P3-1
Individualized solution.P3-2 (a)
Example 3-10 .. 008
0 .. 007 - t - - - -
0 .. 006 - t - - - # - - - - j 0 .. 005
~ ~ 0 .. 004 + - - - F
.iOi
0 .. 003
0 .. 002 +---~~---
0 .. 001 - t - - - = ... ~---
o
310
. T .•....
"
... ,.-++ .... _ ... .,315 320
T(K)
For E = 60kJ/moi
k
=
1.32 X 1016expC-- 6~~OJ
)E = 240 kj/mol 35E-22
3E-22 t - - - + - - - i
25E-22 t---~._---___j
g
2E-22 t - - - - \ - - - I:;; 1 5E'22 t - - - \ - - - - -
1E-22 t - - - ' b - - - -
5E-23 t---"'c--~
325
o 00295 0003 0 00305 0 0031 000315 00032 000325 1fT (11K)
330 335
For E1 = 240kJ/moi
kl = 1.32 X 1016
exp( - 2~~OOJ)
E=60 kj/mol
6000000 . . ... -_ •.•
5000000
4000000 t----~-=--
"'
2. 3000000 t - - - " . . : : : - : - - - j -'"
2000000 t - - - -
1000000 t---.---~-__l
o
000295 0003 0.00305 00031 000315 0.0032 000325 1fT (11K)
P3-2 (b)
Example 3-2 Yes, water is alJeady considered inert.3-1
P3-2 (c)
Example 3-3The solution to the example at a conversion of 20% would remain unchanged. For 90 % conversions of the caustic soda, the final concentration of glyceryl sterate is 0 instead of a negative concentration. Therefore 90 % of caustic soda is possible.
b e d P3-2 (d)
Example 3-4A + - B
~-c + - D
a a a
So, the minimum value of @B
=
b/a= - - 113 = 0.33
1P3- 2 (e)
Example 3-5For the concentration of N2 to be constant, the volume of reactor must be constant. V = Vo.
Plot:
180
160
140
120
f"100
::!:-
...
8060
40
20
1 0.5(1-0.14x)2
-rA (I-X)(0.54--0.5X)1/(-ra) vs X
02 04 06
X
08 12
The rate of reaction decreases drastically with increase in conversion at higher conversions.
P3-2 (0
Example 3-6For a given conversion, concentration of B is lower in flow reactor than a constant volume batch reactor.
Therefore the reverse reaction decreases ..
Cro = constant and inerts are varied.
N204 *"72N02
A ~ 2B
C
2Equilibrium rate constant is given by: K c =.~
CA,e
Stoichiometry: £
= Y
A06 = Y
AO(2 -1) = Y
AOConstant volume Batch:
3-2
C - 2N
AOX -2C X
B - - AO
Vo
Plug flow reactor:
C = _~AO(l- X) = C Ao(l- X)
andC
B
= 2F
AOX = 2C
AOX
A v
o
(1 + eX) (l + EX) vo (l +
eX) (1+
eX)CAO
=Y;o;0
=YAo(O.07176)mol! dm
3o
Combining: For constant volume batch:
C 2 4C2 X2
K c-
-~--
Ao .CAe
CAO
(1 - X) 4CAOFor flow reactor:
C 2 4C2 X2
K =_._~= Ao K C (1 - X e )(1
+
eX e)C
CAe
CAO
(1 - X)(1+
eX)See Polymath program P3··2-LpoL
POLYMA TH Results NLES Report (safenewt)
Nonlinear equations
[1] f(Xeb) = Xeb - (kc*(1-Xeb)/(4*Cao»I\() .. 5 = 0
[2] f(Xef) = Xef - (kc*(1-Xef)*(1 +eps*Xef)/(4*Cao»A0 .. 5 = 0 Explicit equations
[ l ) yao
=
1[2] kc = 0.1
[3] Cao
=
0 .. 07174*yao [4] eps=
yao1 ...•.••...
4CAO
0 .. 9 +---:.7-~---i
<: 0 .. 8 +---~---...,-.mIIIJIIl''---i
.~
Qi 0.7~;~~-~:i -~~ -;-;:;~~~~~~_=--
~§
0 .. 6 ____o E 0 .. 5
:::J
~ 04
'3 0 .. 3 1 - - - -
Jr
0 .. 2 + - - - 1 0 .. 1 - 1 - - - 1o ... ···1· .. · ... " .. ," ... 1 .... · ... , ... · .. T .... · ... · .. T"· ... '1.'''... .. ... " .. ' ... "1' ... " ... , •• 'r~ ... ".' .. ' " .. · .. ·T·~ .. ' .. · .. · " .... n~ .. ·T
o
0 .. 1 0 .. 2 0.3 04 0 .. 5 0 .. 6 0 .. 7 0 .. 8 0.,9 y inerts3-3
-Batchl -FIOW.J
Yinert Yao 0 0.1 0.2 0.3 0.4
-
0.5 0.6 0.7 0.8 0.9 0.95 0.956P3-2 (g)
No solution will be givenP3-2 (h)
1 1
A+-B-7-C
2 2
Xeb
1 0.44
0.9 0.458
0.8 0.4777
0.7 0.5
0.6 0.525
0.5 0.556
0.4 0.5944
0.3 0.6435
0.2 0.71
0.1 0.8112
0.05 0.887
0.044 0.893
Rate law: - r
A
=kACA 2C
S1 dm
3and
kA = 25- - - s ( mol J
2
~=.~.=
rc -1 -112 112
1 (dm 3 J2
kc =k
B=12.5- - s mol P3-2 (i)
A+3B
-72C
Rate law: -
r
A= k
AC
AC
B at low temperatures.At equilibrium,
C
CeK
= .. ---- 'C
C I12C
3/2A,e B,e
Xef
0.508 0.5217 0.537 0.5547 0.576 0.601 0.633 0.6743 0.732 0.8212 0.89 0.896
At "Iuil;b,;um, -, A = 0 , so we can sugge" th,t -
r
A= k
A (C
A 1/2C
B 112 -~ ~ J
But at t
=
0, Cc=
0So the rate law is not valid at t = 0 ..
3-4
Next guess:
P3-3
Solution is in the decoding algorithm available separately from the author.P3-4 (a)
Note: This problem can have many solutions as data fitting can be done in many ways.
Using Arrhenius Equation For Fire flies:
T(in 11T --- r;:::-_.
Flashes/ In(flash
K) min es/min)
294 0 .. 00340 9 1
298 0.00335 12.16 6
303 0.00330 16.2
-
0Plotting In(flashes/min) vs lIT, we get a straight line ..
2.197 2.498 2 .. 785
See Polymath program P3-4-firetlics.pol.
For Crickets:
T(in K) 11T chrips/ In(chirPsi x103 min min)
~2 3.482 80 4 .. 382
293 .. 3 3.409 126 4.836
300 3.333 200 5.298
Plotting In(chups/min) Vs lIT, we get a straight line ..
-+
Both, Fireflies and Crickets data follow the Arrhenius Model.--
In y = A + BIT , and have the same activation energy.
See Polymath program P3-4-crickcts.pol.
3-5 2.66
2.52
2.38
2.24
210L---~·----~----~--~
3.30E-:3 .332E-3 3.34E1
h
3.36E-3 3.38E-3 3.40E-35.3
5.1
49
·~.5
4..3 '---~--~--~--
3.HE-3 1.36E-3 3.39Eih 1.42E-3 3.45E-3 3.48E-.3
P3-4 (b)
F H or oney! ee: b T(in K) 1rr x103
298 3.356
303 3.,300
rsoa-
3,,247V(cm/s) In(V) 0.7 -0.357 1.8 0 .. 588
3 1.098
Plotting In(V) Vs liT, almost straight lme.
In(V) = 44.,6 - 1.33E4/T
At T = 40°C(313K) V = 6Acmls
At T = -5°C(268K) V = 0,005cmls(But bee would not be alive at this temperatme)
See Polymath program P3-4-bces.pol.
P3-4 (c)
For ants'
T(in K) 1rr x1Q" V(cm/s) In(V) - , - - -
283 3,53 0,,5 -0,,69
293 3,41 2 0 .. 69
303-
3,,30 3,4 1,22---,,-,---'-
311 3,,21 6,,5 1.,87
~-- ' - - - - ' - - - "
Plotting In(V) Vs liT, almost straight line,
- -
See Polymath program P3-4-ants.pol.
So activity of bees, ants, crickets and fireflies follow Arrhenius modeL So activity increases with an
20 , - - - ,
1.4
o .. s
0.2
-0.4
-1.0 L-_ _ ~ _ _ ~ _ _ ~ __ ~ _ _ __' 3.25E-3 ,'.2'7E-3 3.29E
1
lr
HIE-, 3.3.3E-3 3.36E-3 20 r - - - ,1.4
o.S
0.2
-10L--~---
3.22E-J .uSE-J J,J,tE1tr 3.41E-J 3.47E-33.53E-3
increase in temperatme, Activation energies fOl fireflies and crickets are almost the same,
---:-c-
--
Insect Activation Energy Cricket 52150
Firefly 54800 Ant 95570 --- Honeybee 141800
P3-4 (d)
There is a limit to temperature for which data for anyone of he insect can be extrapolate, Data which would be helpful is the maximum and the minimum temperatme that these insects can endme before death., Therefore, even if extrapolation gives us a value that looks reasonable, at certain temperatme it could be useless.,
P3-5
There are two competing effects that bring about the maximum in the corrosion rate: Temperatme and HCN-H2S04 concentration. The corrosion rate increases with increasing temperatme and increasing concentration of HCN-H2S04 complex, The temperatme increases as we go from top to bottom of the column and consequently the rate of conosion should increase" However, the HCN concentr'ations (and the
3-6
HCN-H2S04 complex) decrease as we go from top to bottom of the column. There is virtually no HCN in the bottom of the column, These two opposing factors results in the maximum of the cOIrosion rate somewhere around the middle of the column.,
P3-6
Antidote did not dissolve from glass at low temperatures.P3-7 (a)
If a reaction rate doubles for an increase in lOoC, at T = T 1 let k = kl and at T = T 2 = T 1+ 10, let k = k2 = 2kl • Then with k = Ae-EIRT in general,
kl
= Ae-E1R1i andk2
= Ae-E'RT2 , ork2 _ -~(*-*) E
- - e
orkl R
Therefore:
In (k2 J (T. (T. + 10))
k I l l
(In 2)(7; (7; +10))
E
=R--
=R·---,-· "
(7;-7;) 10
T. (T. + 10) = lOE
1 1
RIn2
!OED 5 which can be approximated by T
= ----
RIn2
P3-7 (b)
E
Equation 3-18 is
k =
Ae RTE( 1 I)
Dividing gives
~2,
= e -Ii Tz""-"1;" , or1
3-7
[1.99 cal ] [
273
K][373
K]E = mol K
In(·050)
=7960
callOOK
.001
molE
A
=k e
RT, =10-
3min
-Iexp
. 1
(
1.99_Cal](273K)
molK
P3-7 (c)
Individualized solutionP3-8
= 2lO0min-
1When the components inside air bag are ignited, following reactions take place, 2NaN3 --7 2Na + 3N2 ... ·.. . , ' , ... ' .. ' ,,(1)
lONa + 2KN03 --> K20 + 5Na20 + N2 , , ,(2) K20 + Na20 + Si02 --7 alkaline silicate glass" ",.,.,(3)
5x rxn(l) + rxn(2) + rxn(3) = rxn(4)
NaN3 + 0.2KN03 + 01Si02 -7 04Na20 + 1.6N2 + complex/l0., ... , ,(4) Stoichiometric table:
r - - ' - - - ,--_. -
Species Symbol Initial Change Final
---
NaN3 _ A NA -NAX NA(1-X)
KN03 B NA~B -O.2XNA NA( BB -02X) Si02 C
- -
NABe ··OIXNA NA( Be -01X)
Na20 D 0 O.4XNA O.4XNA
N2 E 0 1.6XNA 1.6XNA
Given weight of NaN3 = 150g
Therefore, no., of moles of NaN3 = 2 .. 3
Mwt of NaN3 = 65
1 moles of NaN3 requires 02 mole of KN03
=>
Moles ofB, KN03=
02(2..3)=
0.46 moles Mwt ofKN03=
lOLl Therefore, grams ofKN03 required = 046 x lOLl = 46..5 g1 moles ofNaN3 requires 01 mole of Si02,
Moles of C, Si02
=
0.1(2.3)=
023 moles Mwt of Si02=
60,08 Therefore, grams of Si02 required = 0,23 x 60,,08 = 13,8 gFollowing proposals are given to handle all the un-detonated air bags in cars piling up in the junkyards:
• Store cars in cool, dry, ventilated areas"
• Avoid Physical damage of the bag in cal.
• It is stable under ordinary conditions of storage" Decomposes explosively upon heating (over 221 0 For 1050 C), shock, concussion, or friction,
3-8
• Conditions to avoid: heat, flames, ignition sources and incompatibles.
P3-9 (a)
From the web module we know that - -dX = k (1 - .x) and that k is a function of temperature, but not a
dt
linear function. Therefore doubling the temperature will not necessarily double the reaction rate, and therefore halve the cooking time ..
P3-9 (b)
When you boil the potato in water, the heat transfer coefficient is much larger, but the temperature can only be 100°C.
When you bake the potato, the heat transfer coefficient is smaller, but the temperature can be more than double that of boiling water.
P3-9 (C)
No solution will be givenP3-10 (a)
1) C2H6 ~ C2H4 + H2 Rate law: -fA =
kC
C2H62) C2H4 + 11202 -+ C2H40 Rate law: -fA =
kC
C2H4 C~:2 3) (CH3)3COOCCCH3)3 ~ C2H6 + 2CH3COCH3A ~ B + 2C
Rate law: -fA = k[CA - CBCc2IKcJ 4) n-C4HIO +-+ 1-C4HlO Rate law: orA = k[
C
n C H 4 10--C
iCIKe]
4HlO
5) CH3COOC2Hs + C4H90H +-+ CH3COOC4H9 + C2HsOH
A + B +-+ C + D
P3-10 (b)
2A + B - - C (1)
(2)
(3) (4)
P3-10 (C)
orA = kCACB2
orA = kCB orA = k orA = kCACB-1
(1) C2H6 ~ C2H4 + H2
Rate law: -fA = k[CACB - CcCnlKcJ
3-9
(2) H2 + Br2 ----> 2HBr
(3) H2 + 12 ----> 2HI
P3-11 (a)
Liquid phase reaction,
o
/"-
CH2-·-OHI
CH2 - CH2 + H20·~ CHT-OH A +B--~ C CAO = 1 Ibmol/ft3
CBO = 3.47 lbmol/fe
Stoichiometric Table·
Species Ethylene oxide
Water
f-- Glycol
' - - - -
Rate law:
Therefore, At 300K
Symbol Initial
A CAo=1Ibmol/ft3
--
CBO= 347lbmol/ft1,----
B
BB=347
C 0
----
- - - - _ .._ - - - - -
-rA = kCACB
-rA = k C~o (1-X)( BB -X) = k(l-X)(347-X) E = 12500 cal/mol, X = 0 . .9,
Change Remaining -CAOX CA= CAO(l-X)
= (l·X) Ibmol/ft3 -CAOX CB = CAO( BB -X)
=(3.47-X) lbmol/fe CAOX Cc= CAOX
= X Ibmol/ft3
3
0.1
3 3k = O . .ldm ImoLs
=--x35.315ft Ilbmol.s = 0.0035ft Ilbmol.s 1000
CAOX (1)(0.9)
-1'rCSTR
= - - - =
- - 2 - - - -=
1000 . .56 s -rA(0.0035)(1) (1- 0.9)(3.47 - 0.9)
At 350K,
k2 = k exp«E/R)(lIT-lIT 2»= O.0035exp«125001l.987)(11T-IIT2»= 0.071 dm3/moLs Therefore,
CAOX (1)(0.9)
_ - 1'rCSTR = - - = 2 - 49.3s
-rA
(0.071)(1) (1- 0.9)(3.47 - 0.9)
P3-11 (b)
Isothermal, isobaric gas-phase pyrolysis, CZH6 C2H4 + H2
A ~ B + C
Stoichiometric table:
3-10
....
-
e
=Yaob= 1(1+1-1)= 1 v = vo(1+ eX)P
C2H4 B
H2 C
=> v = vo(l+X) CAO = YAO CTQ = YAO -
RT
0 +FAOX FB=FAoX
0 +FAoX Fc=FAOX
FTO=FAO F~FAO(1+X)
(I)(6atm)
= = 0..067 kmol/m3 = 0..067 mol/dm3
(0.082
m3atm J(1100K)
K.kmol
CA = FA
=
FAO(l-X) = C (1- X)
mol/dm3v v
0(l + X)
AO(1 + X)
FB FAO(X) X 3
CB= - = -
=C
AO - - - mol/dmv vo(l+X) (I+X)
Fe FAO(X) X 3
Cc = -
= =
CAO . - - - mol/dmv vo(l+X) (I+X)
Rate law:
(I-X) (I-X)
=kCAO - - - =o..o.67k---
(I+X) (I+X)
-fA = kCA
If the reaction is carried out in a constant volume batch reactor, =>(
e
= 0.)CA = CAO(1-X) mol/dm3 CB = CAO X mol/dm3 Cc = CAOX mol/dm3
P3-11 (C)
Isothermal, isobaric, catalytic gas phase oxidation, C2H4 + -1 O2 ~ C2~0
2
A + -B
1
~ C2
Stoichiometric table:
Species C2~
O
2C2H4
O
Symbol A B C
---
. - : : : : - - - , - - " - - - - Entering Change Leaving FAO -FAOX FA=FAO(l-X) FBo -BBFAOX FB=FAO( BB -X)0. +FAOX Fc=FAoX
3-11
_ _ P _ 2 ( 6atm ) _ mol CAO - YAOCro - YAO-- ( 3) -0.092-- 3
RT
3 0.082 atm.dm (533K) dm mol.K
FA FAo(1-X) CAO (1-X) 0.092(1-X)
C - - - --~---.:..
A -
V - Vo(1 + eX) - (1-0.33X) - (1-0.33X) FB FAo(eB-~) 0.046(1-X)
C - - - - --'---'-
B-
V -vo(1+eX) - (1-0.33X) Fe FAoX 0.092(X) C = - - = = ---'---"-
e V
vo(1+eX) (1-0.33X)
If the reaction follow elementary rate law
_ {0.092(1- X)}{0.046(1- X)}O.5
=>
-r-k .
A (1-0.33X) (1-0.33X) P3-11 (d)
Isothermal, isobaric, catalytic gas phase reaction in a PBR C6H6 + 2H2 ~ C6HlO
A + 2B ~ C Stoichiometric table:
Species Symbol Entering Change
Benzene A FAO -FAOX
H2 B FBO=2FAO -2FAOX
- -
--
C6HlO C 0 FAOX
1 2
e=y , AO J=-(1-2-1)=-,- 3 3
- - - - Leaving
FA=FAO(1-X) FB=F AO(
BB -
2X) Fc=FAOX -,-P (1) 6atm ( 1 )
3CAO = CroYAO = RT - = ( 3) - = 0.055mol / dm 3 0.082 atm.dm (443.2K) 3
mol.K
_ FA _ FAo(1-X) _ CAo (1-X) _ 0.055(1-X)
CA - - - - - - - -
V
vo(1+eX) (1-~X) (1-~X)
3-12
C = FB = F AO (BB
-2X)=
O.l1(I-X)B
v
Vo (1+£X) (1-~X)
C
= Fe = FAoX __ = CAOX = 0.055X _ c
Vvo (1+£X) (1-~X) (1-~X)
If the reaction follow elementary rate law.
Rate law:
·-r
A
'=kCAC;
(1 X)3
-rA
'=0.0007k---
3(1- ~ X)
For a fluidized CSTR:
W = FAoX.
-r ' A
W = FAoX _
(1- X)3 0.0007k--"-3
(1-~X )
k=53 -
mol
" - - at300Kkgcat
minatm
3k
=k
j exp(E(l.. __!.J)
=53exp(80~9.Q_(_I_""_-I-_)J=
1663000mol
R
~T
8.314 300 443kgcatminatm
3FAO = CAO
*
Vo Vo = 5 dm3/minatX= 0.8
W = 0.0024 kg of catalyst
3-13
P3-12
A + -B 1 -7 C
2
Stoichiometric table for the given problem will be as follows A ssummg gas pl ase h
Species Symbol Entering Change
C2H4 A FAO -FAOX
O2 B FBo = eBFAO -112 FAOX
N2
-
I FI = elFAO ---_.C2H4O C 0 FAOX
1
2 F
AO1
8
B = - - - = -e =_FIO F = 0.79 F
I FAD' 10