘šโˆ’1 between any two 1โ€™s. Any two 1โ€™s in a sequence c โˆˆ R๐‘š have index distance at least๐‘š. The following lemma shows that the sequences inR3๐‘˜ can be protected using higher order parity checks. Note that compared to the higher order parity checks ๐‘“(c), the higher order parity checks in the following proposition do not have modulo operations.

Proposition 3.4.2. For sequencesc,cโ€ฒโˆˆ R3๐‘˜, ifcโ€ฒโˆˆ B3๐‘˜(c)andcยทm(๐‘’) =cโ€ฒยทm(๐‘’) for๐‘’ โˆˆ [0,6๐‘˜], thenc=cโ€ฒ.

Proof. We first compute the differencecยทm(๐‘’) โˆ’cโ€ฒยทm(๐‘’), ๐‘’ โˆˆ [0,6๐‘˜]. Sincecโ€ฒ โˆˆ B3๐‘˜(c), there exist two subsetsฮด ={๐›ฟ1, . . . , ๐›ฟ3๐‘˜} โŠ‚ [1, ๐‘›]andฮดโ€ฒ={๐›ฟโ€ฒ

1, . . . , ๐›ฟโ€ฒ

3๐‘˜} โŠ‚ [1, ๐‘›] such that deleting bits with indices ฮด and ฮดโ€ฒ respectively from c and cโ€ฒ results in the same length ๐‘›โˆ’ 3๐‘˜ subsequence, i.e., (๐‘๐‘– : ๐‘– โˆ‰ ฮด) = (๐‘โ€ฒ

๐‘– : ๐‘– โˆ‰ ฮดโ€ฒ).

Let ๐šซ = {๐‘– : ๐‘๐‘– = 1} and ๐šซโ€ฒ = {๐‘– : ๐‘โ€ฒ

๐‘– = 1} be the indices of 1 entries in c and cโ€ฒ respectively. Let ๐‘†1 = ๐šซ โˆฉฮด be the indices of 1 entries that are deleted inc. Then๐‘†๐‘

1=๐šซโˆฉ ( [1, ๐‘›]\ฮด) denotes the indices of 1 entries that are not deleted.

Similarly, let ๐‘†2 = ๐šซโ€ฒโˆฉฮดโ€ฒ and ๐‘†๐‘

2 = ๐šซโ€ฒโˆฉ ( [1, ๐‘›]\ฮดโ€ฒ) be the indices of 1 entries that are deleted and not in cโ€ฒ respectively. Let the elements in ฮดโˆชฮดโ€ฒ be ordered by 1 โ‰ค ๐‘1 โ‰ค ๐‘2 โ‰ค . . .โ‰ค ๐‘6๐‘˜ โ‰ค ๐‘›. Denote๐‘0 =0 and ๐‘6๐‘˜+1=๐‘›. Then we have that

cยทm(๐‘’) โˆ’cโ€ฒยทm(๐‘’)

=โˆ‘๏ธ

โ„“โˆˆ๐šซ

m(๐‘’)โ„“ โˆ’โˆ‘๏ธ

โ„“โˆˆ๐šซโ€ฒ

m(โ„“๐‘’)

=โˆ‘๏ธ

โ„“โˆˆ๐šซ

(

โ„“

โˆ‘๏ธ

๐‘–=1

๐‘–๐‘’) โˆ’โˆ‘๏ธ

โ„“โˆˆ๐šซโ€ฒ

(

โ„“

โˆ‘๏ธ

๐‘–=1

๐‘–๐‘’)

=

๐‘›

โˆ‘๏ธ

๐‘–=1

( โˆ‘๏ธ

โ„“โˆˆ๐šซโˆฉ[๐‘–,๐‘›]

๐‘–๐‘’) โˆ’

๐‘›

โˆ‘๏ธ

๐‘–=1

( โˆ‘๏ธ

โ„“โˆˆ๐šซโ€ฒโˆฉ[๐‘–,๐‘›]

๐‘–๐‘’)

=

๐‘›

โˆ‘๏ธ

๐‘–=1

(|๐šซโˆฉ [๐‘–, ๐‘›] | โˆ’ |๐šซโ€ฒโˆฉ [๐‘–, ๐‘›] |)๐‘–๐‘’

=

๐‘›

โˆ‘๏ธ

๐‘–=1

(|๐‘†1โˆฉ [๐‘–, ๐‘›] | + |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†2โˆฉ [๐‘–, ๐‘›] |

โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] |)๐‘–๐‘’

=

6๐‘˜

โˆ‘๏ธ

๐‘—=0 ๐‘๐‘—+1

โˆ‘๏ธ

๐‘–=๐‘๐‘—+1

(|๐‘†1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†2โˆฉ [๐‘–, ๐‘›] | + |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] |

โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] |)๐‘–๐‘’

(๐‘Ž)=

6๐‘˜

โˆ‘๏ธ

๐‘—=0 ๐‘๐‘—+1

โˆ‘๏ธ

๐‘–=๐‘๐‘—+1

(|๐‘†1โˆฉ [๐‘๐‘—+1, ๐‘›] |

โˆ’ |๐‘†2โˆฉ [๐‘๐‘—+1, ๐‘›] | + |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] |)๐‘–๐‘’, (3.5) where (๐‘Ž) holds since by definition of ๐‘๐‘—, there is no deleted 1 entry in inter- val (๐‘๐‘—, ๐‘๐‘—+1) ={๐‘๐‘— +1, . . . , ๐‘๐‘—+1โˆ’1}, ๐‘— โˆˆ [0,6๐‘˜]. In the following we show

Statement 1: โˆ’1 โ‰ค |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] | โ‰ค 1 for๐‘– โˆˆ [1, ๐‘›].

Statement 2:For each interval(๐‘๐‘—, ๐‘๐‘—+1] ={๐‘๐‘—+1, . . . , ๐‘๐‘—+1}, ๐‘— =0, . . . ,6๐‘˜, we have either |๐‘†๐‘

1 โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2 โˆฉ [๐‘–, ๐‘›] | โ‰ค 0 for all ๐‘– โˆˆ (๐‘๐‘—, ๐‘๐‘—+1] or

|๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] | โ‰ฅ0 for all๐‘– โˆˆ (๐‘๐‘—, ๐‘๐‘—+1].

We first proveStatement 1. Note that deleting bits with indicesฮดincand deleting bits with indicesฮดโ€ฒ incโ€ฒresult in the same subsequence. Hence, for every๐‘– โˆˆ ๐‘†๐‘

1, there is a unique corresponding index๐‘–โ€ฒ โˆˆ ๐‘†๐‘

2such that the two 1 entries ๐‘๐‘– and๐‘โ€ฒ

๐‘–โ€ฒ

end in the same location after deletions, i.e.,๐‘–โˆ’ |ฮดโˆฉ [1, ๐‘–โˆ’1] | =๐‘–โ€ฒโˆ’ |ฮดโ€ฒโˆฉ [1, ๐‘–โ€ฒโˆ’1] |. This implies that|๐‘–โ€ฒโˆ’๐‘–| โ‰ค 3๐‘˜. Fix integers๐‘–and๐‘–โ€ฒ. Then by definition of๐‘–and๐‘–โ€ฒ, for every๐‘ฅ โˆˆ๐‘†๐‘

1โˆฉ [๐‘–+1, ๐‘›], there is a unique corresponding๐‘ฆ โˆˆ๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ+1, ๐‘›]such that the two 1 entries๐‘๐‘ฅ and๐‘โ€ฒ

๐‘ฆ end in the same location after deletions. Therefore, we have that|๐‘†๐‘

1โˆฉ [๐‘–+1, ๐‘›] | = |๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ+1, ๐‘›] |, and thus that|๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | =|๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ, ๐‘›] |. If๐‘–โ€ฒ โ‰ฅ๐‘–, then

|๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] |

=|๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘–โ€ฒโˆ’1] |

=โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘–โ€ฒโˆ’1] |

(๐‘Ž)

โ‰ฅ โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘–+3๐‘˜โˆ’1] |

(๐‘)

โ‰ฅ โˆ’1,

where (๐‘Ž) follows from the fact that ๐‘–โ€ฒ โ‰ค ๐‘– +3๐‘˜ and (๐‘) follows from the fact thatc,cโ€ฒโˆˆ R3๐‘˜. Also we have that|๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] | =โˆ’|๐‘†๐‘

2โˆฉ [๐‘–, ๐‘–โ€ฒโˆ’1] | โ‰ค 0.

Hence when๐‘–โ€ฒ โ‰ค ๐‘–, we have thatโˆ’1 โ‰ค |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] | โ‰ค 0. Similarly,

when๐‘–โ€ฒ < ๐‘–, we have that

|๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] |

=|๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ, ๐‘›] | + |๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ, ๐‘–โˆ’1] |

=|๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ, ๐‘–โˆ’1] |

โ‰ค|๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ, ๐‘–โ€ฒ+3๐‘˜โˆ’1] |

โ‰ค1, and that |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2 โˆฉ [๐‘–, ๐‘›] | = |๐‘†๐‘

2โˆฉ [๐‘–โ€ฒ, ๐‘– โˆ’ 1] | โ‰ฅ 0. Therefore, we have that 0 โ‰ค |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] | โ‰ค1 when๐‘–โ€ฒ< ๐‘–. ThusStatement 1is proved.

We now prove Statement 2 by contradiction. Suppose on the contrary, there exist๐‘–1, ๐‘–2โˆˆ (๐‘๐‘—, ๐‘๐‘—+1] such that๐‘–1< ๐‘–2and

(|๐‘†๐‘

1โˆฉ [๐‘–1, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–1, ๐‘›] |) (|๐‘†๐‘

1โˆฉ [๐‘–2, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–2, ๐‘›] |)

< 0 FromStatement 1we have that|๐‘†๐‘

1โˆฉ [๐‘–1, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–1, ๐‘›] | โˆˆ [โˆ’1,1]and that|๐‘†๐‘

1โˆฉ [๐‘–2, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–2, ๐‘›] | โˆˆ [โˆ’1,1]. Hence by symmetry it can be assumed that |๐‘†๐‘

1โˆฉ [๐‘–1, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–1, ๐‘›] | =โˆ’1 and|๐‘†๐‘

1โˆฉ [๐‘–2, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–2, ๐‘›] | =1. As shown in proof of Statement 1, for every element๐‘– โˆˆ ๐‘†๐‘

1, there is a corresponding element๐‘–โ€ฒ โˆˆ๐‘†๐‘

2such that the two 1 entries๐‘๐‘–and๐‘โ€ฒ

๐‘–โ€ฒ end in the same location after deletions. Hence, for ๐‘ฆ=min๐‘–โˆˆ๐‘†๐‘

2โˆฉ[๐‘–1,๐‘›]๐‘–, there exists an integer๐‘ฅ โˆˆ๐‘†๐‘

1such that the two 1 entries๐‘๐‘ฅand๐‘โ€ฒ

๐‘ฆ

are in the same location after deletions, i.e.,๐‘ฅโˆ’ |ฮดโˆฉ [1, ๐‘ฅโˆ’1] | =๐‘ฆโˆ’ |ฮดโ€ฒโˆฉ [1, ๐‘ฆโˆ’1] |. Since|๐‘†๐‘

1โˆฉ [๐‘–1, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–1, ๐‘›] | =โˆ’1, we have that๐‘ฅ โˆˆ ๐‘†๐‘

1โˆฉ [1, ๐‘–1โˆ’1]. Otherwise, we have that ๐‘ฅ โˆˆ ๐‘†๐‘

1โˆฉ [๐‘–1, ๐‘›] and for every integer ๐‘–โ€ฒ โˆˆ ๐‘†๐‘

2โˆฉ (๐‘ฆ, ๐‘›], there exists an integer ๐‘– โˆˆ ๐‘†๐‘

1โˆฉ (๐‘ฅ , ๐‘›] such that ๐‘๐‘– and ๐‘๐‘–โ€ฒ end up in the same location after deletions. This implies that |๐‘†๐‘

1โˆฉ [๐‘–1, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–1, ๐‘›] | โ‰ฅ 0, contradicting the fact that|๐‘†๐‘

1โˆฉ [๐‘–1, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–1, ๐‘›] | =โˆ’1. Therefore,

๐‘–1โˆ’ |ฮดโˆฉ [1, ๐‘–1โˆ’1] | >๐‘–1โˆ’1โˆ’ |ฮดโˆฉ [1, ๐‘–1โˆ’1] |

โ‰ฅ๐‘ฅโˆ’ |ฮดโˆฉ [1, ๐‘ฅโˆ’1] |

=๐‘ฆโˆ’ |ฮดโ€ฒโˆฉ [1, ๐‘ฆโˆ’1] |

โ‰ฅ๐‘–1โˆ’ |ฮดโ€ฒโˆฉ [1, ๐‘–1โˆ’1] |, which implies that

|ฮดโˆฉ [1, ๐‘–1โˆ’1] | < |ฮดโ€ฒโˆฉ [1, ๐‘–1โˆ’1] |. (3.6)

Similarly, from|๐‘†๐‘

1โˆฉ [๐‘–2, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–2, ๐‘›] | =1 we have that

|ฮดโˆฉ [1, ๐‘–2โˆ’1] | > |ฮดโ€ฒโˆฉ [1, ๐‘–2โˆ’1] |. (3.7) Eq. (3.6) and Eq. (3.7) implies that

|ฮดโˆฉ [1, ๐‘–2โˆ’1] | โˆ’ |ฮดโˆฉ [1, ๐‘–1โˆ’1] |

โ‰ฅ|ฮดโ€ฒโˆฉ [1, ๐‘–2โˆ’1] | +1โˆ’ |ฮดโ€ฒโˆฉ [1, ๐‘–1โˆ’1] | +1

โ‰ฅ2. (3.8)

However, since๐‘–1, ๐‘–2 โˆˆ (๐‘๐‘—, ๐‘๐‘—+1] and no deletion occurs in the interval(๐‘๐‘—, ๐‘๐‘—+1], we have that |ฮด โˆฉ [1, ๐‘–1] | = |ฮดโˆฉ [1, ๐‘–2โˆ’1] | and |ฮดโ€ฒโˆฉ [1, ๐‘–1] | = |ฮดโ€ฒโˆฉ [1, ๐‘–2โˆ’1] |, which implies that

|ฮดโˆฉ [1, ๐‘–2โˆ’1] | โˆ’ |ฮดโˆฉ [1, ๐‘–1โˆ’1] |

โ‰ค|ฮดโˆฉ [1, ๐‘–2โˆ’1] | โˆ’ |ฮดโˆฉ [1, ๐‘–1] | +1

=1,

contradicting Eq. (3.8). Hence there do not exist different integers๐‘–1, ๐‘–2 โˆˆ (๐‘๐‘—, ๐‘๐‘—+1] such that

(|๐‘†๐‘

1โˆฉ [๐‘–1, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–1, ๐‘›] |) (|๐‘†๐‘

1โˆฉ [๐‘–2, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–2, ๐‘›] |)

< 0. HenceStatement 2is proved.

Now we continue to prove Proposition3.4.2. Denote ๐‘ ๐‘– โ‰œ |๐‘†1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†2โˆฉ [๐‘–, ๐‘›] | + |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] |. (3.9) Note that no deletion occurs in the interval(๐‘๐‘—, ๐‘๐‘—+1], it follows that

|๐‘†1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†2โˆฉ [๐‘–, ๐‘›] |

=|๐‘†1โˆฉ [๐‘๐‘—+1, ๐‘›] | โˆ’ |๐‘†2โˆฉ [๐‘๐‘—+1, ๐‘›] | (3.10) for ๐‘– โˆˆ (๐‘๐‘—, ๐‘๐‘—+1]. Combining (3.10) with Statement 1 and Statement 2, we conclude that for each interval(๐‘๐‘—, ๐‘๐‘—+1], ๐‘— โˆˆ {0, . . . ,6๐‘˜}, either ๐‘ ๐‘– โ‰ฅ 0 for all๐‘– โˆˆ (๐‘๐‘—, ๐‘๐‘—+1] or๐‘ ๐‘– โ‰ค 0 for all๐‘– โˆˆ (๐‘๐‘—, ๐‘๐‘—+1]. Letx =(๐‘ฅ0, . . . , ๐‘ฅ6๐‘˜) โˆˆ {โˆ’1,1}6๐‘˜+1be a vector defined by

๐‘ฅ๐‘– =

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

โˆ’1, if๐‘ ๐‘— < 0 for some ๐‘— โˆˆ (๐‘๐‘–, ๐‘๐‘–+1] 1, else.

.

Then from Eq. (3.5) and Eq. (3.9), the differencecยทm(๐‘’) โˆ’cโ€ฒยทm(๐‘’) is given by cยทm(๐‘’)โˆ’cโ€ฒยทm(๐‘’) =

6๐‘˜

โˆ‘๏ธ

๐‘—=0

(

๐‘๐‘—+1

โˆ‘๏ธ

๐‘–=๐‘๐‘—+1

|๐‘ ๐‘–|๐‘–๐‘’)๐‘ฅ๐‘—. (3.11)

Let ๐ด be a 6๐‘˜ +1ร—6๐‘˜ +1 matrix with entries defined by ๐ด๐‘’, ๐‘— =ร๐‘๐‘—

๐‘–=๐‘๐‘—โˆ’1+1|๐‘ ๐‘–|๐‘–๐‘’โˆ’1 for๐‘’, ๐‘— โˆˆ [1,6๐‘˜ +1]. If cยทm(๐‘’) =cโ€ฒยทm(๐‘’) for๐‘’ โˆˆ [0,6๐‘˜], we have the following linear equation

๐ดx=

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ร๐‘1

๐‘–=๐‘0+1|๐‘ ๐‘–|๐‘–0 . . . ร๐‘6๐‘˜+1

๐‘–=๐‘6๐‘˜+1|๐‘ ๐‘–|๐‘–0 ..

.

...

.. . ร๐‘1

๐‘–=๐‘0+1|๐‘ ๐‘–|๐‘–6๐‘˜ . . . ร๐‘6๐‘˜+1

๐‘–=๐‘6๐‘˜+1|๐‘ ๐‘–|๐‘–6๐‘˜

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ๐‘ฅ0

.. . ๐‘ฅ6๐‘˜

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

=0, (3.12)

with a solution๐‘ฅ๐‘– โˆˆ {โˆ’1,1}for๐‘– โˆˆ [0,6๐‘˜]. We show that this is impossible unless๐ด is a zero matrix. Suppose on the contrary that ๐ดis nonzero, let ๐‘—1 < . . . < ๐‘—๐‘„ be the indices of all nonzero columns of ๐ด. Let ๐ดโˆ— be a submatrix of ๐ด, obtained by choosing the intersection of the first๐‘„ rows and columns with indices ๐‘—1, . . . , ๐‘—๐‘„. Then taking the first๐‘„linear equations from the equation set (3.13) and noting that the nonzero columns in ๐ดare the ๐‘—1, . . . , ๐‘—๐‘„-th columns, we have that

๐ดโˆ—xโ€ฒ

=

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ร๐‘๐‘—1

๐‘–=๐‘๐‘—

1โˆ’1+1|๐‘ ๐‘–|๐‘–0 . . . ร๐‘๐‘—๐‘„

๐‘–=๐‘๐‘—

๐‘„โˆ’1+1|๐‘ ๐‘–|๐‘–0 ..

.

.. .

.. . ร๐‘๐‘—1

๐‘–=๐‘๐‘—

1โˆ’1+1|๐‘ ๐‘–|๐‘–๐‘„โˆ’1 . . . ร๐‘๐‘—๐‘„

๐‘–=๐‘๐‘—

๐‘„โˆ’1+1|๐‘ ๐‘–|๐‘–๐‘„โˆ’1

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ๐‘ฅ๐‘—

1

.. . ๐‘ฅ๐‘—

๐‘„

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

=0. (3.13)

The determinant of ๐ดโˆ—is given by det(๐ดโˆ—)

=det

ยฉ

ยญ

ยญ

ยญ

ยญ

ยซ ร๐‘๐‘—1

๐‘–=๐‘๐‘—

1โˆ’1+1|๐‘ ๐‘–|๐‘–0 . . . ร๐‘๐‘—๐‘„

๐‘–=๐‘๐‘—

๐‘„โˆ’1+1|๐‘ ๐‘–|๐‘–0 ..

.

...

.. . ร๐‘๐‘—1

๐‘–=๐‘๐‘—

1โˆ’1+1|๐‘ ๐‘–|๐‘–๐‘„โˆ’1 . . . ร๐‘๐‘—๐‘„

๐‘–=๐‘๐‘—

๐‘„โˆ’1+1|๐‘ ๐‘–|๐‘–๐‘„โˆ’1 ยช

ยฎ

ยฎ

ยฎ

ยฎ

ยฌ

(๐‘Ž)= โˆ‘๏ธ

๐‘–1โˆˆ(๐‘๐‘— 1โˆ’1, ๐‘๐‘—

1],..., ๐‘–๐‘„โˆˆ(๐‘๐‘—

๐‘„โˆ’1, ๐‘๐‘—

๐‘„]

det

ยฉ

ยญ

ยญ

ยญ

ยซ

|๐‘ ๐‘–

1|๐‘–0

1 . . . |๐‘ ๐‘–

๐‘„|๐‘–0

๐‘„

.. .

... .. .

|๐‘ ๐‘–

1|๐‘–

๐‘„โˆ’1

1 . . . |๐‘ ๐‘–

๐‘„|๐‘–

๐‘„โˆ’1 ๐‘„

ยช

ยฎ

ยฎ

ยฎ

ยฌ

(๐‘)= โˆ‘๏ธ

๐‘–1โˆˆ(๐‘๐‘— 1โˆ’1, ๐‘๐‘—

1],..., ๐‘–๐‘„โˆˆ(๐‘๐‘—

๐‘„โˆ’1, ๐‘๐‘—

๐‘„]

" ๐‘„

ร–

๐‘ž=1

|๐‘ ๐‘–

๐‘ž|det

ยฉ

ยญ

ยญ

ยญ

ยซ ๐‘–0

1 . . . ๐‘–0

๐‘„

.. .

... .. . ๐‘–๐‘„โˆ’1

1 . . . ๐‘–๐‘„โˆ’1

๐‘„

ยช

ยฎ

ยฎ

ยฎ

ยฌ

#

(๐‘)= โˆ‘๏ธ

๐‘–1โˆˆ(๐‘๐‘— 1โˆ’1, ๐‘๐‘—

1],..., ๐‘–๐‘„โˆˆ(๐‘๐‘—

๐‘„โˆ’1, ๐‘๐‘— ๐‘„]

[

๐‘„

ร–

๐‘ž=1

|๐‘ ๐‘–

๐‘ž| ร–

1โ‰ค๐‘š <โ„“โ‰ค๐‘„

(๐‘–โ„“ โˆ’๐‘–๐‘š)], (3.14)

where equality(๐‘Ž)follows from the multi-linearity of the determinant det( [v1 . . . ๐‘Žv๐‘–+๐‘v . . . v๐‘ž])

=๐‘Ždet( [v1 . . . v๐‘– . . . v๐‘ž])

+๐‘det( [v1 . . . v๐‘–โˆ’1v v๐‘–+1 . . . v๐‘ž])

for any integers ๐‘ž and ๐‘– and ๐‘ž-dimensional vectors v1, . . . ,v๐‘ž, v. Equality (๐‘) follows from the linearity of the determinant

det( [v1 . . . ๐‘Žv๐‘– . . . v๐‘ž]) =๐‘Ždet( [v1 . . . v๐‘– . . . v๐‘ž])

for any integers๐‘žand๐‘– and๐‘ž-dimensional vectorsv1, . . . ,v๐‘ž. Equality(๐‘)follows from the determinant of Vandermonde matrix

det

ยฉ

ยญ

ยญ

ยญ

ยซ ๐‘–0

1 . . . ๐‘–0

๐‘ž

.. .

... .. . ๐‘–๐‘žโˆ’1

1 . . . ๐‘–๐‘žโˆ’1๐‘ž ยช

ยฎ

ยฎ

ยฎ

ยฌ

= ร–

1โ‰ค๐‘š <โ„“โ‰ค๐‘ž

(๐‘–โ„“ โˆ’๐‘–๐‘š)

for any integers ๐‘ž, ๐‘–1, . . . , ๐‘–๐‘ž. . The determinant ๐‘‘๐‘’๐‘ก(๐ดโˆ—) is positive since๐‘–โ„“ > ๐‘–๐‘š for โ„“ > ๐‘š. and for ๐‘–1 โˆˆ (๐‘๐‘—

1โˆ’1, ๐‘๐‘—

1], . . . , ๐‘–๐‘„ โˆˆ (๐‘๐‘—

๐‘„โˆ’1, ๐‘๐‘—

๐‘„]. Note that all the columns of ๐ดโˆ— are nonzero. Therefore, the linear equation ๐ดโˆ—xโ€ฒ = 0 does not have nonzero solutions, contradicting the fact thatxโ€ฒ = (๐‘ฅ๐‘—

1, . . . , ๐‘ฅ๐‘—

๐‘„) โˆˆ {โˆ’1,1}๐‘„. Hence ๐ดis a zero matrix, meaning that

|๐‘†1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†2โˆฉ [๐‘–, ๐‘›] | + |๐‘†๐‘

1โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐‘†๐‘

2โˆฉ [๐‘–, ๐‘›] |

=|๐šซโˆฉ [๐‘–, ๐‘›] | โˆ’ |๐šซโ€ฒโˆฉ [๐‘–, ๐‘›] | =0

for๐‘– โˆˆ {1, . . . , ๐‘›}. This implies๐šซ =๐šซโ€ฒand thusc=cโ€ฒ. Hence Proposition3.4.2is

proved. โ–ก

Proof of Lemma3.2.1

We are now ready to prove Lemma 3.2.1, which states that 1๐‘  ๐‘ฆ๐‘›๐‘(c) = 1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) for sequences c and cโ€ฒ โˆˆ B๐‘˜(c) satisfying ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) = ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)). From

Proposition 3.4.1 we have that 1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) โˆˆ B3๐‘˜(1๐‘  ๐‘ฆ๐‘›๐‘(c)). Then, it is not hard to see that (1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)๐‘–, . . . ,1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)๐‘›) โˆˆ B3๐‘˜( (1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘–, . . . ,1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘›)). This im- plies that ||๐šซ โˆฉ [๐‘–, ๐‘›] | โˆ’ |๐šซโ€ฒ โˆฉ [๐‘–, ๐‘›] || โ‰ค 3๐‘˜, where ๐šซ = {๐‘– : 1๐‘  ๐‘ฆ๐‘›๐‘(c)๐‘– = 1}

and๐šซโ€ฒ={๐‘–:1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)๐‘– =1}. According to the forth line in Eq. (3.5), we have that

|1๐‘  ๐‘ฆ๐‘›๐‘(c) ยทm(๐‘’)โˆ’1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) ยทm(๐‘’)|

=|

๐‘›

โˆ‘๏ธ

๐‘–=1

(|๐šซโˆฉ [๐‘–, ๐‘›] | โˆ’ |๐šซโ€ฒโˆฉ [๐‘–, ๐‘›] |)๐‘–๐‘’|,

โ‰ค

๐‘›

โˆ‘๏ธ

๐‘–=1

3๐‘˜ ๐‘–๐‘’

<3๐‘˜ ๐‘›๐‘’+1. (3.15)

If ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) = ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)), then

1๐‘  ๐‘ฆ๐‘›๐‘(c) ยทm(๐‘’) โ‰ก 1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) ยทm(๐‘’) mod 3๐‘˜ ๐‘›๐‘’+1 (3.16) for๐‘’ โˆˆ [0,6๐‘˜]. Equations (3.16) and (3.15) imply that1๐‘  ๐‘ฆ๐‘›๐‘(c) ยทm(๐‘’) =1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) ยท m(๐‘’)for๐‘’ โˆˆ [0,6๐‘˜]. Since1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) โˆˆ B3๐‘˜(1๐‘  ๐‘ฆ๐‘›๐‘(c))and1๐‘  ๐‘ฆ๐‘›๐‘(c),1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) โˆˆ R3๐‘˜, from Proposition3.4.2we conclude that1๐‘  ๐‘ฆ๐‘›๐‘(c) =1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ). Hence Lemma3.2.1 is proved.

Proof of Lemma3.2.2

Based on Lemma 3.2.1, we now show Lemma 3.2.2. Specifically, we show that there exists a function ๐‘ : {0,1}๐‘› โ†’ [1,22๐‘˜log๐‘›+๐‘œ(log๐‘›)] such that 1๐‘  ๐‘ฆ๐‘›๐‘(c) = 1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)for sequencescandcโ€ฒโˆˆ B๐‘˜(c)satisfying(๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) mod ๐‘(c), ๐‘(c))= (๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) mod ๐‘(cโ€ฒ), ๐‘(cโ€ฒ)).

Lemma 3.2.1 implies that ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) โ‰  ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) for cโ€ฒ โˆˆ B๐‘˜(c)\{c}, if 1๐‘  ๐‘ฆ๐‘›๐‘(c) โ‰  1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ). Hence |๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) โˆ’ ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) | โ‰  0 for cโ€ฒ โˆˆ B๐‘˜(c)\{c}, where ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) and ๐‘“(1๐‘ ๐‘ฆ๐‘›๐‘(cโ€ฒ)) denote the integer presentation of their vec- tor form. The integers are in the range [0,(3๐‘˜)6๐‘˜+1๐‘›(3๐‘˜+1) (6๐‘˜+1) โˆ’1]. According to Lemma 3.2.7, the number of divisors of |๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) โˆ’ ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) | is upper bounded by

22[(3๐‘˜+1) (6๐‘˜+1)ln๐‘›+(6๐‘˜+1)ln 3๐‘˜]/ln( (3๐‘˜+1) (6๐‘˜+1)ln๐‘›+(6๐‘˜+1)ln 3๐‘˜)

=2๐‘œ(log๐‘›),

where the equality holds since๐‘˜ =๐‘œ(โˆš๏ธ

log log๐‘›). For any sequencec โˆˆ {0,1}๐‘›, let

P (c) ={๐‘ : ๐‘divides|๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) โˆ’ ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) | for somecโ€ฒโˆˆ B๐‘˜(c)\{c}such that1๐‘  ๐‘ฆ๐‘›๐‘(c)โ‰  1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)}

be the set of all divisors of the numbers {|๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) โˆ’ ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) | : cโ€ฒ โˆˆ B๐‘˜(c)\{c} and1๐‘  ๐‘ฆ๐‘›๐‘(c)โ‰  1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)}. Since |B๐‘˜(c) | โ‰ค ๐‘›

๐‘˜

2

2๐‘˜ โ‰ค 2๐‘›2๐‘˜, we have that

|P (c) | โ‰ค2๐‘›2๐‘˜2๐‘œ(log๐‘›)

=22๐‘˜log๐‘›+๐‘œ(log๐‘›).

Therefore, there exists a number ๐‘(c) โˆˆ [1,22๐‘˜log๐‘›+๐‘œ(log๐‘›)] such that ๐‘(c) does not divide|๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) โˆ’ ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) |for allcโ€ฒโˆˆ B๐‘˜(c)\{c} satisfying1๐‘  ๐‘ฆ๐‘›๐‘(c) โ‰  1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ). Hence, if ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) โ‰ก ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c))mod ๐‘(c)andcโ€ฒ โˆˆ B๐‘˜(c), we have that ๐‘(c) divides |๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ)) โˆ’ ๐‘“(1๐‘  ๐‘ฆ๐‘›๐‘(c)) |, and thus that 1๐‘  ๐‘ฆ๐‘›๐‘(cโ€ฒ) = 1๐‘  ๐‘ฆ๐‘›๐‘(c).

This completes the proof of Lemma3.2.2.