• Tidak ada hasil yang ditemukan

INTRODUCTION

2.01 Fundamental Aspects of Hard Ceramics

2.01.7 Summary

crack deflection by the plate-likeb-SiC grains. A detailed review on processing of silicon carbides is given in a companion paper of this book byKriegesmann (2013).

2.01.6.3 Borides

Transition metal borides are widely recognized as an attractive class of materials for a broad range of mechanical applications in abrasive, erosive, corrosive and high-temperature environments, owing to their high melting points and hardness, thermodynamic stability and excellent electrical conductivity. Most studies (Anisimov, Iavnovskii, Gubanov, & Kurmaev, 1986) have focused on the borides of Ti, Zr and Hf for application as cutting tools, for molten metals processing or as sharp components of new generation space vehicles in ultrahigh-temperature environments. The densification of ZrB2 powder is achieved using hot-pressing and generally requires very high temperatures, 2100C or above and moderate pressure (20–30 MPa), because of the covalent character of the bonding and its low volume and GB diffusion rates.Sciti, Silvestroni, Medri, and Guicciardi (2011)studied pressureless sintering as an in situ toughening method for ZrB2–SiC composite ce- ramics with addition of Si3N4or MoSi2at temperatures of 2100–2150C that induced SiC anisotropic growth from particles to platelets, within a ZrB2matrix, which consisted of more equiaxed rounded grains. The method has promise in terms of producing near-net shaped or large-sized components using atmospheric process sintering with the possibility of increasing the volume of the reinforcing phase.

Clarke, D. R., & Thomas, G. (1977). Grain boundary phases in a hot-pressed MgOuxed silicon nitride.Journal of the American Ceramic Society, 60(1112), 491495.

Coble, R. L. (1958). Initial sintering of alumina and hematite.Journal of the American Ceramic Society, 41, 5562.

Coble, R. L. (1961). Sintering of crystalline solids. I. Intermediate andnal state diffusion models.Journal of Applied Physics, 32(5), 787792.

Coe, R. F., Lumby, R. J., & Pawson, M. F. (1972). Some properties and applications of hot-pressed silicon nitride. In P. Popper (Ed.),Special ceramics 5 (pp. 361376). Stoke-on-Trent: British Ceramic Research Association.

Collins, J. F., & Gerby, R. W. (1955). New refractory uses for silicon nitride reported.Journal of Metals, 7, 612615.

Coppola, J. A., Hawler, H. A., & McMurtry, C. H. (1978). US Patent 4 123 286.

Danzer, R., & Bermejo, R. (2014). Mechanical characterisation of ceramics: Designing with brittle materials. In V. K. Sarin, Luis Llanes & Daniele Mari (Eds.), Comprehensive Hard Materials, Volume 2: Ceramics. Oxford, UK: Elsevier Ltd.

Danzer, R., Lube, T., Supancic, P., & Damani, R. (2008). Fracture of advanced ceramics.Advanced Engineering Materials, 10, 275298.

Davidge, R. W. (1979).Mechanical characterisation of ceramics. Cambridge: Cambridge University Press.

Davidge, R. W., McLaren, J. R., & Tappin, G. (1974). Strength-probability-time relationships (SPT) in ceramics.Journal of Materials Science, 8, 16991705.

De Portu, G., & Guicciardi, S. (2014). Wear of hard ceramics. In V. K. Sarin, Luis Llanes & Daniele Mari (Eds.),Comprehensive Hard Materials, Volume 2:

Ceramics. Oxford, UK: Elsevier Ltd.

Derby, B. (2011). Inkjet printing ceramics: from drops to solid.Journal of the European Ceramic Society, 31(14), 25342550.

Di Rupo, E., Anseau, M. R., & Brook, R. J. (1979). Reaction sintering: correlation between densication and reaction.Journal of Materials Science, 14, 29242928.

Dillon, S. J., Tang, M., Carter, W. C., & Harmer, M. P. (2007). Complexion: a new concept for kinetic engineering in materials science.Acta Materialia, 55, 62086218.

Ekstrøm, T., & Nygren, M. (1992). SiAlON ceramics.Journal of the American Ceramic Society, 75(2), 259276.

Fantozzi, G., & Saâdaoui, M. (2014). Toughness, fatigue and thermal shock of ceramics: Microstructural effects. In V. K. Sarin, Luis Llanes & Daniele Mari (Eds.),Comprehensive Hard Materials, Volume 2: Ceramics. Oxford, UK: Elsevier Ltd.

Fett, T., & Munz, D. (1985). Determination of v-K curves by a modied evaluation of lifetime measurements in static bending tests.Journal of the American Ceramic Society, 68, C213C215.

Fisher, G. R., & Barnes, P. (1990). Toward a unied view of polytypism in silicon carbide.Philosophical Magazine, 61(2), 217236.

Fuller, E. R., Jr., & Wiederhorn, S. M. (1980). Proof testing of ceramics: part l experimental.Journal of Materials Science, 15, 22752281 (See also: Fuller Jr., E. R., Wiederhorn, S. M., Ritter Jr., J. E., & Oates, P. B. (1980). Proof testing of ceramics: part 2 theory.Journal of Materials Science, 15, 22822295).

Gazza, G. E. (1975). Effect of yttria additions on hot-pressed Si3N4.American Ceramic Society Bulletin, 54, 778781.

German, R. M. (1996).Sintering theory and practice. Weinheim: Wiley-VCH Verlag.

Gessinger, G. H., Fischmeister, H. F., & Lukas, H. L. (1973). A model for second-stage liquid-phase sintering with a partially wetting liquid.Acta Metallurgia, 21, 715724.

Ghosh, D., Subhash, G., Radhakrishnan, R., & Sudarshan, T. S. (2008). Scratch-induced microplasticity and microcracking in zirconium diboridesilicon carbide composite.Acta Materialia, 56, 30113022.

Graule, T. J., Baader, F. H., & Gauckler, L. J. (1994). Shaping of ceramic green compacts direct from suspensions by enzyme catalyzed reactions.Ceramic Forum International, 71(6), 317323.

Grifth, A. A. (1921). The phenomena of rupture andow in solids.Philosophical Transactions of the Royal Society of London, Series A, 221, 163198.

Grifth, M. L., & Halloran, J. W. (1996). Freeform fabrication of ceramics via stereolithography.Journal of the American Ceramic Society, 79(10), 26012608.

Halloran, J. W. (1999). Freeform fabrication of ceramics.British Ceramic Proceedings, 59, 1728.

Hampshire, S. (1993). Nitride ceramics. In M.Swain (Series Ed.) & R. W. Cahn, P. Haasen, & E. J. Kramer (Vol. Eds.),Structure and properties of ceramics:

Vol. 11.Materials science and technology – a comprehensive treatment(pp. 121171). Weinheim: VCH Verlagsgesellschaft.

Hampshire, S. (1994). The role of additives in the pressureless sintering of nitrogen ceramics for engine applications.Metals Forum, 7(3), 162170.

Hampshire, S. (2008). Oxynitride glasses.Journal of the European Ceramic Society, 28, 14751483.

Hampshire, S. (2009). Silicon nitride ceramics. In B. Ralph, & P. Xiao (Eds.),Materials science forum: Vol. 606.Advances in ceramic materials(pp. 2741).

Zurich: Trans Tech Publications.

Hampshire, S., & Jack, K. H. (1981). The kinetics of densication and phase transformation in nitrogen ceramics.Proceedings of the British Ceramic Society, 31, 3749.

Hampshire, S., Park, H. K., Thompson, D. P., & Jack, K. H. (1978).a0-sialon ceramics.Nature, 274, 880882.

Hampshire, S., & Pomeroy, M. J. (2012). Grain boundary glasses in silicon nitride: a review of chemistry, properties and crystallisation.Journal of the European Ceramic Society, 32, 19251932.

Hardie, D., & Jack, K. H. (1957). Crystal structures of silicon nitride.Nature, 180, 332333.

Harmer, M. P. (2008). Demystifying the role of sintering additives withcomplexion.Journal of the European Ceramic Society, 28, 14851493.

Harmer, M. P., & Brook, R. J. (1981). Fastringmicrostructural benets.Transactions & Journal of the British Ceramic Society, 80, 147149.

Heinrich, J. G. (2004).Introduction to the principles of ceramic forming. Baden-Baden: Göller Verlag (CD-ROM).

Herring, C. (1951). Surface tension as a motivation for sintering. In W. E. Kington (Ed.),The physics of powder metallurgy (pp. 143179). New York:

McGraw-Hill.

Ishizawa, N., Miyata, T., Minato, I., Marumo, F., & Iwai, S. (1980). A structural investigation ofa-Al2O3at 2170 K.Acta Crystallographica, B36, 228230.

Jack, K. H. (1975). Review: SiAlONs and related nitrogen ceramics.Journal of Materials Science, 11, 11351158.

Jack, K. H., & Wilson, W. I. (1972). Ceramics based on the Si-Al-O-N and related systems.Nature Physical Sciences, 238(80), 2829.

Jackson, B., Ford, W. F., & White, J. (1963). The inuence of Cr2O3and Fe2O3on the wetting of periclase grains by liquid silicate.Transactions & Journal of the British Ceramic Society, 62, 577601.

Kang, S.-J. L. (2005).Sintering, densification, grain growth and microstructure. Oxford: Elsevier Butterworth-Heinemann.

Kang, S.-J. L. (2012). Sintering (Chapter 6). In R. Riedel, & I.-W. Chen (Eds.),Synthesis and processing: Vol. 3.Ceramics science and technology(pp.

143169). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

Kang, S.-J. L., Kim, K.-H., & Yoon, D. N. (1991). Densication and shrinkage during liquid phase sintering.Journal of the American Ceramic Society, 74, 425427.

Kingery, W. D. (1958). In W. D. Kingery (Ed.),Ceramic fabrication processes(pp. 131143). Cambridge, MA: MIT Press (New York: J. Wiley & Sons).

Fundamental Aspects of Hard Ceramics 27

Kingery, W. D. (1959). Sintering in the presence of a liquid phase.Journal of Applied Physics, 30, 301306.

Kingery, W. D., Niki, E., & Narashiman, M. D. (1961). Sintering of oxide and carbide-metal compositions in presence of a liquid phase.Journal of the American Ceramic Society, 44, 2935.

Kingery, W. D., Woulbroun, J. M., & Charvat, F. R. (1963). Effects of applied pressure on densication during sintering in the presence of a liquid phase.

Journal of the American Ceramic Society, 46, 391395.

Kosmac, T., Novak, S., & Sajko, M. (1997). Hydrolysis-assisted solidication (HAS): a new setting concept for ceramic net-shaping.Journal of the European Ceramic Society, 17, 427432.

Kriegesmann, J. (2014). Processing of silicon carbide based ceramics. In V. K. Sarin, Luis Llanes & Daniele Mari (Eds.),Comprehensive Hard Materials, Volume 2: Ceramics. Oxford, UK: Elsevier Ltd.

Kuczynski, G. C. (1949). Self-diffusion in sintering of metallic particles.Journal of Metals, 1, 169178.

Lawn, B. R., & Marshall, D. B. (1979). Hardness, toughness, and brittleness: an indentation analysis.Journal of the American Ceramic Society, 62, 347350.

Lee, B.-K., Chung, S.-Y., & Kang, S.-J. L. (2000). Grain boundary faceting and abnormal grain growth in Ba Ti O3.Acta Materialia, 48, 15751580.

Lee, M.-H., Cheng, C.-F., Heine, V., & Klinowski, J. (1997). Distribution of tetrahedral and octahedral A1 sites in gamma alumina.Chemical Physics Letters, 265, 673676.

Lee, S. K., & Kim, C. H. (1994). Effects ofa-SiC vs.b-SiC starting powders on microstructure and fracture toughness of SiC sintered with Al2O3-Y2O3additives.

Journal of the American Ceramic Society, 77, 16551658.

Lenel, F. V. (1948). Sintering in the presence of a liquid phase.Transactions of the American Institute of Mining Engineers, 175, 878896.

Lewis, J. A. (2000). Colloidal processing of ceramics.Journal of the American Ceramic Society, 83(10), 23412359.

Mandal, H. (1999). New developments ina-SiAlON ceramics.Journal of the European Ceramic Society, 19, 23492357.

Mandal, H., Oberacker, R., Hoffmann, M. J., & Thompson, D. P. (2000).a-SiAlON ceramics densied with mixed oxide sintering additives.Materials Science Forum, 325–326, 207212.

Manohar, P. A., Ferry, M., & Chandra, T. (1998). Five decades of the Zener equation.ISIJ International, 38(9), 913924.

Mortensen, A. (1997). Kinetics of densication by solution-precipitation.Acta Materialia, 45, 749758.

Nygren, M., & Shen, Z. (2003). On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering.Solid State Sciences, 5, 125131.

Omatete, O. O., Janney, M. A., & Strehlow, R. A. (1991). Gelcastinga new ceramic forming process.American Ceramic Society Bulletin, 70(10), 16411649.

Omori, M., & Takei, H. (1982). Pressureless sintering of SiC.Journal of the American Ceramic Society, 65(6), C92.

Orowan, E. (1949). Fracture and strength of solids.Reports of Progress in Physics, 12, 185232.

Ostwald, W. (1900). Über die vermeintliche isomerie des roten und gelben quecksilberoxyds und die oberächenspannung fester körper. Zeitschrift fur Physikalische Chemie, 34, 495503.

Oyama, Y., & Kamigaito, O. (1971). Solid solubility of some oxides in Si3N4.Japanese Journal of Applied Physics, 10, 16371642.

Palmour, H., III, & Johnson, D. R. (1967).Sintering and related phenomena. New York: Gordon & Breach Publishers.

Pandey, D., & Krishna, P. (1975). Inuence of stacking faults on the growth of polytype structures, II. Silicon carbide polytypes.Philosophical Magazine, 31(5), 11331148.

Parr, N. L., Martin, G. F., & May, E. R. W. (1960). Preparation, microstructure and mechanical properties of silicon nitride. In P. Popper (Ed.),Special ceramics 1 (pp. 102135). London: Heywood.

Pasto, A. (2014). Synthesis and processing of silicon nitride ceramics. In V. K. Sarin, Luis Llanes & Daniele Mari (Eds.),Comprehensive Hard Materials, Volume 2: Ceramics. Oxford, UK: Elsevier Ltd.

Pauling, L. (1948).The nature of the chemical bond. Ithaca, NY: Cornell University Press.

Price, G. H. S., Smithells, C. J., & Williams, S. V. (1938). Sintered alloys. Part Icopper-nickel-tungsten alloys sintered with a liquid phase present.Journal of the Institute of Metals, 6, 239264.

Prochazka, S. (1975). Sintering of silicon carbide. In J. J. Burke, A. E. Gorum, & R. M. Katz (Eds.),Ceramics for high performance applications(pp. 713).

Chestnut Hill, OH: Brook Hill Publishing Co.

Rahaman, M. N. (2003).Ceramic processing and sintering(2nd ed.). Boca Raton, FL: CRC PressTaylor and Francis.

Ramsdell, L. S. (1947). Studies on silicon carbide.American Mineralogist, 32, 6482.

Riley, F. L. (2000). Silicon nitride and related materials.Journal of the American Ceramic Society, 83, 245265.

Sciti, D., Silvestroni, L., Medri, V., & Guicciardi, S. (2011). Pressureless sintered in situ toughened ZrB2SiC platelets ceramics.Journal of the European Ceramic Society, 31, 21452153.

She, J. H., & Ueno, K. (1999). Effect of additive content on liquid-phase sintering of silicon carbide ceramics.Materials Research Bulletin, 34(10/11), 16291636.

Shibata, N., Pennycook, S. J., Gosnell, T. R., Painter, G. S., Shelton, W. A., & Becher, P. F. (2004). Observation of rare earth segregation in silicon nitride ceramics at sub-nanometer dimensions.Nature, 428, 730733.

Sigl, L. S., & Kleebe, H.-J. (1993). Core/rim structure of liquid-phase-sintered silicon carbide.Journal of the American Ceramic Society, 76, 773776.

Smith, C. S. (1948). Grains, phases and interfaces an interpretation of microstructure. Transactions of the American Institute of Mining Engineers, 175, 1551.

Smith, R. L., & Sandland, G. E. (1922). An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness.Proceedings of the Institution of Mechanical Engineers, 1, 623641.

Svoboda, J., Riedel, H., & Gaebel, R. (1996). A model for liquid phase sintering.Acta Materialia, 44, 32153226.

Terwilliger, G. R., & Lange, F. F. (1975). Pressureless sintering of silicon nitride.Journal of Materials Science, 10, 11691174.

Wang, C. M., Pan, W. Q., Hoffmann, M. J., Cannon, R. M., & Rühle, M. (1996). Grain boundarylms in rare-earth-glass-based silicon nitride.Journal of the American Ceramic Society, 79(3), 788792.

Weibull, W. (1951). A statistical distribution function of wide applicability.Journal of Applied Mechanics, 18, 293298.

White, J. (1970). Magnesia based refractories (Chapter 2). In A. M. Alper (Ed.),High temperature oxides Part I: Magnesia, lime and chrome refractories. New York & London: Academic Press.

Wiederhorn, S. M., Krause, R. F., Jr., Lofaj, F., & Täffner, U. (2005). Creep behavior of improved high temperature silicon nitride.Key Engineering Materials, 287, 381392.

Yakel, H. L. (1975). The crystal structure of a boron-rich boron carbide.Acta Crystallographica, B31, 17971806.

Zerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R., et al. (1999). Synthesis of cubic silicon nitride.Nature, 400, 340342.

28 Fundamental Aspects of Hard Ceramics

SECTION II

SYNTHESIS AND

Dalam dokumen COMPREHENSIVE HARD MATERIALS VOLUME 2 (Halaman 47-50)