Chapter IV RESULTS AND DISCUSSIONS
CHAPTER 5 CONCLUSIONS AND RECOMMENDATION
5.2. Recommendations
GLOSSARY
Thermosyphon : a method of passive heat exchanger that are based on natural convection to flow the liquid of the system without using additional system such as pump.
Flowcharts : a type of diagram which represent the process of some system or algorithm, which are represents by boxes for the step and arrows for the order.
Conduction : the process of electricity or heat is directly transmitted through a substance when there is a difference of temperature or electrical potential without a movement of the material.
Radiation : an emitted or transmitted energy in the forms of waves or particles through a space or material medium.
Convection : a process of liquid or gas that are depends on the different amount of energy in terms of particles or less heat energy.
Modular : terms of which a systems component may be separated or recombined by using some kind of system or joint method.
Efficiency : the state or quality of being efficient in terms of the ratio of the useful work performed by a machine or in a process to the total energy expended or heat taken in.
REFERENCES
Agency for the Assessment and Application of Technology, 2016. Outlook Energi Indonesia 2016: Pengembangan Energi untuk Mendukung Industri Hijau. Jakarta:
Center for Technology of Energy Resources and Chemical Industry.
Al-Hinti, I. et al., 2010. Energy Conversion and Management. Experimental
investigation on the use of water-phase change material storage in conventional solar water heating systems, 51(8), pp.1735-40.
Arduino, 2017. Arduino. [Online] Available at:
https://www.arduino.cc/en/Guide/Introduction [Accessed 15 June 2017].
Bahrami, M., n.d. Simon Fraser UNiversity. [Online] [Accessed 4 December 2016].
Bergene, T. & Lovvik, M., 1995. Pergamon. MODEL CALCULATIONS ON A FLAT- PLATE SOLAR HEAT COLLECTOR WITH INTEGRATED SOLAR CELLS , 55(6), pp.453-562.
Conceicao, P.D., 2017. Sciencing. [Online] Available at: http://sciencing.com/steel- vs-galvanized-steel-strength-6681560.html [Accessed 09 June 2017].
DIY hacking, 2017. DIY hacking. [Online] Available at:
https://diyhacking.com/arduino-flow-rate-sensor/ [Accessed 16 June 2017].
Gamby, D. & Hoellinger, G., 1987. Int. J. Pres. Ves. & Piping. Thermal Stresses in Helical Tubes, 29(3), pp.195-215.
GARG*, H.P., DATTA, G. & AVANTI, P., 1998. Design NOMOGRAM FOR LONG-TERM PERFORMANCE PREDICTION OF INTEGRATED COLLECTOR STORAGE (ICS) SOLAR WATER HEATER. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 22, pp.1235-48.
GARG, H.P. & AGARWAL, R.K., 1995. Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Conversion and Management, 36(2), pp.87-99.
Helal, O., Chaouachi, B., Gabsi, S. & Bouden, C., 2010. Energetic Performances Study of an Integrated Collector Storage Solar Water Heater. Unit of Research:
Environment Catalyzes and Process Analysis, 3(1), pp.152-58.
Hossain, M.S. et al., 2011. Renewable and Sustainable Energy Reviews. Review on solar water heater collector and thermal energy performance of circulating pipe, 15(8), pp.3801-12.
JR., P.L.M. & THOMAS, G., 1970. Structure and Properties of Thermal-
Mechanically Treated 304 Stainless Steel. Metallurgical Transactions, 1(6), pp.1587–
94.
Kalogirou, S., 2009. Thermal Performance, economic and environmental lifecycle analysis of thermosiphon solar water heaters. Solar Energy, 83(1), pp.29-48.
PT MEDIA MANUFAKTUR INDONESIA, 2014. mmINDUSTRI.co.id. [Online]
Available at: http://www.mmindustri.co.id/olah-potensi-112-000-gwp-dengan- fotovoltaik/ [Accessed 23 November 2016].
Rumbayan, M., Abudureyimu, A. & Nagasaka, K., 2012. Mapping of solar energy potential in Indonesia using artificial neural network. Renewable and Sustainable Energy Reviews, 16, pp.1437– 1449.
Sawa, T., Higurashi, N. & Akagawa, H., 2008. Journal of Pressure Vessel Technology. A Stress Analysis of Pipe Flange Connections, 113(4), pp.497-503.
SHARIAH, A. & SHALABI, B., 1997. Optimal design for a thermosyphon solar water heater. Renewable Eneryy, 11, pp.351-61.
Tonasam, 2015. shoutmetutorials. [Online] Available at:
http://shoutmetutorials.com/solidworks-basics/ [Accessed 23 November 2016].
Toyotaka, F., Ryuichi, H. & Nagata, M., 2004. United States Patent Application Publication. Thermal Insulating Material for Housing Use and Method of Using the Same.
Tripanagnostopoulos, Y. & Souliotis, M., 2004. Renewable Energy. Integrated collector storage solar systems with asymmetric CPC reflectors, 29(2), pp.223- 248.
Tripanagnostopoulos, Y. & Souliotis, M., n.d. Renewable Energy. Integrated Collector Storage Solar Systems with asymmetric CPC reflectors.
APPENDIX A - Solar Water Heater Results and Bill of Material
APPENDIX 1 – Bill Of Material Solar Water Heater Components
Appendix 2 - Solar Water Heater Front View
No Name of Material Dimension Number of
Pcs Price Total
1 MS Hollow Tube 50 x 50 mm 5 cm x 100 cm x 3mm 7 Rp 27.500,00 Rp 192.500,00 2 MS Hollow Tube 50 x 50 mm 5 cm x 180 cm x 3mm 2 Rp 55.000,00 Rp 110.000,00 3 MS Hollow Tube 50 x 50 mm 5 cm x 55 cm x 3mm 2 Rp 25.000,00 Rp 50.000,00 4 MS Hollow Tube 50 x 50 mm 5 cm x 120 cm x 3mm 2 Rp 35.000,00 Rp 70.000,00 5 MS Hollow Tube 50 x 50 mm 5 cm x 90 cm x 3 mm 1 Rp 27.500,00 Rp 27.500,00 6 Stainless Steel Plate 122 cm x 244 cm x 1,5 mm 1 Rp 1.125.000,00 Rp 1.125.000,00 7 Galvanized Pipe dia. 1/2" 2,5 cm x 190 cm x 1,5 mm 4 Rp 20.000,00 Rp 80.000,00 8 Galvanized Pipe dia 1 1/2" 4 cm x 100 cm x 2,5 mm 2 Rp 42.500,00 Rp 85.000,00
9 Zinc Plate 100 cm x 200 cm x 0,1 mm 1 Rp 80.000,00 Rp 80.000,00
10 Bolt 12 mm 12 mm x 8 cm 8 Rp 1.000,00 Rp 8.000,00
11 Bolt 10 mm 10 mm x 8 cm 30 Rp 800,00 Rp 24.000,00
12 Flangs 1/2" 5/5 5 cm x 5 cm 4 Rp 84.500,00 Rp 338.000,00
13 Stainless Steel Pipe 1/2" 200 cm 1 Rp 78.000,00 Rp 78.000,00
14 Ball Tap 1/2" 1 Rp 147.500,00 Rp 147.500,00
15 RockWool 150 cm x 250 cm x 2,5 mm 1 Rp 300.000,00 Rp 300.000,00
16 Wave Zinc Plate 80 cm x 180 cm x 0,3 mm 1 Rp 80.000,00 Rp 80.000,00
17 Steel Plate 122 cm x 244 cm x 0,5 mm 1 Rp 110.000,00 Rp 110.000,00
18 Glass Wool 120 cm x 230 cm 1 Rp 110.000,00 Rp 110.000,00
19 Metalizing Tape 2 Rp 9.000,00 Rp 18.000,00
20 Tank Fabrication Rp 250.000,00 Rp 250.000,00
21 Collector Welding Rp 100.000,00 Rp 100.000,00
22 Glass (Transparent) 100 cm x 200 cm x 5 mm 1 Rp 340.000,00 Rp 340.000,00 Grand Total Rp 3.723.500,00
Appendix 3 – Solar Water Heater Side View
Appendix 4 – Input Water Position Results
Appendix 5 – Output Water Position Results
APPENDIX B – ARDUINO CODE
Programming code to measure the flow of water at the system using flow sensor YF- S201.
/*
Liquid flow rate sensor -DIYhacking.com Arvind Sanjeev
Measure the liquid/water flow rate using this code.
Connect Vcc and Gnd of sensor to arduino, and the signal line to arduino digital pin 2.
*/
#include <SPI.h>
#include <SD.h>
#include <SoftwareSerial.h>
const int chipSelect = 10;
byte statusLed = 13;
byte sensorInterrupt = 0; // 0 = digital pin 2 byte sensorPin = 2;
// The hall-effect flow sensor outputs approximately 4.5 pulses per second per // litre/minute of flow.
float calibrationFactor = 7.5;
volatile byte pulseCount;
float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;
unsigned long oldTime;
String result;
void setup() {
// Initialize a serial connection for reporting values to the host Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only }
Serial.print("Initializing SD card...");
// see if the card is present and can be initialized:
if (!SD.begin(chipSelect)) {
Serial.println("Card failed, or not present");
// don't do anything more:
return;
}
Serial.println("card initialized.");
// Set up the status LED line as an output pinMode(statusLed, OUTPUT);
digitalWrite(statusLed, HIGH); // We have an active-low LED attached
pinMode(sensorPin, INPUT);
digitalWrite(sensorPin, HIGH);
pulseCount = 0;
flowRate = 0.0;
flowMilliLitres = 0;
totalMilliLitres = 0;
oldTime = 0;
// The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
// Configured to trigger on a FALLING state change (transition from HIGH // state to LOW state)
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
} /**
* Main program loop
*/
void loop() {
String dataString = "";
if((millis() - oldTime) > 60000) // Only process counters once per second {
// Disable the interrupt while calculating flow rate and sending the value to // the host
detachInterrupt(sensorInterrupt);
// Because this loop may not complete in exactly 1 second intervals we calculate
// the number of milliseconds that have passed since the last execution and use
// that to scale the output. We also apply the calibrationFactor to scale the output
// based on the number of pulses per second per units of measure (litres/minute in
// this case) coming from the sensor.
flowRate = ((60000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
// Note the time this processing pass was executed. Note that because we've // disabled interrupts the millis() function won't actually be incrementing right
// at this point, but it will still return the value it was set to just before // interrupts went away.
oldTime = millis();
// Divide the flow rate in litres/minute by 60 to determine how many litres have
// passed through the sensor in this 1 second interval, then multiply by 1000 to
// convert to millilitres.
flowMilliLitres = (flowRate / 60) * 1000;
// Add the millilitres passed in this second to the cumulative total totalMilliLitres += flowMilliLitres;
unsigned int frac;
// Print the flow rate for this second in litres / minute //b Serial.print("Flow rate: ");
//b Serial.print(int(flowRate)); // Print the integer part of the variable //b Serial.print("L/min");
//b Serial.print("\t"); // Print tab space
// Print the cumulative total of litres flowed since starting //b Serial.print("Output Liquid Quantity: ");
//b Serial.print(totalMilliLitres);
//b Serial.println("mL");
//b Serial.print("\t"); // Print tab space //b Serial.print(totalMilliLitres/1000);
//b Serial.print("L");
result += "Flow rate: ";
result += String(flowRate);
result += "L/min";
result += " ";
result += "Output Liquid Quantity: ";
result += String(totalMilliLitres);
result += "mL";
result += "\n";
result += " ";
result += String(totalMilliLitres/1000);
result += "L ";
Serial.print(result);
File dataFile = SD.open("datalog.txt", FILE_WRITE);
dataString = String(result);
if (dataFile) {
dataFile.println(dataString);
dataFile.close();
// print to the serial port too:
}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.txt");
}
result = "";
// Reset the pulse counter so we can start incrementing again pulseCount = 0;
// Enable the interrupt again now that we've finished sending output attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
} } /*
Insterrupt Service Routine */
void pulseCounter() {
// Increment the pulse counter pulseCount++;
}
CURRICULUM VITAE PERSONAL INFORMATION
Name Richard Date, Place
of Birth 28 September 1995/Jakarta, Indonesia
Nationality Indonesian Marital
Status Single
Address Villa Tangerang Regency 1 Blok OB 4 No 11 A
HP +62 812 9795 4547
Email [email protected]
EDUCATION
2013 - present Swiss German University (SGU), Prominence Tower, Alam Sutera - Tangerang, Indonesia
Field of Study: Mechanical Engineering
Major: Mechatronics Engineering 8th Semester - expected year of
graduation: 2017
2010 - 2013 High School: SMA UPH College, Lippo Karawaci, Tangerang
Major: Science Program
WORKING EXPERIENCES
Dec - Januari 2017
Technician Intern at PT Suhaterm Manufacturing
Jl Palem Manis Raya, Sentra Prima Tekno Park,Jatiuwung, Tangerang
March - June 2016
Intern at RK AutoWelt Werl
Soester Straße 50 59457 Werl
Aug 2014 - Feb 2015
Electrical Technician Intern at PT Usaha Saudara Mandiri
Jalan Haji Aning No 88, Jatiuwung, Tangerang Selatan
KNOWLEDGES AND SKILLS
Languages
Indonesian Native
English Fluent in spoken and written German Basic knowledge - A2 Computers
PowerPoint, Solidworks
Basic Knowledge of Arduino, PLC Mitsubishi , AutoCAD
ADDITIONAL INFORMATION
Interests Photography, Travelling , Basketball