• Tidak ada hasil yang ditemukan

BAB V KESIMPULAN DAN SARAN

5.2 Saran

Penelitian ini masih memiliki kekurangan sehingga masih memerlukan penyempurnaan untuk penelitian di masa yang akan datang. Oleh karena itu, beberapa saran yang mungkin dapat diberikan untuk perbankan khususnya Bank Mandiri, Bank BCA serta Bank BRI dan untuk penelitian selanjutnya, yaitu sebagai berikut.

1. Bank diharapkan dapat memberikan layanan yang memudahkan nasabah untuk melakukan transaksi dimanapun dan kapanpun secara cepat, tepat dan nyaman. Serta bank diharapkan mampu memberikan keuntungan secara nyata untuk produk mobile banking.

2. Bank harus mampu memberikan tarif layanan yang lebih kompetitif, sehingga bisa disesuaikan dengan tingkat keuangan dan kebutuhan nasabah.

3. Bank juga harus selalu menjaga privasi dan keamanan nasabah, agar nasabah memberikan kepercayaan lebih kepada bank.

4. Untuk penelitian selanjutnya, dapat mengganti objek produk layanan yang mungkin nantinya akan semaking berkembang tidak hanya terhenti di produk e-banking. Serta mengganti atau menambah objek perusahaan perbankan, dan menambah variabel- variabel penelitian yang ada. Sehingga akan memperkaya penelitian dan diharapkan menghasilkan penelitian yang lebih mendalam dan bermanfaat.

DAFTAR PUSTAKA

Adam, M., & Rahayu, N. (2013). Laba Kuartal I 2013 BRI Naik 18,76 Persen. Retrieved from http://bisnis.news.viva.co.id/news/read/407788-laba-kuartal-i-2013-bri-naik-18-76-persen.

Diakses: April 2014

Almilia, L. S., Si, M., & Giarta, A. N. (2005). Perspektif Nasabah Perbankan Atas Kehadiran SMS Banking Dan WAP Banking Sebagai Sistem Informasi Perbankan Yang Bernilai Tambah.

Alsughayir, A., Imam, A., & Islamic, S. (n.d.). Examining a theory of reasoned action ( TRA ) in internet banking using SEM among Saudi consumer.

Belch, G. E., & Belch, M. A. (2012). Advertising and Promotion: An Integrated Marketing Communication. NY: McGraw-Hill.

Burhanudin. (n.d.). Theory of Planned Behavior: Aplikasi Pada Niat Konsumen Untuk Berlangganan Surat Kabar.

Calisir, F., Gumussoy, C. A., & Bayram, A. (2009). Predicting the behavioral intention to use enterprise resource planning systems: An exploratory extension of the technology acceptance model. Management Research News, 32(7), 597–613.

Castelfranchi, C., & Tan, Y. (2002). The Role of Trust and Deception in Virtual Societies.

Internatonal Journal of Electronic Commerce, 6(3), 55–70.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in Online Shopping: An Integrated Model. Management Information System Research Center, 27(1), 51–90.

George, J. F. (2004). The theory of planned behavior and Internet purchasing. Internet Research, 14(3), 198–212.

Ghobakhloo, M., Arias-Aranda, D., & Benitez-Amado, J. (2011). Adoption of e-commerce applications in SMEs. Industrial Management & Data Systems, 111(8), 1238–1269.

Giovanis, A. N., Binioris, S., & Polychronopoulos, G. (2012). An extension of TAM model with IDT and security/privacy risk in the adoption of internet banking services in Greece.

EuroMed Journal of Business, 7(1), 24–53.

Gu, J.-C., Lee, S.-C., & Suh, Y.-H. (2009). Determinants of behavioral intention to mobile banking. Expert Systems with Applications, 36(9), 11605–11616.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective. Upper Saddle River, N.J: Pearson Education.

Hernandez, J. M. C., & Mazzon, J. A. (2007). Adoption of internet banking: proposition and implementation of an integrated methodology approach. International Journal of Bank Marketing, 25(2), 72–88.

Idris, U., Nababan, C. N., & Perbankan, C. M. (2013). Sistem Keamanan Berlapis Tangkal Pencurian. Retrieved from http://nasional.kontan.co.id/news/sistem-keamanan-berlapis- tangkal-pencurian-data. Diakses: April 2014

Jarvenpaa, S. L., Knoll, K., & Leidner, D. E. (1998). Is Anybody Out There ? Antecedents of Trust in Global Virtual Teams. Journal of Management Information Systems, 14(4), 29–64.

Jeong, B. K., & Yoon, T. E. (2013). An Empirical Investigation on Consumer Acceptance of Mobile Banking Services. Business and Management Research, 2(1), 31–40.

Juwaheer, T. D., Pudaruth, S., & Ramdin, P. (2012). Factors influencing the adoption of internet banking: a case study of commercial banks in Mauritius. World Journal of Science, Technology and Sustainable Development, 9(3), 204–234.

Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time : A cross-sectional comparison of ... MIS Quarterly, 23(2), 183–213.

Kompasiana. (2013). 18-19 Juta Pengguna Baru Internet di 2013 Didominasi Kalangan “Middle Clas. Retrieved from http://teknologi.kompasiana.com/internet/2013/01/07/18-19-juta- pengguna-baru-internet-di-2013-didominasi-kalangan-middle-class-517133.html. Diakses:

April 2014

Kotler, P., & Amstrong, G. (2012). Principles of Marketing (14th Edition.). Pearson Education Limited.

Laukkanen, T. (2007). Internet vs mobile banking: comparing customer value perceptions.

Business Process Management Journal, 13(6), 788–797.

Lee, E., Kwon, K.-N., & Schumann, D. W. (2005). Segmenting the non-adopter category in the diffusion of internet banking. International Journal of Bank Marketing, 23(5), 414–437.

Lin, C. S., & Chen, C. (2011). Application of Theory of Planned Behavior on the Study of Workplace Dishonesty. 2010 International Conference on Economics, Business and Management, 2, 66–69.

Lin, H.-F. (2011). An empirical investigation of mobile banking adoption: The effect of innovation attributes and knowledge-based trust. International Journal of Information Management, 31(3), 252–260.

Lovelock, C., & Wirtz, J. (2011). Service Marketing: People, Technology, Strategy (7th Edition).

Pearson Education Limited.

Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi- faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2), 222–234.

Lupiyoadi, R. (2013). Manajemen Pemasaran Jasa (3th Edition.). Penerbit Salemba Empat.

Malhotra, N. K. (2010). Marketing Research: An Applied Orientation. Upper Saddle River, NJ:

Pearson/Prentice Hall.

Marini. (2008). Kajian Layanan SMS Banking: Studi Kasus SMS Banking Mahasiswa, (2001).

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (2011). MODEL OF TRUST, 20(3), 709–734.

McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3), 334–359.

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the percceptions of adopting an information technology innovation.pdf. Information System Research, 3(2), 192–222.

Ndubisi, N. O., Wah, C. K., & Ndubisi, G. C. (2007). Supplier-customer relationship management and customer loyalty The banking industry perspective. Journal of Enterprise Information Management, 20(2), 222–236.

News, I. B. (2012). Empat Problem Besar SMS / Mobile Banking Indonesia. Retrieved from http://www.infobanknews.com/2012/03/empat-problem-besar-smsmobile-banking-

indonesia/. Diakses: April 2014

Novi, N., Arini, D., Head, G., Banking, E., & Bank, G. (2014). Transaksi Lewat E-Channel Bank Mandiri Semakin Dominan. Retrieved from http://swa.co.id/technology/transaksi-lewat-e- channel-bank-mandiri-semakin-dominan?mobile=on. Diakses: April 2014

Paseban, P. (2014). Aplikasi Mobile Banking Bank Indonesia yang ada di Google Play.

Retrieved from http://portal.paseban.com/review/26652/aplikasi-mobile-banking. Diakses:

Mei 2014

Pennington, R., Wilcox, H. D., & Grover, V. (2003). The Role of System Trust in Business-to- Consumer Transactions. Journal of Management Information Systems, 20(3), 197–226.

Pitoyo, A. (2014). Jumlah pengguna internet Indonesia capai 71,19 juta pada 2013. Retrieved from http://www.merdeka.com/teknologi/jumlah-pengguna-internet-indonesia-capai-7119- juta-pada-2013.html. Diakses: April 2014

Pratiwi, R., & Suwandi, I. (2014). BCA Terus Mengikuti Perkembangan Teknologi demi Keamanan dan Kenyamanan Transaksi. Retrieved from http://swa.co.id/business-

strategy/bca-terus-mengikuti-perkembangan-teknologi-demi-kemananan-dan-kenyamanan- transaksi. Diakses: April 2014

Robert, L. P., Denis, A. R., & Hung, Y.-T. C. (2009). Individual Swift Trust and Knowledge- Based Trust in Face-to-Face and Virtual Team Members. Journal of Management Information Systems, 26(2), 241–279.

Rogers, E. M., & Everett, M. (1983). DIFFUSION OF Third Edition.

Rogers, E. M. (1995). Diffusion of Innovation (4th Edition.). The Free Press, New York.

Rogers, E. M., & Quinlan, M. M. (2004). 26 Diffusion of Innovations Everett M. Rogers. New York: Free Press, 1–25.

Santoso, S. (2012). Analisis SEM Menggunakan AMOS. Jakarta: PT. Elex Media Komputindo.

Sihotang, E., & Nasabah, P. (2012). Mobile Banking Untuk Mereka yang Mobile. Retrieved from http://economy.okezone.com/read/2012/09/19/279/692066/mobile-banking-untuk- mereka-yang-mobile. Diakses: April 2014

Straus, J., El-Ansary, A., & Frost, R. (n.d.). E-Marketing (4th Edition.).

Suharini, M. (2008). Persepsi Nasabah terhadap Penerapan Sistem Layanan Produk dan Jasa E- Banking, 15, 168–189.

Tornatzky, L. G., & Klein, K. J. (1982). Innocation Characteristics and Innovation Adoption- Implementation: A Meta-Analysis of Finding. IEEE Transaction On Engineering Management, 29(1), 28–43.

Vella, J., Caruana, A., & Pitt, L. (2013). Organizational commitment and users’ perception of ease of use: a study among bank managers. Journal of Management Development, 32(4), 351–362.

Wang, Y.-S., Wang, Y.-M., Lin, H.-H., & Tang, T.-I. (2003). Determinants of user acceptance of Internet banking: an empirical study. International Journal of Service Industry Management, 14(5), 501–519.

Wessels, L., & Drennan, J. (2010). An investigation of consumer acceptance of M-banking.

International Journal of Bank Marketing, 28(7), 547–568.

Wijayanto, S. H. (2008). Structural Equation Modeling Dengan Lisrel 8.8 (1st Edition.). Graha Ilmu.

Yu, C. (2012). FACTORS AFFECTING INDIVIDUALS TO ADOPT MOBILE BANKING : EMPIRICAL EVIDENCE FROM THE UTAUT MODEL. Journal of E;ectronic Comerce Research, 13(2), 104–121.

Zumar, D. (2013). Awareness & Penetrasi Mobile Banking Melonjak Tinggi. Retrieved from http://newsletter.marsindonesia.com/2013/02/06/awareness-penetrasi-mobile-banking- melonjak-tinggi/. Diakses: April 2014

http://id.wikipedia.org www.bca.co.id

www.bankmandiri.co.id

LAMPIRAN

Lampiran 1 Kuisioner Penelitian

Lampiran 2 Hasil Uji Validitas dan Relibilitas Pre-Test

1. Perceived Relative Advantage Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .736

Bartlett's Test of Sphericity

Approx. Chi-Square 72.095

df 6

Sig. .000

Anti-image Matrices

PRA1 PRA2 PRA3 PRA4

Anti-image Covariance

PRA1 .121 -.092 -.006 .006

PRA2 -.092 .099 -.075 -.049

PRA3 -.006 -.075 .364 .014

PRA4 .006 -.049 .014 .832

Anti-image Correlation

PRA1 .692a -.839 -.029 .020

PRA2 -.839 .654a -.396 -.169

PRA3 -.029 -.396 .891a .026

PRA4 .020 -.169 .026 .932a

a. Measures of Sampling Adequacy(MSA)

Communalities

Initial Extraction

PRA1 1.000 .887

PRA2 1.000 .925

PRA3 1.000 .769

PRA4 1.000 .296

Extraction Method: Principal Component Analysis.

Lanjutan

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.876 71.903 71.903 2.876 71.903 71.903

2 .789 19.734 91.637

3 .276 6.893 98.530

4 .059 1.470 100.000

Extraction Method: Principal Component Analysis.

Component Matrixa

Component 1

PRA1 .942

PRA2 .962

PRA3 .877

PRA4 .544

Extraction Method:

Principal Component Analysis.

a. 1 components extracted.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

N %

Cases

Valid 25 100.0

Excludeda 0 .0

Total 25 100.0

a. Listwise deletion based on all variables in the procedure.

Lanjutan

Reliability Statistics Cronbach's

Alpha

N of Items

.862 4

Item-Total Statistics Scale Mean if

Item Deleted

Scale Variance if Item Deleted

Corrected Item- Total Correlation

Cronbach's Alpha if Item

Deleted

PRA1 15.80 10.250 .857 .762

PRA2 15.76 9.690 .898 .740

PRA3 16.16 9.473 .748 .813

PRA4 17.20 14.500 .386 .930

2. Perceived Ease of Use Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .772

Bartlett's Test of Sphericity

Approx. Chi-Square 88.195

df 6

Sig. .000

Anti-image Matrices

PEOU1 PEOU2 PEOU3 PEOU4

Anti-image Covariance

PEOU1 .354 -.029 .015 -.068

PEOU2 -.029 .235 .043 -.089

PEOU3 .015 .043 .200 -.097

PEOU4 -.068 -.089 -.097 .089

Anti-image Correlation

PEOU1 .911a -.099 .058 -.383

PEOU2 -.099 .810a .198 -.612

PEOU3 .058 .198 .760a -.723

PEOU4 -.383 -.612 -.723 .676a

a. Measures of Sampling Adequacy(MSA)

Communalities

Initial Extraction

PEOU1 1.000 .767

PEOU2 1.000 .823

PEOU3 1.000 .816

PEOU4 1.000 .947

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.354 83.848 83.848 3.354 83.848 83.848

2 .322 8.051 91.899

3 .262 6.544 98.443

4 .062 1.557 100.000

Extraction Method: Principal Component Analysis.

Component Matrixa

Component 1

PEOU1 .876

PEOU2 .907

PEOU3 .903

PEOU4 .973

Extraction Method:

Principal Component Analysis.

a. 1 components extracted.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

N %

Cases

Valid 25 100.0

Excludeda 0 .0

Total 25 100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics Cronbach's

Alpha

N of Items

.933 4

Item-Total Statistics Scale Mean if

Item Deleted

Scale Variance if Item Deleted

Corrected Item- Total Correlation

Cronbach's Alpha if Item

Deleted

PEOU1 16.72 13.793 .783 .931

PEOU2 16.72 13.877 .830 .917

PEOU3 16.76 12.690 .824 .921

PEOU4 16.52 13.177 .948 .880

3. Perceived Compatibility Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .731

Bartlett's Test of Sphericity

Approx. Chi-Square 33.343

df 3

Sig. .000

Anti-image Matrices

PCB1 PCB2 PCB3

Anti-image Covariance

PCB1 .464 -.193 -.121

PCB2 -.193 .377 -.203

PCB3 -.121 -.203 .445

Anti-image Correlation

PCB1 .763a -.461 -.266

PCB2 -.461 .691a -.495

PCB3 -.266 -.495 .747a

a. Measures of Sampling Adequacy(MSA)

Communalities

Initial Extraction

PCB1 1.000 .769

PCB2 1.000 .831

PCB3 1.000 .781

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.381 79.359 79.359 2.381 79.359 79.359

2 .360 11.998 91.357

3 .259 8.643 100.000

Extraction Method: Principal Component Analysis.

Component Matrixa

Component 1

PCB1 .877

PCB2 .911

PCB3 .884

Extraction Method:

Principal Component Analysis.

a. 1 components extracted.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

N %

Cases

Valid 25 100.0

Excludeda 0 .0

Total 25 100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics Cronbach's

Alpha

N of Items

.869 3

Item-Total Statistics Scale Mean if

Item Deleted

Scale Variance if Item Deleted

Corrected Item- Total Correlation

Cronbach's Alpha if Item

Deleted

PCB1 9.88 6.110 .727 .838

PCB2 10.20 5.083 .789 .779

PCB3 9.84 5.557 .740 .824

4. Perceived Competence Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .756

Bartlett's Test of Sphericity

Approx. Chi-Square 81.752

df 3

Sig. .000

Anti-image Matrices

PCT1 PCT2 PCT3

Anti-image Covariance

PCT1 .163 -.076 -.025

PCT2 -.076 .099 -.078

PCT3 -.025 -.078 .149

Anti-image Correlation

PCT1 .807a -.593 -.158

PCT2 -.593 .689a -.638

PCT3 -.158 -.638 .787a

a. Measures of Sampling Adequacy(MSA)

Communalities

Initial Extraction

PCT1 1.000 .918

PCT2 1.000 .956

PCT3 1.000 .924

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.799 93.287 93.287 2.799 93.287 93.287

2 .135 4.511 97.798

3 .066 2.202 100.000

Extraction Method: Principal Component Analysis.

Component Matrixa

Component 1

PCT1 .958

PCT2 .978

PCT3 .961

Extraction Method:

Principal Component Analysis.

a. 1 components extracted.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

N %

Cases

Valid 25 100.0

Excludeda 0 .0

Total 25 100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics Cronbach's

Alpha

N of Items

.964 3

Item-Total Statistics Scale Mean if

Item Deleted

Scale Variance if Item Deleted

Corrected Item- Total Correlation

Cronbach's Alpha if Item

Deleted

PCT1 9.36 5.323 .907 .958

PCT2 9.44 4.923 .949 .928

PCT3 9.60 5.250 .913 .954

5. Perceived Benevolence Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .666

Bartlett's Test of Sphericity

Approx. Chi-Square 51.965

df 3

Sig. .000

Anti-image Matrices

PB1 PB2 PB3

Anti-image Covariance

PB1 .227 -.151 .020

PB2 -.151 .165 -.138

PB3 .020 -.138 .421

Anti-image Correlation

PB1 .660a -.780 .064

PB2 -.780 .604a -.524

PB3 .064 -.524 .782a

a. Measures of Sampling Adequacy(MSA)

Communalities

Initial Extraction

PB1 1.000 .849

PB2 1.000 .925

PB3 1.000 .755

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.528 84.275 84.275 2.528 84.275 84.275

2 .369 12.297 96.572

3 .103 3.428 100.000

Extraction Method: Principal Component Analysis.

Component Matrixa

Component 1

PB1 .921

PB2 .962

PB3 .869

Extraction Method:

Principal Component Analysis.

a. 1 components extracted.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

N %

Cases

Valid 25 100.0

Excludeda 0 .0

Total 25 100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics Cronbach's

Alpha

N of Items

.904 3

Item-Total Statistics Scale Mean if

Item Deleted

Scale Variance if Item Deleted

Corrected Item- Total Correlation

Cronbach's Alpha if Item

Deleted

PB1 9.68 6.227 .809 .862

PB2 9.76 6.023 .901 .786

PB3 10.64 6.323 .725 .935

6. Perceived Integrity Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .780

Bartlett's Test of Sphericity

Approx. Chi-Square 83.995

df 3

Sig. .000

Anti-image Matrices

PI1 PI2 PI3

Anti-image Covariance

PI1 .118 -.059 -.072

PI2 -.059 .155 -.054

PI3 -.072 -.054 .123

Anti-image Correlation

PI1 .754a -.434 -.597

PI2 -.434 .826a -.391

PI3 -.597 -.391 .766a

a. Measures of Sampling Adequacy(MSA)

Communalities

Initial Extraction

PI1 1.000 .946

PI2 1.000 .929

PI3 1.000 .943

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.818 93.940 93.940 2.818 93.940 93.940

2 .106 3.546 97.486

3 .075 2.514 100.000

Extraction Method: Principal Component Analysis.

Component Matrixa

Component 1

PI1 .973

PI2 .964

PI3 .971

Extraction Method:

Principal Component Analysis.

a. 1 components extracted.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

N %

Cases

Valid 25 100.0

Excludeda 0 .0

Total 25 100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics Cronbach's

Alpha

N of Items

.966 3

Item-Total Statistics Scale Mean if

Item Deleted

Scale Variance if Item Deleted

Corrected Item- Total Correlation

Cronbach's Alpha if Item

Deleted

PI1 10.00 7.583 .938 .946

PI2 9.84 6.807 .919 .960

PI3 9.76 7.190 .934 .946

7. Attitude Toward Using Mobile Banking Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .711

Bartlett's Test of Sphericity

Approx. Chi-Square 88.948

df 3

Sig. .000

Anti-image Matrices

AT1 AT2 AT3

Anti-image Covariance

AT1 .060 -.058 -.055

AT2 -.058 .076 .004

AT3 -.055 .004 .237

Anti-image Correlation

AT1 .636a -.865 -.466

AT2 -.865 .684a .033

AT3 -.466 .033 .870a

a. Measures of Sampling Adequacy(MSA)

Communalities

Initial Extraction

AT1 1.000 .965

AT2 1.000 .939

AT3 1.000 .876

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.780 92.681 92.681 2.780 92.681 92.681

2 .184 6.142 98.823

3 .035 1.177 100.000

Extraction Method: Principal Component Analysis.

Component Matrixa

Component 1

AT1 .982

AT2 .969

AT3 .936

Extraction Method:

Principal Component Analysis.

a. 1 components extracted.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

N %

Cases

Valid 25 100.0

Excludeda 0 .0

Total 25 100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics Cronbach's

Alpha

N of Items

.960 3

Item-Total Statistics Scale Mean if

Item Deleted

Scale Variance if Item Deleted

Corrected Item- Total Correlation

Cronbach's Alpha if Item

Deleted

AT1 10.84 7.140 .960 .907

AT2 10.84 7.140 .931 .930

AT3 11.04 8.373 .862 .980

8. Behavioral Intention Toward Using Mobile Banking Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .857

Bartlett's Test of Sphericity

Approx. Chi-Square 130.826

df 6

Sig. .000

Anti-image Matrices

BI1 BI2 BI3 BI4

Anti-image Covariance

BI1 .076 -.027 -.049 -.005

BI2 -.027 .103 -.028 -.057

BI3 -.049 -.028 .071 -.019

BI4 -.005 -.057 -.019 .246

Anti-image Correlation

BI1 .819a -.311 -.667 -.036

BI2 -.311 .883a -.323 -.356

BI3 -.667 -.323 .814a -.144

BI4 -.036 -.356 -.144 .935a

a. Measures of Sampling Adequacy(MSA)

Communalities

Initial Extraction

BI1 1.000 .940

BI2 1.000 .941

BI3 1.000 .948

BI4 1.000 .847

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.676 91.904 91.904 3.676 91.904 91.904

2 .204 5.097 97.001

3 .076 1.906 98.907

4 .044 1.093 100.000

Extraction Method: Principal Component Analysis.

Component Matrixa

Component 1

BI1 .970

BI2 .970

BI3 .974

BI4 .920

Extraction Method:

Principal Component Analysis.

a. 1 components extracted.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

N %

Cases

Valid 25 100.0

Excludeda 0 .0

Total 25 100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics Cronbach's

Alpha

N of Items

.969 4

Item-Total Statistics Scale Mean if

Item Deleted

Scale Variance if Item Deleted

Corrected Item- Total Correlation

Cronbach's Alpha if Item

Deleted

BI1 17.00 15.000 .942 .953

BI2 17.08 15.577 .945 .954

BI3 17.08 14.577 .949 .950

BI4 17.36 14.657 .863 .978

Lampiran 2: Path Diagram Measurement Model Fit

Lampiran 3: Path Diagram Overall Fit

Lampiran 4: Assesment of Normality

Variable min max skew c.r. kurtosis c.r.

AT1 1.000 7.000 -1.288 -6.816 1.721 4.553 AT2 1.000 7.000 -1.349 -7.137 1.789 4.732 AT3 1.000 7.000 -1.116 -5.905 1.483 3.924 BI4 1.000 7.000 -.905 -4.786 .280 .742 BI3 1.000 7.000 -1.082 -5.727 .760 2.011 BI2 1.000 7.000 -1.074 -5.682 .932 2.465 BI1 1.000 7.000 -1.153 -6.099 1.037 2.743 PI1 1.000 7.000 -.533 -2.819 -.220 -.581 PI2 1.000 7.000 -.634 -3.353 .006 .015 PI3 1.000 7.000 -.598 -3.165 .273 .721 PB1 1.000 7.000 -1.012 -5.356 .633 1.675 PB2 1.000 7.000 -.780 -4.127 .416 1.100 PB3 1.000 7.000 -.385 -2.037 -.124 -.328 PCT1 1.000 7.000 -.592 -3.135 -.025 -.067 PCT2 1.000 7.000 -.515 -2.725 -.253 -.670 PCT3 1.000 7.000 -.524 -2.772 -.122 -.322 PCB1 1.000 7.000 -.747 -3.955 .012 .031 PCB2 1.000 7.000 -.597 -3.158 -.117 -.310 PCB3 1.000 7.000 -.619 -3.275 -.133 -.353 PEOU1 1.000 7.000 -1.025 -5.423 .776 2.053 PEOU2 1.000 7.000 -.947 -5.011 .608 1.609 PEOU3 1.000 7.000 -.873 -4.618 .341 .903 PEOU4 1.000 7.000 -.956 -5.061 .545 1.442 PRA1 1.000 7.000 -1.115 -5.898 .999 2.642 PRA2 1.000 7.000 -1.196 -6.331 1.145 3.030 PRA3 1.000 7.000 -.975 -5.161 .695 1.839 PRA4 1.000 7.000 -.315 -1.665 -.444 -1.174

Multivariate 309.418 50.673

Lampiran 5: Standardized Regression Weight

Estimate PRA4 <--- PRA .660 PRA3 <--- PRA .831 PRA2 <--- PRA .937 PRA1 <--- PRA .909 PEOU4 <--- PEOU .864 PEOU3 <--- PEOU .710 PEOU2 <--- PEOU .891 PEOU1 <--- PEOU .842 PCB3 <--- PCB .904 PCB2 <--- PCB .809 PCB1 <--- PCB .889 PCT3 <--- PCT .945 PCT2 <--- PCT .950 PCT1 <--- PCT .907 PB3 <--- PB .764 PB2 <--- PB .914 PB1 <--- PB .856 PI3 <--- PI .822 PI2 <--- PI .956 PI1 <--- PI .869 BI1 <--- BI .920 BI2 <--- BI .980 BI3 <--- BI .960 BI4 <--- BI .922 AT3 <--- AT .890 AT2 <--- AT .891 AT1 <--- AT .963

Lampiran 6: Hasil Perhitungan Construct Reliability dan Variance Extracted

Variabel

Laten Indikator Factor

Loading Uji Validitas Uji Reliabilitas AVE Kesimpulan CR Kesimpulan Perceived

Relative Advantage

PRA1 0.909

0.708 Valid 0.905 Reliabel

PRA2 0.937

PRA3 0.831

PRA4 0.660

Perceived Ease of Use

PEOU1 0.842

0.688 Valid 0.898 Reliabel

PEOU2 0.891

PEOU3 0.710

PEOU4 0.864

Perceived Compatibility

PCB1 0.889

0.754 Valid 0.902 Reliabel

PCB2 0.809

PCB3 0.904

Perceived Competence

PCT1 0.907

0.873 Valid 0.954 Reliabel

PCT2 0.950

PCT3 0.945

Perceived Benevolence

PB1 0.856

0.717 Valid 0.884 Reliabel

PB2 0.914

PB3 0.764

Perceived Integrity

PI1 0.869

0.782 Valid 0.914 Reliabel

PI2 0.956

PI3 0.822

Attitude AT1 0.963

0.838 Valid 0.939 Reliabel

AT2 0.891

AT3 0.890

Behavioral Intention

BI1 0.920

0.895 Valid 0.971 Reliabel

BI2 0.980

BI3 0.960

BI4 0.922

Lampiran 7: Model Fit Summary (Overall Model Fit)

CMIN

Model NPAR CMIN DF P CMIN/DF

Default model 62 1489.713 316 .000 4.714

Saturated model 378 .000 0

Independence model 27 5776.710 351 .000 16.458

RMR, GFI

Model RMR GFI AGFI PGFI

Default model .898 .589 .508 .492 Saturated model .000 1.000

Independence model 1.087 .089 .019 .082

Baseline Comparisons

Model NFI

Delta1 RFI

rho1 IFI

Delta2 TLI

rho2 CFI Default model .742 .714 .785 .760 .784

Saturated model 1.000 1.000 1.000

Independence model .000 .000 .000 .000 .000

Parsimony-Adjusted Measures

Model PRATIO PNFI PCFI

Default model .900 .668 .706 Saturated model .000 .000 .000 Independence model 1.000 .000 .000

NCP

Model NCP LO 90 HI 90

Default model 1173.713 1057.377 1297.554

Saturated model .000 .000 .000

Independence model 5425.710 5182.723 5675.111

FMIN

Model FMIN F0 LO 90 HI 90

Default model 8.920 7.028 6.332 7.770

Model FMIN F0 LO 90 HI 90 Saturated model .000 .000 .000 .000 Independence model 34.591 32.489 31.034 33.983

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Default model .149 .142 .157 .000

Independence model .304 .297 .311 .000

AIC

Model AIC BCC BIC CAIC

Default model 1613.713 1638.691 1807.399 1869.399 Saturated model 756.000 908.288 1936.858 2314.858 Independence model 5830.710 5841.588 5915.057 5942.057

ECVI

Model ECVI LO 90 HI 90 MECVI

Default model 9.663 8.966 10.405 9.813 Saturated model 4.527 4.527 4.527 5.439 Independence model 34.914 33.459 36.408 34.980

HOELTER

Model HOELTER

.05 HOELTER

Default model 41 .01 43

Independence model 12 13

Lampiran 8: Regression Weight

Estimate S.E. C.R. P Label AT <--- PRA .280 .067 4.208 ***

AT <--- PEOU .436 .058 7.554 ***

AT <--- PCB .270 .049 5.569 ***

AT <--- PCT -.071 .078 -.907 .364 AT <--- PB -.026 .083 -.308 .758 AT <--- PI .260 .049 5.356 ***

BI <--- AT .940 .095 9.864 ***

PRA4 <--- PRA 1.000

PRA3 <--- PRA 1.212 .138 8.774 ***

PRA2 <--- PRA 1.303 .135 9.668 ***

PRA1 <--- PRA 1.247 .132 9.480 ***

PEOU4 <--- PEOU 1.000

PEOU3 <--- PEOU .946 .092 10.305 ***

PEOU2 <--- PEOU 1.013 .068 14.832 ***

PEOU1 <--- PEOU .966 .069 13.998 ***

PCB3 <--- PCB 1.000

PCB2 <--- PCB .987 .075 13.116 ***

PCB1 <--- PCB 1.091 .071 15.262 ***

PCT1 <--- PCT 1.000

PCT2 <--- PCT 1.071 .050 21.392 ***

PCT3 <--- PCT 1.008 .047 21.456 ***

PB1 <--- PB 1.000

PB2 <--- PB 1.110 .063 17.597 ***

PB3 <--- PB .971 .086 11.292 ***

PI1 <--- PI 1.000

PI2 <--- PI 1.078 .063 17.121 ***

PI3 <--- PI .874 .066 13.304 ***

AT1 <--- AT 1.000

AT2 <--- AT .957 .069 13.922 ***

AT3 <--- AT 1.006 .089 11.312 ***

BI4 <--- BI 1.000

BI3 <--- BI 1.004 .051 19.532 ***

BI2 <--- BI .986 .046 21.214 ***

BI1 <--- BI .980 .058 16.867 ***

DAFTAR RIWAYAT HIDUP

Nama : Adinda Endah Permatasari

Alamat : Jl Umar Ling X No 86, Medan/Jl Kemang Barat No 7G, Jakarta Selatan Nomor Hp : 085761243528/082114046516

Email : [email protected] [email protected] Line & Twitter : dinda/dinda1004

DATA PRIBADI

Tempat, Tanggal Lahir : Medan, 30 November 1992 Kewarganegaraan : Indonesia

Status Perkawinan : Belum Menikah

Agama : Islam

Kegemaran : Membaca buku, mendengarkan musik, travelling

No. Identitas :

IPK : 3,08

PENDIDIKAN FORMAL

TK Pertiwi Medan : 1996-1998

SD Pertiwi Medan : 1998-2004

SMP Muhammadiyah 2 Yogyakarta : 2004-2007 SMA Negeri 27 Jakarta : 2007-2008 SMA Negeri 3 Medan : 2008-2010 STIE Indonesia Banking School : 2010-2014

PENDIDIKAN NON FORMAL

Kursus Bahasa Inggris ELTI Tahun 2005-2007

Kursus Bahasa Inggris George Mansion University Tahun 2010-2013 Bimbingan Belajar Ganesha Operation Tahun 2009-2010

Pelatihan Service ExcellentTahun 2011 Pelatihan Customer Service Tahun 2011 Pelatihan Credit Analysis Tahun 2013 Pelatihan Basic Treasury Tahun 2014

Dokumen terkait