• Tidak ada hasil yang ditemukan

Some Concluding Comments

Dalam dokumen Seung-Bok Choi Young-Min Han (Halaman 175-180)

6.2 Dual-Servo Stage

6.2.5 Some Concluding Comments

amplifi cation ratio have been evaluated through experiment and FEA. For the coarse positioning stage, a sliding mode controller with the feed-forward friction compen- sator was designed to consider parameter variation. In the fi ne motion stage, the Preisach model–based feed-forward compensator integrated with PID feedback con- troller was established to effectively remove the residual position error after coarse positioning. These controllers were experimentally realized in a decentralized man- ner to avoid the coupling effect. It has been demonstrated through controller imple- mentation that the smart dual-servo system has the accuracy of ±200 nm for 1 mm step movement, and ±5 μm for the sinusoidal trajectory tracking. The control results presented in this section are quite self-explanatory, justifying that the control system featuring two smart material actuators, ER clutch and piezostack, can offer a desir- able motion range with high positioning accuracy.

0.0 0.4 0.8 1.2 1.6

Displacement (mm)

Time (s)

Desired Macro motion Dual servo motion

–3 –2 –1 0 1 2 3

Input field (kV/mm)

Time (s) (a)

–20 0 20 40 60 80

Displacement (μm)

Time (s)

–2 –1 0 1 2 3 4

Input voltage (V)

Time (s)

(c) (d)

0.90 0.95 1.00 1.05

Macro off Micro on

Displacement (mm)

Time (s)

Desired Macro motion Dual servo motion

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2.0 2.5 3.0 3.5 4.0 –9002.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 –600

–300 0 300 600 900

Error (nm)

Time (s) (e)

(b)

(f )

FIGURE 6.20 Robustness investigation of smart dual-servo system (regulating). (a) Dual- servo and macro motion, (b) input for the coarse stage, (c) fi ne stage displacement, (d) input for the fi ne stage, (e) displacement after 2 s, and (f) error signal. (From Han, S.S. and Choi, S.B., Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 218, 1435, 2004. With permission.)

REFERENCES

1. Chait, Y., Park, M.S., and Steinbuch, M. 1994. Design and implementation of a QFT controller for a compact disc player. Proceedings of the American Control Conference, Denver, CO, pp. 3204–3208.

2. Lim, S.C. and Jung, T.Y. 1997. Robust servo control of high speed optical disk drives.

Proceedings of the Korean Society for Noise and Vibration Engineering, Leuven, Belgium, pp. 438–444.

3. Nagasato, M. and Hoshino, I. 1996. Development of two-axis with small tilt angles for one-piece optical heads. Japanese Journal of Applied Physics 35: 392–397.

4. Kajiwara, I. and Nagamatsu, A. 1993. Optimum design of optical pick-up by elimination of resonance peaks. Journal of Vibration and Acoustics 115: 377–383.

–1.2 –0.9 –0.6 –0.3 0.0 0.3 0.6 0.9 1.2

Displacement (mm)

Time (s)

Desired Macro motion Dual-servo motion

–3 –2 –1 0 1 2 3

Input field (kV/mm)

Time (s) (a)

–20 0 20 40 60

Displacement (μm)

Time (s)

–2 –1 0 1 2

Input voltage (V)

Time (s)

(c) (d)

0.40 0.45 0.50 0.55

Displacement (mm)

Time (s)

Desired Macro motion Dual-servo motion

0 4 6 8 10 12 14 16 0 2 6 8 10 12 14 16

0 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

4 8 10 12 14 –202 3 4 5 6 7

–10 0 10 20

Error (μm)

Time (s) (e)

6

(f ) 2

(b)

2 4

FIGURE 6.21 Robustness investigation of smart dual-servo system (tracking). (a) Dual- servo and macro motion, (b) input for the coarse stage, (c) fi ne stage displacement, (d) input for the fi ne stage, (e) displacement after 4 s, and (f) error signal. (From Han, S.S. and Choi, S.B., Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 218, 1435, 2004. With permission.)

5. Takaishi, K., Imamura, T., Mizoshita, Y., Hasegawa, S., Ueno, T., and Yamada, T.

1993. Piezoelectric microactuator compensating for off-track errors in magnetic disk drives. ASME Press Series: Advanced in Information Storage Systems, New York, pp.

119–126.

6. Mori, K., Munemoto, T., Otsuki, H., Yamaguchi, Y., and Akagi, K. 1991. A dual-stage magnetic disk drive actuator using a piezoelectric device for a high track density. IEEE Transactions on Magnetics 27: 5298–5300.

7. Yabuki, A., Aoyagi, M., Tomikawa, Y., and Takano, T. 1994. Piezoelectric linear motors for driving head element of CD-ROM. Japanese Journal of Applied Physics 33:

5365–5369.

8. Tagawa, N. and Hashimoto, M. 1989. Self-loading slider dynamics for noncontact start stop operation with negative pressure air-lubricated slider bearing in magnetic disk stor- age. Transactions of the ASME 111: 698–702.

9. Choi, S.B., Kim, H.K., Lim, S.C., and Park, Y.P. 2001. Position tracking control of an optical pick-up device using piezoceramic actuator. Mechatronics 11: 691–705.

10. Choi, S.B. and Shin, H.C. 1996. A hybrid actuator scheme for robust position control of a fl exible single-link manipulator. Journal of Robotic Systems 13: 359–370.

11. Bailey, T. and Hubbard, J.E. Jr. 1985. Distributed piezoelectric-polymer active vibration control of a cantilever beam. Journal of Guidance, Control and Dynamics 8: 605–611.

12. Utkin, V.I. 1992. Sliding Modes in Control Optimization. New York: Springer-Verlag.

13. Choi, S.B., Cho, S.S., and Park, Y.P. 1999. Vibration and position tracking con- trol of piezoceramic-based smart structures via QFT. Journal of Dynamic Systems, Measurement, and Control 121: 27–33.

14. Chen, P. and Montgomery, S. 1980. A macroscopic theory for the existence of the hys- teresis and butterfl y loops in ferroelectricity. Ferroelectricities 23: 199–207.

15. Omari, A., Ming, A., Nakamura, S., and Kanamori, C. 2000. Development of a high precision mounting robot with fi ne motion mechanism (2nd report)-control of the fi ne mechanism considering dynamic response and disturbance from coarse mechanism.

Journal of the JSPE 66: 1583–1589.

16. Lee, C.W. and Kim, S.W. 1997. An ultraprecision stage for alignment of wafers in advanced microlithography. Precision Engineering 21: 113–122.

17. Moriyama, S., Harada, T., and Takanashi, A. 1998. Precision X-Y stage with piezo- driven fi ne table. Bulletin of the Japan Society of Precision Engineering 22: 13–17.

18. Sakuta, S., Ogawa, K., and Ueda, K. 1993. Experimental studies on ultra-precision positioning. International Journal of the Japan Society for Precision Engineering 27:

235–240.

19. Sakaguchi, M., Zhang, G., and Furusho, J. 2000. Modeling and motion control of an actuator unit using ER clutches. Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, pp. 1347–1353.

20. Saito, T. and Sugimoto, N. 1997. A study on electro-rheological motion control using an antagonistic rotary actuator. Proceedings of the International Conference on ER Fluids, Singapore, pp. 54–65.

21. Han, S.S., Choi, S.B., and Cheong, C.C. 2000. Position control of X-Y table mechanism using electro-rheological clutches. Mechanism and Machine Theory 35: 1563–1577.

22. Han, S.S. and Choi, S.B. 2004. Position control of a dual-servo stage featuring elec- trorheological fl uid clutch and piezostack actuator. Proceedings of the Institution of Mechanical Engineers: Part C—Journal of Mechanical Engineering Science 218:

1435–1448.

23. Han, S.S. 2003. Precision positioning control of smart dual-servo stage featuring piezostack actuator and ER clutch. PhD dissertation, Inha University, Incheon, South Korea.

24. Park, D.W. and Choi, S.B. 1999. Moving sliding surfaces for a high-order variable struc- ture systems. International Journal of Control 72: 960–970.

25. Slotine, J.J. and Li, W. 1991. Applied Nonlinear Control. Englewood Cliff, NJ: Prentice- Hall.

26. Chen, C.T. 1999. Linear System Theory and Design. New York: Oxford University Press.

27. Han, Y.M., Lim, S.C., Lee, H.G., Choi, S.B., and Choi, H.J. 2003. Hysteresis identifi ca- tion of polymethylaniline-based ER fl uid using preisach model. Material and Design 24: 53–61.

28. Ge, P. and Jouaneh, M. 1997. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering 20: 99–111.

29. Doong, T. and Mayergoyz, I. 1985. On numerical implementation of hysteresis model.

IEEE Transactions on Magnetics 21: 1853–1855.

171

7 Application to Hydraulic Control System

7.1 PIEZOACTUATOR-DRIVEN PUMP

Dalam dokumen Seung-Bok Choi Young-Min Han (Halaman 175-180)