Chapter III: Binary Codes Correcting ๐ Deletions/Insertions
3.4 Protecting the Synchronization Vectors
In this section we present a hash function with size 4๐log๐+๐(log๐) to protect the synchronization vector1๐ ๐ฆ๐๐(c) from ๐ deletions in cand prove Lemma3.2.2.
We first prove Lemma3.2.1, which is decomposed to Proposition3.4.1and Propo- sition 3.4.2. In Proposition 3.4.1 we present an upper bound on the radius of the deletion ball for the synchronization vector. In Proposition3.4.2, we prove that the higher order parity check helps correct multiple deletions for sequences in which the there is a 0-run of length at least 3๐โ1 between any two 1โs. Since1๐ ๐ฆ๐๐(c)is such a sequence, we conclude that the higher order parity check helps recover1๐ ๐ฆ๐๐(c).
After obtaining a bound on the difference between the higher order parity checks of two ambiguous sequence, we then apply Proposition3.4.2 on the synchronization vector1๐ ๐ฆ๐๐(c)to prove Lemma3.2.1, which replaces the higher order parity checks in Proposition3.4.2by the higher parity checks modulo a numbers. After proving Lemma3.2.1, we use Lemma3.2.7to further compress the size of the higher order parity check that protects1๐ ๐ฆ๐๐(c)and then prove Lemma3.2.2.
Proposition 3.4.1. Forc,cโฒ โ {0,1}๐, ifcโฒโ B๐(c), then1๐ ๐ฆ๐๐(cโฒ) โ B3๐(1๐ ๐ฆ๐๐(c)). Proof. Since cโฒ โ B๐(c), the sequences cโฒ and c share a common subsequence after ๐ deletions in both. We now show that a single deletion in c causes at most two deletions and one insertion in its synchronization vector 1๐ ๐ฆ๐๐(c). We first show that a deletion inccan destroy and generate at most 1 synchronization pattern.
This is because for any synchronization pattern that is destroyed or generated, there must be a deletion that occurs within the synchronization pattern. Hence any two destroyed or generated synchronization patterns cannot be caused by the same deletion. Therefore, we need to consider four cases in total. Let dโฒ be the subsequence ofcafter a single deletion.
1. The deletion destroys a synchronization pattern (๐๐+1, . . . , ๐๐+3๐+โlog๐โ+4) for some๐and no synchronization pattern is generated. Then the sequence1๐ ๐ฆ๐๐(dโฒ) can be obtained by deleting the 1 entry1๐ ๐ฆ๐๐(c)๐+3๐ in1๐ ๐ฆ๐๐(c).
2. The deletion generates a new synchronization pattern(๐โฒ
๐โฒ+1, . . . , ๐โฒ
๐โฒ+3๐+โlog๐โ+4) for some๐โฒ and destroys a synchronization pattern (๐๐+1, . . . , ๐๐+3๐+โlog๐โ+4). The sequence1๐ ๐ฆ๐๐(dโฒ)can be obtained by deleting the 1 entry1๐ ๐ฆ๐๐(c)๐+3๐and the 0 entry1๐ ๐ฆ๐๐(c)๐+3๐โ1in1๐ ๐ฆ๐๐(c) and inserting a 1 entry at1๐ ๐ฆ๐๐(c)๐โฒ+3๐. 3. The deletion generates a new synchronization pattern(๐โฒ
๐โฒ+1, . . . , ๐โฒ
๐โฒ+3๐+โlog๐โ+4) for some๐โฒand no synchronization pattern is destroyed. Then the 1๐ ๐ฆ๐๐(dโฒ) can be obtained by deleting two 0 entries 1๐ ๐ฆ๐๐(c)๐โฒ+3๐ and 1๐ ๐ฆ๐๐(c)๐โฒ+3๐+1
in1๐ ๐ฆ๐๐(c) and inserting a 1 entry at1๐ ๐ฆ๐๐(c)๐โฒ+3๐.
4. No synchronization pattern is generated or destroyed. Then1๐ ๐ฆ๐๐(dโฒ)can be obtained by deleting a 0 entry1๐ ๐ฆ๐๐(c)๐, where๐is the location of the deletion.
In summary, in each of the above cases, a single deletion in c causes at most two deletions and one insertion in 1๐ ๐ฆ๐๐(c). Hence ๐ deletions in c and cโฒ cause at
most 2๐deletions and๐insertions in1๐ ๐ฆ๐๐(c)and1๐ ๐ฆ๐๐(cโฒ)respectively. According to Lemma3.2.6, we have that1๐ ๐ฆ๐๐(cโฒ) โ B3๐(1๐ ๐ฆ๐๐(c)) whencโฒ โ B๐(c). Hence,
Proposition3.4.1is proved. โก
Let R๐ be the set of length ๐ sequences in which there is a 0 run of length at least ๐โ1 between any two 1โs. Any two 1โs in a sequence c โ R๐ have index distance at least๐. The following lemma shows that the sequences inR3๐ can be protected using higher order parity checks. Note that compared to the higher order parity checks ๐(c), the higher order parity checks in the following proposition do not have modulo operations.
Proposition 3.4.2. For sequencesc,cโฒโ R3๐, ifcโฒโ B3๐(c)andcยทm(๐) =cโฒยทm(๐) for๐ โ [0,6๐], thenc=cโฒ.
Proof. We first compute the differencecยทm(๐) โcโฒยทm(๐), ๐ โ [0,6๐]. Sincecโฒ โ B3๐(c), there exist two subsetsฮด ={๐ฟ1, . . . , ๐ฟ3๐} โ [1, ๐]andฮดโฒ={๐ฟโฒ
1, . . . , ๐ฟโฒ
3๐} โ [1, ๐] such that deleting bits with indices ฮด and ฮดโฒ respectively from c and cโฒ results in the same length ๐โ 3๐ subsequence, i.e., (๐๐ : ๐ โ ฮด) = (๐โฒ
๐ : ๐ โ ฮดโฒ).
Let ๐ซ = {๐ : ๐๐ = 1} and ๐ซโฒ = {๐ : ๐โฒ
๐ = 1} be the indices of 1 entries in c and cโฒ respectively. Let ๐1 = ๐ซ โฉฮด be the indices of 1 entries that are deleted inc. Then๐๐
1=๐ซโฉ ( [1, ๐]\ฮด) denotes the indices of 1 entries that are not deleted.
Similarly, let ๐2 = ๐ซโฒโฉฮดโฒ and ๐๐
2 = ๐ซโฒโฉ ( [1, ๐]\ฮดโฒ) be the indices of 1 entries that are deleted and not in cโฒ respectively. Let the elements in ฮดโชฮดโฒ be ordered by 1 โค ๐1 โค ๐2 โค . . .โค ๐6๐ โค ๐. Denote๐0 =0 and ๐6๐+1=๐. Then we have that
cยทm(๐) โcโฒยทm(๐)
=โ๏ธ
โโ๐ซ
m(๐)โ โโ๏ธ
โโ๐ซโฒ
m(โ๐)
=โ๏ธ
โโ๐ซ
(
โ
โ๏ธ
๐=1
๐๐) โโ๏ธ
โโ๐ซโฒ
(
โ
โ๏ธ
๐=1
๐๐)
=
๐
โ๏ธ
๐=1
( โ๏ธ
โโ๐ซโฉ[๐,๐]
๐๐) โ
๐
โ๏ธ
๐=1
( โ๏ธ
โโ๐ซโฒโฉ[๐,๐]
๐๐)
=
๐
โ๏ธ
๐=1
(|๐ซโฉ [๐, ๐] | โ |๐ซโฒโฉ [๐, ๐] |)๐๐
=
๐
โ๏ธ
๐=1
(|๐1โฉ [๐, ๐] | + |๐๐
1โฉ [๐, ๐] | โ |๐2โฉ [๐, ๐] |
โ |๐๐
2โฉ [๐, ๐] |)๐๐
=
6๐
โ๏ธ
๐=0 ๐๐+1
โ๏ธ
๐=๐๐+1
(|๐1โฉ [๐, ๐] | โ |๐2โฉ [๐, ๐] | + |๐๐
1โฉ [๐, ๐] |
โ |๐๐
2โฉ [๐, ๐] |)๐๐
(๐)=
6๐
โ๏ธ
๐=0 ๐๐+1
โ๏ธ
๐=๐๐+1
(|๐1โฉ [๐๐+1, ๐] |
โ |๐2โฉ [๐๐+1, ๐] | + |๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] |)๐๐, (3.5) where (๐) holds since by definition of ๐๐, there is no deleted 1 entry in inter- val (๐๐, ๐๐+1) ={๐๐ +1, . . . , ๐๐+1โ1}, ๐ โ [0,6๐]. In the following we show
Statement 1: โ1 โค |๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] | โค 1 for๐ โ [1, ๐].
Statement 2:For each interval(๐๐, ๐๐+1] ={๐๐+1, . . . , ๐๐+1}, ๐ =0, . . . ,6๐, we have either |๐๐
1 โฉ [๐, ๐] | โ |๐๐
2 โฉ [๐, ๐] | โค 0 for all ๐ โ (๐๐, ๐๐+1] or
|๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] | โฅ0 for all๐ โ (๐๐, ๐๐+1].
We first proveStatement 1. Note that deleting bits with indicesฮดincand deleting bits with indicesฮดโฒ incโฒresult in the same subsequence. Hence, for every๐ โ ๐๐
1, there is a unique corresponding index๐โฒ โ ๐๐
2such that the two 1 entries ๐๐ and๐โฒ
๐โฒ
end in the same location after deletions, i.e.,๐โ |ฮดโฉ [1, ๐โ1] | =๐โฒโ |ฮดโฒโฉ [1, ๐โฒโ1] |. This implies that|๐โฒโ๐| โค 3๐. Fix integers๐and๐โฒ. Then by definition of๐and๐โฒ, for every๐ฅ โ๐๐
1โฉ [๐+1, ๐], there is a unique corresponding๐ฆ โ๐๐
2โฉ [๐โฒ+1, ๐]such that the two 1 entries๐๐ฅ and๐โฒ
๐ฆ end in the same location after deletions. Therefore, we have that|๐๐
1โฉ [๐+1, ๐] | = |๐๐
2โฉ [๐โฒ+1, ๐] |, and thus that|๐๐
1โฉ [๐, ๐] | =|๐๐
2โฉ [๐โฒ, ๐] |. If๐โฒ โฅ๐, then
|๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] |
=|๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐โฒ, ๐] | โ |๐๐
2โฉ [๐, ๐โฒโ1] |
=โ |๐๐
2โฉ [๐, ๐โฒโ1] |
(๐)
โฅ โ |๐๐
2โฉ [๐, ๐+3๐โ1] |
(๐)
โฅ โ1,
where (๐) follows from the fact that ๐โฒ โค ๐ +3๐ and (๐) follows from the fact thatc,cโฒโ R3๐. Also we have that|๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] | =โ|๐๐
2โฉ [๐, ๐โฒโ1] | โค 0.
Hence when๐โฒ โค ๐, we have thatโ1 โค |๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] | โค 0. Similarly,
when๐โฒ < ๐, we have that
|๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] |
=|๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐โฒ, ๐] | + |๐๐
2โฉ [๐โฒ, ๐โ1] |
=|๐๐
2โฉ [๐โฒ, ๐โ1] |
โค|๐๐
2โฉ [๐โฒ, ๐โฒ+3๐โ1] |
โค1, and that |๐๐
1โฉ [๐, ๐] | โ |๐๐
2 โฉ [๐, ๐] | = |๐๐
2โฉ [๐โฒ, ๐ โ 1] | โฅ 0. Therefore, we have that 0 โค |๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] | โค1 when๐โฒ< ๐. ThusStatement 1is proved.
We now prove Statement 2 by contradiction. Suppose on the contrary, there exist๐1, ๐2โ (๐๐, ๐๐+1] such that๐1< ๐2and
(|๐๐
1โฉ [๐1, ๐] | โ |๐๐
2โฉ [๐1, ๐] |) (|๐๐
1โฉ [๐2, ๐] | โ |๐๐
2โฉ [๐2, ๐] |)
< 0 FromStatement 1we have that|๐๐
1โฉ [๐1, ๐] | โ |๐๐
2โฉ [๐1, ๐] | โ [โ1,1]and that|๐๐
1โฉ [๐2, ๐] | โ |๐๐
2โฉ [๐2, ๐] | โ [โ1,1]. Hence by symmetry it can be assumed that |๐๐
1โฉ [๐1, ๐] | โ |๐๐
2โฉ [๐1, ๐] | =โ1 and|๐๐
1โฉ [๐2, ๐] | โ |๐๐
2โฉ [๐2, ๐] | =1. As shown in proof of Statement 1, for every element๐ โ ๐๐
1, there is a corresponding element๐โฒ โ๐๐
2such that the two 1 entries๐๐and๐โฒ
๐โฒ end in the same location after deletions. Hence, for ๐ฆ=min๐โ๐๐
2โฉ[๐1,๐]๐, there exists an integer๐ฅ โ๐๐
1such that the two 1 entries๐๐ฅand๐โฒ
๐ฆ
are in the same location after deletions, i.e.,๐ฅโ |ฮดโฉ [1, ๐ฅโ1] | =๐ฆโ |ฮดโฒโฉ [1, ๐ฆโ1] |. Since|๐๐
1โฉ [๐1, ๐] | โ |๐๐
2โฉ [๐1, ๐] | =โ1, we have that๐ฅ โ ๐๐
1โฉ [1, ๐1โ1]. Otherwise, we have that ๐ฅ โ ๐๐
1โฉ [๐1, ๐] and for every integer ๐โฒ โ ๐๐
2โฉ (๐ฆ, ๐], there exists an integer ๐ โ ๐๐
1โฉ (๐ฅ , ๐] such that ๐๐ and ๐๐โฒ end up in the same location after deletions. This implies that |๐๐
1โฉ [๐1, ๐] | โ |๐๐
2โฉ [๐1, ๐] | โฅ 0, contradicting the fact that|๐๐
1โฉ [๐1, ๐] | โ |๐๐
2โฉ [๐1, ๐] | =โ1. Therefore,
๐1โ |ฮดโฉ [1, ๐1โ1] | >๐1โ1โ |ฮดโฉ [1, ๐1โ1] |
โฅ๐ฅโ |ฮดโฉ [1, ๐ฅโ1] |
=๐ฆโ |ฮดโฒโฉ [1, ๐ฆโ1] |
โฅ๐1โ |ฮดโฒโฉ [1, ๐1โ1] |, which implies that
|ฮดโฉ [1, ๐1โ1] | < |ฮดโฒโฉ [1, ๐1โ1] |. (3.6)
Similarly, from|๐๐
1โฉ [๐2, ๐] | โ |๐๐
2โฉ [๐2, ๐] | =1 we have that
|ฮดโฉ [1, ๐2โ1] | > |ฮดโฒโฉ [1, ๐2โ1] |. (3.7) Eq. (3.6) and Eq. (3.7) implies that
|ฮดโฉ [1, ๐2โ1] | โ |ฮดโฉ [1, ๐1โ1] |
โฅ|ฮดโฒโฉ [1, ๐2โ1] | +1โ |ฮดโฒโฉ [1, ๐1โ1] | +1
โฅ2. (3.8)
However, since๐1, ๐2 โ (๐๐, ๐๐+1] and no deletion occurs in the interval(๐๐, ๐๐+1], we have that |ฮด โฉ [1, ๐1] | = |ฮดโฉ [1, ๐2โ1] | and |ฮดโฒโฉ [1, ๐1] | = |ฮดโฒโฉ [1, ๐2โ1] |, which implies that
|ฮดโฉ [1, ๐2โ1] | โ |ฮดโฉ [1, ๐1โ1] |
โค|ฮดโฉ [1, ๐2โ1] | โ |ฮดโฉ [1, ๐1] | +1
=1,
contradicting Eq. (3.8). Hence there do not exist different integers๐1, ๐2 โ (๐๐, ๐๐+1] such that
(|๐๐
1โฉ [๐1, ๐] | โ |๐๐
2โฉ [๐1, ๐] |) (|๐๐
1โฉ [๐2, ๐] | โ |๐๐
2โฉ [๐2, ๐] |)
< 0. HenceStatement 2is proved.
Now we continue to prove Proposition3.4.2. Denote ๐ ๐ โ |๐1โฉ [๐, ๐] | โ |๐2โฉ [๐, ๐] | + |๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] |. (3.9) Note that no deletion occurs in the interval(๐๐, ๐๐+1], it follows that
|๐1โฉ [๐, ๐] | โ |๐2โฉ [๐, ๐] |
=|๐1โฉ [๐๐+1, ๐] | โ |๐2โฉ [๐๐+1, ๐] | (3.10) for ๐ โ (๐๐, ๐๐+1]. Combining (3.10) with Statement 1 and Statement 2, we conclude that for each interval(๐๐, ๐๐+1], ๐ โ {0, . . . ,6๐}, either ๐ ๐ โฅ 0 for all๐ โ (๐๐, ๐๐+1] or๐ ๐ โค 0 for all๐ โ (๐๐, ๐๐+1]. Letx =(๐ฅ0, . . . , ๐ฅ6๐) โ {โ1,1}6๐+1be a vector defined by
๐ฅ๐ =
๏ฃฑ๏ฃด
๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃณ
โ1, if๐ ๐ < 0 for some ๐ โ (๐๐, ๐๐+1] 1, else.
.
Then from Eq. (3.5) and Eq. (3.9), the differencecยทm(๐) โcโฒยทm(๐) is given by cยทm(๐)โcโฒยทm(๐) =
6๐
โ๏ธ
๐=0
(
๐๐+1
โ๏ธ
๐=๐๐+1
|๐ ๐|๐๐)๐ฅ๐. (3.11)
Let ๐ด be a 6๐ +1ร6๐ +1 matrix with entries defined by ๐ด๐, ๐ =ร๐๐
๐=๐๐โ1+1|๐ ๐|๐๐โ1 for๐, ๐ โ [1,6๐ +1]. If cยทm(๐) =cโฒยทm(๐) for๐ โ [0,6๐], we have the following linear equation
๐ดx=
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ ร๐1
๐=๐0+1|๐ ๐|๐0 . . . ร๐6๐+1
๐=๐6๐+1|๐ ๐|๐0 ..
.
...
.. . ร๐1
๐=๐0+1|๐ ๐|๐6๐ . . . ร๐6๐+1
๐=๐6๐+1|๐ ๐|๐6๐
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ ๐ฅ0
.. . ๐ฅ6๐
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป
=0, (3.12)
with a solution๐ฅ๐ โ {โ1,1}for๐ โ [0,6๐]. We show that this is impossible unless๐ด is a zero matrix. Suppose on the contrary that ๐ดis nonzero, let ๐1 < . . . < ๐๐ be the indices of all nonzero columns of ๐ด. Let ๐ดโ be a submatrix of ๐ด, obtained by choosing the intersection of the first๐ rows and columns with indices ๐1, . . . , ๐๐. Then taking the first๐linear equations from the equation set (3.13) and noting that the nonzero columns in ๐ดare the ๐1, . . . , ๐๐-th columns, we have that
๐ดโxโฒ
=
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ ร๐๐1
๐=๐๐
1โ1+1|๐ ๐|๐0 . . . ร๐๐๐
๐=๐๐
๐โ1+1|๐ ๐|๐0 ..
.
.. .
.. . ร๐๐1
๐=๐๐
1โ1+1|๐ ๐|๐๐โ1 . . . ร๐๐๐
๐=๐๐
๐โ1+1|๐ ๐|๐๐โ1
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป
๏ฃฎ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฏ
๏ฃฐ ๐ฅ๐
1
.. . ๐ฅ๐
๐
๏ฃน
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃบ
๏ฃป
=0. (3.13)
The determinant of ๐ดโis given by det(๐ดโ)
=det
ยฉ
ยญ
ยญ
ยญ
ยญ
ยซ ร๐๐1
๐=๐๐
1โ1+1|๐ ๐|๐0 . . . ร๐๐๐
๐=๐๐
๐โ1+1|๐ ๐|๐0 ..
.
...
.. . ร๐๐1
๐=๐๐
1โ1+1|๐ ๐|๐๐โ1 . . . ร๐๐๐
๐=๐๐
๐โ1+1|๐ ๐|๐๐โ1 ยช
ยฎ
ยฎ
ยฎ
ยฎ
ยฌ
(๐)= โ๏ธ
๐1โ(๐๐ 1โ1, ๐๐
1],..., ๐๐โ(๐๐
๐โ1, ๐๐
๐]
det
ยฉ
ยญ
ยญ
ยญ
ยซ
|๐ ๐
1|๐0
1 . . . |๐ ๐
๐|๐0
๐
.. .
... .. .
|๐ ๐
1|๐
๐โ1
1 . . . |๐ ๐
๐|๐
๐โ1 ๐
ยช
ยฎ
ยฎ
ยฎ
ยฌ
(๐)= โ๏ธ
๐1โ(๐๐ 1โ1, ๐๐
1],..., ๐๐โ(๐๐
๐โ1, ๐๐
๐]
" ๐
ร
๐=1
|๐ ๐
๐|det
ยฉ
ยญ
ยญ
ยญ
ยซ ๐0
1 . . . ๐0
๐
.. .
... .. . ๐๐โ1
1 . . . ๐๐โ1
๐
ยช
ยฎ
ยฎ
ยฎ
ยฌ
#
(๐)= โ๏ธ
๐1โ(๐๐ 1โ1, ๐๐
1],..., ๐๐โ(๐๐
๐โ1, ๐๐ ๐]
[
๐
ร
๐=1
|๐ ๐
๐| ร
1โค๐ <โโค๐
(๐โ โ๐๐)], (3.14)
where equality(๐)follows from the multi-linearity of the determinant det( [v1 . . . ๐v๐+๐v . . . v๐])
=๐det( [v1 . . . v๐ . . . v๐])
+๐det( [v1 . . . v๐โ1v v๐+1 . . . v๐])
for any integers ๐ and ๐ and ๐-dimensional vectors v1, . . . ,v๐, v. Equality (๐) follows from the linearity of the determinant
det( [v1 . . . ๐v๐ . . . v๐]) =๐det( [v1 . . . v๐ . . . v๐])
for any integers๐and๐ and๐-dimensional vectorsv1, . . . ,v๐. Equality(๐)follows from the determinant of Vandermonde matrix
det
ยฉ
ยญ
ยญ
ยญ
ยซ ๐0
1 . . . ๐0
๐
.. .
... .. . ๐๐โ1
1 . . . ๐๐โ1๐ ยช
ยฎ
ยฎ
ยฎ
ยฌ
= ร
1โค๐ <โโค๐
(๐โ โ๐๐)
for any integers ๐, ๐1, . . . , ๐๐. . The determinant ๐๐๐ก(๐ดโ) is positive since๐โ > ๐๐ for โ > ๐. and for ๐1 โ (๐๐
1โ1, ๐๐
1], . . . , ๐๐ โ (๐๐
๐โ1, ๐๐
๐]. Note that all the columns of ๐ดโ are nonzero. Therefore, the linear equation ๐ดโxโฒ = 0 does not have nonzero solutions, contradicting the fact thatxโฒ = (๐ฅ๐
1, . . . , ๐ฅ๐
๐) โ {โ1,1}๐. Hence ๐ดis a zero matrix, meaning that
|๐1โฉ [๐, ๐] | โ |๐2โฉ [๐, ๐] | + |๐๐
1โฉ [๐, ๐] | โ |๐๐
2โฉ [๐, ๐] |
=|๐ซโฉ [๐, ๐] | โ |๐ซโฒโฉ [๐, ๐] | =0
for๐ โ {1, . . . , ๐}. This implies๐ซ =๐ซโฒand thusc=cโฒ. Hence Proposition3.4.2is
proved. โก
Proof of Lemma3.2.1
We are now ready to prove Lemma 3.2.1, which states that 1๐ ๐ฆ๐๐(c) = 1๐ ๐ฆ๐๐(cโฒ) for sequences c and cโฒ โ B๐(c) satisfying ๐(1๐ ๐ฆ๐๐(c)) = ๐(1๐ ๐ฆ๐๐(c)). From
Proposition 3.4.1 we have that 1๐ ๐ฆ๐๐(cโฒ) โ B3๐(1๐ ๐ฆ๐๐(c)). Then, it is not hard to see that (1๐ ๐ฆ๐๐(cโฒ)๐, . . . ,1๐ ๐ฆ๐๐(cโฒ)๐) โ B3๐( (1๐ ๐ฆ๐๐(c)๐, . . . ,1๐ ๐ฆ๐๐(c)๐)). This im- plies that ||๐ซ โฉ [๐, ๐] | โ |๐ซโฒ โฉ [๐, ๐] || โค 3๐, where ๐ซ = {๐ : 1๐ ๐ฆ๐๐(c)๐ = 1}
and๐ซโฒ={๐:1๐ ๐ฆ๐๐(cโฒ)๐ =1}. According to the forth line in Eq. (3.5), we have that
|1๐ ๐ฆ๐๐(c) ยทm(๐)โ1๐ ๐ฆ๐๐(cโฒ) ยทm(๐)|
=|
๐
โ๏ธ
๐=1
(|๐ซโฉ [๐, ๐] | โ |๐ซโฒโฉ [๐, ๐] |)๐๐|,
โค
๐
โ๏ธ
๐=1
3๐ ๐๐
<3๐ ๐๐+1. (3.15)
If ๐(1๐ ๐ฆ๐๐(c)) = ๐(1๐ ๐ฆ๐๐(cโฒ)), then
1๐ ๐ฆ๐๐(c) ยทm(๐) โก 1๐ ๐ฆ๐๐(cโฒ) ยทm(๐) mod 3๐ ๐๐+1 (3.16) for๐ โ [0,6๐]. Equations (3.16) and (3.15) imply that1๐ ๐ฆ๐๐(c) ยทm(๐) =1๐ ๐ฆ๐๐(cโฒ) ยท m(๐)for๐ โ [0,6๐]. Since1๐ ๐ฆ๐๐(cโฒ) โ B3๐(1๐ ๐ฆ๐๐(c))and1๐ ๐ฆ๐๐(c),1๐ ๐ฆ๐๐(cโฒ) โ R3๐, from Proposition3.4.2we conclude that1๐ ๐ฆ๐๐(c) =1๐ ๐ฆ๐๐(cโฒ). Hence Lemma3.2.1 is proved.
Proof of Lemma3.2.2
Based on Lemma 3.2.1, we now show Lemma 3.2.2. Specifically, we show that there exists a function ๐ : {0,1}๐ โ [1,22๐log๐+๐(log๐)] such that 1๐ ๐ฆ๐๐(c) = 1๐ ๐ฆ๐๐(cโฒ)for sequencescandcโฒโ B๐(c)satisfying(๐(1๐ ๐ฆ๐๐(c)) mod ๐(c), ๐(c))= (๐(1๐ ๐ฆ๐๐(cโฒ)) mod ๐(cโฒ), ๐(cโฒ)).
Lemma 3.2.1 implies that ๐(1๐ ๐ฆ๐๐(c)) โ ๐(1๐ ๐ฆ๐๐(cโฒ)) for cโฒ โ B๐(c)\{c}, if 1๐ ๐ฆ๐๐(c) โ 1๐ ๐ฆ๐๐(cโฒ). Hence |๐(1๐ ๐ฆ๐๐(c)) โ ๐(1๐ ๐ฆ๐๐(cโฒ)) | โ 0 for cโฒ โ B๐(c)\{c}, where ๐(1๐ ๐ฆ๐๐(c)) and ๐(1๐ ๐ฆ๐๐(cโฒ)) denote the integer presentation of their vec- tor form. The integers are in the range [0,(3๐)6๐+1๐(3๐+1) (6๐+1) โ1]. According to Lemma 3.2.7, the number of divisors of |๐(1๐ ๐ฆ๐๐(c)) โ ๐(1๐ ๐ฆ๐๐(cโฒ)) | is upper bounded by
22[(3๐+1) (6๐+1)ln๐+(6๐+1)ln 3๐]/ln( (3๐+1) (6๐+1)ln๐+(6๐+1)ln 3๐)
=2๐(log๐),
where the equality holds since๐ =๐(โ๏ธ
log log๐). For any sequencec โ {0,1}๐, let
P (c) ={๐ : ๐divides|๐(1๐ ๐ฆ๐๐(cโฒ)) โ ๐(1๐ ๐ฆ๐๐(c)) | for somecโฒโ B๐(c)\{c}such that1๐ ๐ฆ๐๐(c)โ 1๐ ๐ฆ๐๐(cโฒ)}
be the set of all divisors of the numbers {|๐(1๐ ๐ฆ๐๐(cโฒ)) โ ๐(1๐ ๐ฆ๐๐(c)) | : cโฒ โ B๐(c)\{c} and1๐ ๐ฆ๐๐(c)โ 1๐ ๐ฆ๐๐(cโฒ)}. Since |B๐(c) | โค ๐
๐
2
2๐ โค 2๐2๐, we have that
|P (c) | โค2๐2๐2๐(log๐)
=22๐log๐+๐(log๐).
Therefore, there exists a number ๐(c) โ [1,22๐log๐+๐(log๐)] such that ๐(c) does not divide|๐(1๐ ๐ฆ๐๐(cโฒ)) โ ๐(1๐ ๐ฆ๐๐(c)) |for allcโฒโ B๐(c)\{c} satisfying1๐ ๐ฆ๐๐(c) โ 1๐ ๐ฆ๐๐(cโฒ). Hence, if ๐(1๐ ๐ฆ๐๐(cโฒ)) โก ๐(1๐ ๐ฆ๐๐(c))mod ๐(c)andcโฒ โ B๐(c), we have that ๐(c) divides |๐(1๐ ๐ฆ๐๐(cโฒ)) โ ๐(1๐ ๐ฆ๐๐(c)) |, and thus that 1๐ ๐ฆ๐๐(cโฒ) = 1๐ ๐ฆ๐๐(c).
This completes the proof of Lemma3.2.2.