• Tidak ada hasil yang ditemukan

Summary and Prospects

Dalam dokumen COMPREHENSIVE HARD MATERIALS VOLUME 2 (Halaman 187-198)

SYNTHESIS AND PROCESSING

2.04 Processing of Silicon Carbide-Based Ceramics

2.04.5 Summary and Prospects

Due to its excellent intrinsic properties SiC can be regarded as one of the most commercially viable and important carbides. More than 100 years ago Edward Goodrich Acheson succeeded in synthesizing SiC raw materials for large-scale production. This was a good enough reason to start developing SiC-based ceramics.

Figure 78 Reaction bonded SiC-based ceramics (RBSC).

166 Processing of Silicon Carbide-Based Ceramics

First approaches used the processing knowledge of the classical silicate ceramics. By applying those pro- cessing principles SiC-based ceramics could be produced at fairly moderate temperatures. The properties of the corresponding silicate bonded SiC-based ceramics, however, could not meet all expectations. Thus their property levels proved to be too low to be used for structural applications. Therefore, it was tried to alter the kinds of sintering additives and to reduce their amount in order to evolve ceramics, whose properties should come close to the intrinsic characteristics of the compound SiC. Due to the low reactivity of the covalent bonded SiC compound this initiative proved to be difficult to be realized. In spite of reducing the grain size to submicron range first successful approaches could only be obtained through pressure-assisted sintering. A real breakthrough could be achieved after Svante Prochazka’s invention of SSiC, since from then on it was possible to use marketable SiC-based ceramics for structural applications even at elevated temperatures and in conjunction with severe chemical attacks. The ceramics, however, proved to be extremely brittle. Through LPS-SiC, the brittleness could be reduced not only due to a change of fracture mode but particularly clearly through in situ toughening effects. The LPS could even be utilized for the manufacture of nanostructured and high-temperature stress-resistant SiC-based ceramics. LPS and gas-phase sintering methods were used to evolve porous ceramics even with graded pore structures for specialfiltering requirements. In general the maximum consolidation temperatures for all these nonsilicate ceramic-derived sintered ceramics have been extremely high. Through reaction bonding the consolidation temperature could considerably be reduced. Three different reaction bonding approaches resulted in untoughened and ex situ fiber-reinforced SiC-based ceramics. In most cases small volume changes occurred during final consolidation. Reaction bonding could also be successfully used for converting natural products into SiC-based ceramics.

Though the history of SiC-based ceramics is relatively short, they frame a huge class of ceramic materials.

Some of them achieve high market shares like SiC grinding tools, SSiC, RSiC, SiSiC, CSiC and NSiC. Not all of these ceramics have been matter of intensive research activities. For others the sales volume is low or the ceramics are not scaled up from laboratory scale. Looking ahead to the future, challenges for the SiC-based ceramics should not only be faced by creating new processing techniques and new materials but also by scaling some powerful ceramics up from laboratory scale to industrial scale. The latter can generally be achieved through the transfer of research findings to industrial products, through restructuring and rationalization actions and thus through an improved cooperation between research institutes and industrial enterprises.

Acknowledgments

The author of this article is greatly indebted to all those people, who had provided him with image material and permitted him to reproduce it in this article.

References

Acheson, E. G. (1893). Production of articial crystalline carbonaceous materials. US Patent No. 492,767.

Adler, J. (2005). Ceramic diesel particulatelters.International Journal of Applied Ceramic Technology, 2, 429439.

Adler, J., Klose, T., & Piwonski, M. (1999). SiC-Keramik mit Porengrößen von Nanometer bis Mikromenter. Stand, Entwicklungs- und Anwendungsperspektiven.

In A. Kranzmann & U. Gramberg (Eds.),Werkstoffwoche ‘98. Band 3(pp. 287292). Weinheim, Germany: Wiley-VCH.

Adler, J., Teichgräber, M., Klose, T., & Stöver, H. (1998). Poröse Siliciumcarbidkeramik und Verfahren zu ihrer Herstellung. German Patent No. DE 19727115 A1.

Aliegro, R. A., Cofn, L. B., & Tinklepaugh, J. R. (1956). Pressure-sintered silicon carbide.Journal of the American Ceramic Society, 39, 386389.

de Arellano-López, A. R., Martínez-Fernández, J., González, P., Domíngez, C., Fernández-Quero, V., & Singh, M. (2004). Biomorphic SiC: a new engineering material.International Journal of Applied Ceramic Technology, 1, 5667.

Atwell, W. H., Hauth, W. E., Jones, R. E., Langley, N. R., & Arons, R. M. (1987). Advanced ceramics based on PoMer processing. DARPA Report AFWAL- TR-85-4099 Vol. I and II.

Balchan, A. S., & Cowan, G. R. (1968). Method of treating solids with high dynamic pressure. US Patent No. 3,667,911.

Baldus, H. P., Passing, G., Sporn, D., & Thierauf, A. (1995). Si-B-(N, C) a new material for high performance applications. In High-temperature ceramic-matrix compsites II(pp. 7584). Westerville, OH: The American Ceramic Society.

Baumgartner, H. R., & Rossing, B. R. (1989). Pressureless sintering and properties of plasma synthesized SiC powder. In J. D. Cawley & C. E. Semler (Eds.), Ceramic transactions: Vol. 2.Proceedings of the silicon carbide ‘87(pp. 316). Westerville, OH: The American Ceramic Society.

Benecke, T., Korsten, A., Petersen, F., & Wiebke, G. (1976). Collector apparatus for gaseous reaction products. US Patent No. 3,976,829.

Blecha, M., Schmid, W., Krauth, A., & Wruss, W. (1990). Herstellung grobkörniger, auf hohen SiC-Gehalt optimierter SiC-C-Grünkörper für die Herstellung von SiSiC.Sprechsaal, 123, 263268.

Processing of Silicon Carbide-Based Ceramics 167

Boecker, W. D. G., Chwastiak, S., Frechette, F., & Lau, S. K. (1989). Single phasea-SiC reinforcements for composites. In J. D. Cawley & C. E. Semler (Eds.), Ceramic transactions: Vol. 2.Proceedings of the silicon carbide ‘87(pp. 407420). Westerville, OH: The American Ceramic Society.

Böcker, W., & Hamminger, R. (1991). Advancements in sintering of covalent high performance ceramics.Interceram, 40, 520525.

Böcker, W., & Hausner, H. (1978). The inuence of boron and carbon additions on the microstructure of sintered silicon carbide.Powder Metallurgy Inter- national, 10, 8789.

Böcker, W., Landfermann, H., & Hausner, H. (1979). Sintering of alpha silicon carbide with additions of aluminium.Powder Metallurgy International, 11, 8385.

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers.Journal of American Chemical Society, 60, 309319.

Burkhard, C. A. (1949). Polymethylsilane.Journal of the American Chemical Society, 71, 963964.

Cai, H., Gu, W. H., & Faber, K. T. (1990). Microcrack toughening in SiC-TiB2composite. In Proceedings of the American society for composites, 5th technical conference on composite materials(pp. 892901). Lancaster, PA: Technomic Publishing Company.

Cannon, W. R., Danforth, S. C., Flint, J. H., Haggerty, J. S., & Marra, R. A. (1982). Sinterable ceramic powders from laser-driven reactions: I, process description and modeling.Journal of the American Ceramic Society, 65, 324330.

Cao, J. J., MoberlyChan, W. J., De Jonghe, L. C., Gilbert, C. J., & Ritchie, R. O. (1996). In situ toughened silicon carbide with Al-B-C additions.Journal of the American Ceramic Society, 79, 461469.

Carter, C. H. J. R., Davis, R. F., & Bentley, J. (1984). Kinetics and mechanisms of high-temperature creep in silicon carbide: II, chemically vapor deposited.

Journal of the American Ceramic Society, 67, 732740.

Chakrabarti, O., & Das, P. K. (2000). Reactive inltration of Si-Mo alloyed melt into carbonaceous preforms of silicon carbide.Journal of the American Ceramic Society, 83, 15481550.

Chen, L., Goto, T., & Hirai, T. (1996). Preparation and pressureless sintering of chemical vapour deposited SiC-B composite powder.Journal of Materials Science, 31, 679683.

Chen, I.-W., & Wang, X. H. (2000). Sintering dense nanocrystalline ceramics withoutnal-stage grain growth.Nature (London), 404, 168171.

Chia, K. Y., Boecker, W. D. G., & Storm, R. S. (1994). Silicon carbide bodies having high toughness and method of making same. US Patent No. 5,298,470.

Chia, K. Y., & Lau, S. K. (1991). High toughness silicon carbide.Ceramic Engineering and Science Proceedings, 12, 18451861.

Chiang, Y.-M., & Messner, R. P. (1992). Method of preparing refractory silicon carbide composites and coatings. US Patent No. 5,079,195.

Cho, K.-S., Munir, Z. A., & Lee, H.-K. (2008). Microstructure of spark plasma sintered silicon carbide with Al-B-C.Journal of Ceramic Processing Research, 9, 500505.

Choi, B. J., Park, D. W., & Kim, D. R. (1997). Chemical vapor deposition of silicon carbide by pyrolysis of methyltrichlorosilanes.Journal of Material Science Letters, 16, 3336.

Cohrt, H., & Thümmler, F. (1985). Herstellung, Eigenschaften und Anwendung von reaktionsgebundenem, siliziertem Siliziumkarbid.Zeitschrift fu¨r Werk- stofftechnik, 16, 277285.

Colombo, P., Sglavo, V., Pippel, E., & Woltersdorf, J. (1998). Joining of reaction-bonded silicon carbide using a preceramic polymer.Journal of Materials Science, 33, 24052412.

Coppola, J. A., Hailey, N., & McMurtry, C. H. (1979). Sintered alpha silicon carbide ceramic body having equiaxed microstructure. US Patent No.

4,179,299.

Coppola, J. A., Hailey, N., & McMurtry, C. H. (1982). Sintered alpha silicon carbide ceramic body having equiaxed microstructure. US Patent No.

4,346,049.

Coppola, J. A., & McMurtry, C. H. (1976). Substitution of ceramics for ductile materials in design. In Ceramics in the service of man. National symposium held June 7–9, 1976, Carnegie Institution, Part 3. Washington, D.C.: National Academic Science.

Cordery, L., Niesz, D. E., & Shaneeld, J. (1990). Sintering of silicon carbide with rare earth oxide additions.Ceramic transactions, 7, 618636.

Cutler, R. A., & Jackson, T. B. (1989). Liquid phase sintered SiC. In V. J. Tennery (Ed.),Proceedings of the 3rd international conference on ceramic materials and components for engines(pp. 309318). Westerville, OH: The American Ceramic Society.

Cutler, R. A., Virkar, A. V., & Hurford, A. C. (1989). Liquid sintering of silicon carbide. US Patent No. 4,829,027.

Datta, M. S., Bandyopadhyay, A. K., & Chaudhuri, B. (2002). Sintering of nano crystallineasilicon carbide by doping with boron carbide.Bulletin of Materials Science, 25, 181189.

DeBolt, H. E., Krukonis, V. J., & Wawner, F. E. (1974). High strength, high modulus silicon carbidelaments via chemical vapor deposition. In R. B. Marshall, J. W. Faust & C. E. Ryan (Eds.),Silicon carbide 1973(pp. 168175). Columbia, SC: University of South Carolina Press.

DiCarlo, J. A., & Yun, H. M. (2005). Non-oxide (silicon carbide)bers. In N. P. Bansal (Ed.),Handbook of ceramic composites(pp. 3352). New York, NY:

Kluwer Academic Press.

Dietzel, A. (1942). Die Kationenfeldstärken und ihre Beziehung zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silikaten.

Zeitschrift fu¨r Elektrochemie, 48, 923.

Doan, L. N. (1988). Gefügeverstärkung von SiC-Keramiken. PhD thesis, University of Stuttgart, Germany.

Eckert, K. L., Kara, M., & Kerber, A. (1994). Investigation of microstructure and strength of mullite bonded silicon carbide.Ceramic Forum International/Berichte der Deutschen Keramischen Gesellschaft, 71, 218220.

Endo, H., Ueki, M., & Kubo, H. (1990). Hot pressing of SiC-TiC composites.Journal of Materials Sciences, 25, 25032506.

Ersoy, D. A., McNallan, M. J., Gogotsi, Y., & Erdemir, A. (2000). Tribological properties of carbon coatings produced by high temperature chlorination of SiC.

Tribology Transactions, 43, 809815.

Evans, A. G., & Langdon, T. G. (1976). Structural ceramics. InProgress in materials sciences, Vol. 21 (pp. 171441). Oxford, New York: Pergamon Press.

Evans, A. G., & Lange, F. F. (1975). Crack propagation and fracture in silicon carbide.Journal of Materials Science, 10, 16591664.

Evans, A. G., & Marshall, D. B. (1989). The mechanical behavior of ceramic matrix composites.Journal of the American Ceramic Society, 37, 25672583.

Federer, J. I. (1990). Alumina base coatings for protection of SiC ceramics.Journal of Materials Engineering, 12, 141149.

Feng, C. F. (Ed.). (2010).SiC power materials, devices and applications. Berlin, Heidelberg: Springer-Verlag.

Fickel, A., Völker, W. (1988). Modern refractory materials for blast furnace shafts. Interceram, Aachen Proceedings 1988, 3840.

Fitzer, E., & Gadow, R. (1986). Fiber-reinforced silicon carbide.American Ceramic Society Bulletin, 65, 326335.

Fitzgerald, F. A. J. (1900). Process of making carborundum materials. US Patent No. 650,234.

168 Processing of Silicon Carbide-Based Ceramics

Forrest, C. W., Kennedy, P., & Shennan, J. V. (1970). The fabrication and properties of self-bonded silicon carbide bodies. UKEA Reactor Group Report. TRG report 2053 (s).

Forrest, C. W., Kennedy, P., & Shennan, J. V. (1972). The fabrication and properties of self-bonded silicon carbide bodies. In P. Popper (Ed.),Special ceramics, Vol. 5 (pp. 99123). Stoke-on-Trent, U.K.: British Ceramic Research Association.

Förster, J., Vassen, R., & Stöver, D. (1995). Improvement of fracture-toughness in hot isostatically pressed mixtures of ultrane and coarse-grained SiC ceramics.Journal of Materials Science Letters, 14, 214216.

Frank, H. (1998). Schleifkörper aus keramisch gebundenem Schleifmittel. In J. Kriegesmann (Ed.),Technische Keramische Werkstoffe(pp. 194). Ellerau, Germany: HvB Verlag GbR. Loose-leaf-collection, Chapter 8.3.6.2., 43th Supplement.

Fredriksson, J. I. (1960). Process of making recrystallized silicon carbide. US Patent No. 2,964,823.

Fundus, M., & Knoch, H. (1997). Diamond like carbon coatingstribological possibilities and limitations in applications on sintered silicon carbide bearing and seal faces. In Proceedings of the 14th international pump users symposium(pp. 9398). Houston, USA: Texas A &M University System.

Gadow, R. (1986). Die Silizierung des Kohlenstoffs. PhD thesis, University of Karlsruhe, Germany.

Galasso, F. S. (1991).Chemical vapor deposited materials. Boca Raton, Fla: CRC Press.

German, R. M. (1996).Sintering theory and practice. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, 225312.

Goldberger, W. M (1985). Method for continuous production of carbides. US Patent No. 4,543,240.

Goldberger, W. M., & Reed, A. K. (1984). Method of making ultra-microcrystallite silicon carbide product. US Patent No. 4,435,444.

Goldberger, W. M., & Reed, A. K. (1985). Ultra-microcrystalite silicon carbide product. US Patent No. 4,547,430.

Grande, T., Sommerset, H., Hagen, E., Wiik, K., & Einarsrud, M.-A. (1997). Effect of weight loss on liquid phase sintered silicon carbide.Journal of the American Ceramic Society, 80, 10471052.

Greil, P. (1999). Keramik aus Holz. In J. Kriegesmann (Ed.),Technische Keramische Werkstoffe(pp. 144). Ellerau, Germany: HvB Verlag GbR. Loose-leaf- collection, (Chapter 4).3.2.1., 50th supplement.

Greil, P. (2001). Biomorphous ceramics from lignocellulosics.Journal of the European Ceramic Society, 21, 105118.

Greil, P. (2005). Verfahren zur Herstellung eines porösen Verbundkörpers aus Keramik. European Patent No. EP 1528049 A1.

Greil, P., Lifka, T., & Kaindl, A. (1998). Biomorphic cellular silicon carbide ceramics from wood; I. Processing and microstructure; II. Mechanical properties.

Journal of the European Ceramic Society, 18, 19611973, 19751983.

Greskovich, G., & Palm, J. A. (1980). Development of high performance sintered Si3N4. Report No. AMMRC Tr. 8046.

Gribkov, V. N., Silaev, V. A., Shchetanov, B. V., Umantsev, E. L., & Isaikin, A. S. (1972). Growth mechanism of silicon nitride whiskers.Soviet Physics, Crystallography, 16, 852854.

Haggerty, J. S., & Chiang, Y.-M. (1990). Reaction-based processing methods for ceramics and composites.Ceramic Engineering and Science Proceedings, 11, 757781.

Hall, H. T. (1964). Method of making high compressive strength silicon carbide and product thereof. US Patent No. 3,158,442.

Hayashi, J., Omori, M., & Yajima, S. (1978). Silicon carbidebers having high strength and a method for producing saidbers. US Patent No. 4,100,233.

Hennicke, J., & Kessel, H. U. (2004). Field assisted sintering technology (FAST) for the consolidation of innovated materials.Ceramic Forum International/

Berichte der Deutschen Keramischen Gesellschaft, 81(11), E14E16.

Hirai, T., & Sasaki, M. (1991). Silicon carbide prepared by chemical vapor deposition. In Silicon carbide ceramics – 1 fundamental and solid reaction (pp. 7798). Barking, Essex: Elsevier Applied Sciences.

Hotta, M., Enomoto, N., & Hojo, J. (2006). Liquid-phase sintered silicon carbide with aluminum nitride and rare-earth oxide additives.Key Engineering Materials, 317–318, 111114.

Hotta, M., & Hojo, J. (2006). Microstructural development of SiC ceramics by liquid-phase sintering with spark plasma sintering technique.Materials Science Forum, 510–511, 10221025.

Hotta, M., & Hojo, J. (2009). Effect of AlN additive on densication, microstructure and strength of liquid-phase sintered SiC ceramics by spark plasma sintering.Journal of the Ceramic Society of Japan, 117, 10091012.

Hotta, M., & Hojo, J. (2010). Inhibition of grain growth in liquid sintered SiC ceramics by AlN additive and spark plasma sintering.Journal of the European Ceramic Society, 30, 21172122.

Hotta, M., Kita, H., & Hojo, J. (2011). Nanostructured silicon carbide ceramics fabricated through liquid-phase sintering by spark plasma sintering.Journal of the Ceramic Society of Japan, 119, 129132.

Hucke, E. E. (1983). Process development for silicon carbide based structural ceramics. AMMRS Report TR 8385.

Hunold, K. (1984/1985). Hot isostatic pressing of SiC.Powder Metallurgy International, 16, 236238, 17, 9193.

Hunold, K., Reinmuth, K., & Lipp, A. (1983). Process for manufacture of substancially pore-free shaped polycrystalline articles by isostatic hot-pressing in glass casings. US Patent No. 4,381,931.

Igawa, N., Taguchi, T., Snead, L. L., Katoh, Y., Jitsukawa, S., Kohyama, A., et al. (2002). Optimizing the fabrication process for superior mechanical properties in the FCVI SiC matrix/stoichiometric SiCber composite system.Journal of Nuclear Materials, 307–311(Part 2), 12051209.

Ihle, J. (2004). Phasenausbildungen im System Al2O3-Y2O3-SiC und elektrische Eigenschaften von porösem üssigphasengesinterten Siliciumcarbid. PhD thesis, Technical University Bergakademie Freiberg, Germany.

Inomata, Y., Tanaka, H., Inoue, Z., & Kawabata, H. (1980). Phase relations in SiC-Al4C3-B4C at 1800C.Kogyo Kyokaishi, 88, 4951.

Inoue, K. (1966a). Electric-discharge sintering. US Patent No. 3,241,956.

Inoue, K. (1966b). Apparatus for electrically sintering discrete bodies. US Patent No. 3,250,892.

Inoue, K. (1967). Method of an apparatus for controlling the porosity of electrically sintered bodies. US Patent No. 3,317,705.

Iseki, T., Yamashita, K., & Suzuki, H. (1981). Joining of self-bonded silicon carbide by germanium metal.Journal of the American Ceramic Society, 64, C13C14.

Ishikawa, T. (1991). SiC continuousber, nicalon. In S. Somiya & Y. Inomata (Eds.),SiC ceramics, vol. 2 (pp. 8198). Amsterdam: Elsevier.

Izhevskyi, V. A., Bressiani, A. H. A., & Bressiani, J. C. (2005). Effect of liquid phase sintering on microstructure and mechanical properties of Yb2O3-AlN containing SiC-based ceramics.Journal of the American Ceramic Society, 88, 11151121.

Izhevskyi, V. A., Genova, L. A., Bressani, J. C., & Bressani, A. H. A. (2000a). Review article: silicon carbide. Structure, properties and processing.Ceraˆmica, 46, 413.

Processing of Silicon Carbide-Based Ceramics 169

Izhevskyi, V. A., Genova, L. A., Bressani, A. H. A., & Bressani, J. C. (2000b). Liquid-phase sintered SiC. Processing and transformation controlled micro- structure tailoring.Materials Research, 3, 131138.

Izhevskyi, V. A., Genova, L. A., Bressani, A. H. A., & Bressani, J. C. (2001). Liquid-phase sintered SiC based ceramics with AlN-Y2O3and AlN-La2O3additives.

In J. G. Heinrich & F. Aldinger (Eds.),Ceramic materials and components of engines(pp. 593598). Weinheim, Germany: Wiley VCH.

Jang, C.-W., Kim, J., & Kang, S.-J. L. (2002). Effect of sintering atmosphere on grain shape and grain growth in liquid-phase-sintered silicon carbide.Journal of the American Ceramic Society, 85, 12811284.

Janney, M. A. (1987). Mechanical properties and oxidation behavior of a hot-pressed SiC-15 vol % TiB2composite.American Ceramic Society Bulletin, 66, 322324.

Jepps, N. W., & Page, T. F. (1983). Polytypic transformation in silicon carbide.Progress in Crystal Growth and Characterization, 7, 259307.

Jimbou, R., Takahashi, K., Matsushia, Y., & Kosugi, T. (1986). SiC-ZrB2 electroconductive ceramic composite. Advanced Ceramic Materials, 1, 341345.

Jun, H.-W., Lee, H.-W., Kim, G.-H., Song, H.-S., & Kim, B.-H. (2008). Effect of sintering atmosphere on the microstructure evolution and the mechanical properties of silicon carbide ceramics. In J. P. Singh (Ed.),Ceramic engineering and science proceedings: Vol. 18.Proceedings of the 21st annual conference on composites, advanced ceramics, materials, and structures – B. Hoboken, NJ: John Wiley & Sons. http://dx.doi.org/10.1002/

9780470294444.ch57. Issue 4.

Kaindl, A. (1999). Zellulare SiC-Keramik aus Holz. PhD thesis, University of Erlangen-Nürnberg, Germany.

Kayser, W. A.,Zyskovic, M., & Petzow, G. (1985). Shape accommodation during grain growth in the presence of liquid phase.Journal of Materials Science, 20, 578584.

Kessel, H. U., & Hennicke, J. (2010). FAST/SPSSchnellsintertechnik und ihre Anwendung im Labor und Produktion. In J. Kriegesmann (Ed.),Technische Keramische Werkstoffe(pp. 105118). Ellerau, Germany: HvB Verlag GbR. Loose-leaf-collection, (Chapter 3).6.7.1., 114th supplement.

Kim, Y.-W., Chun, Y.-S., Lee, S.-H., Park, J. Y., Nishimura, T., Mitomo, M., et al. (2007). Microstructure and mechanical properties of heat-resistant silicon carbide ceramics.Key Engineering Materials, 336–338, 14091413.

Kim, W. J., & Kim, Y.-W. (1995). Liquid phase sintering of silicon carbide.Journal of the Korean Ceramic Society, 32, 16551658.

Kim, J.-Y., Kim, Y.-W., Mitomo, M., Zhan, G.-D., & Lee, J.-G. (1999). Microstructure and mechanical properties of alpha-silicon carbide sintered with yttrium- aluminum garnet and silica.Journal of the American Ceramic Society, 82, 441444.

Kim, Y.-W., Kim, J.-Y., Rhee, S. H., & Kim, D.-Y. (2000). Effect of initial particle size on microstructure of liquid-phase sintered silicon carbide.Journal of the European Ceramic Society, 20, 945949.

Kim, Y.-W., Lee, S.-G., & Lee, Y.-I. (2000). Pressureless sintering of SiC-TiC composites with improved fracture toughness.Journal of Materials Science, 35, 55695574.

Kim, J. K., & Mai, Y.-W. (1998).Engineered interfaces in fiber reinforced composites. Oxford UK: Elsevier Science Ltd.

Kim, Y.-W., Mitomo, M., Emoto, H., & Lee, J.-G. (1998). Effect of initiala-phase content on microstructure and mechanical properties of sintered silicon carbide.Journal of the American Ceramic Society, 81, 31363140.

Kim, Y.-W., Mitomo, M., & Hirotsuru, H. (1997). Microstructural development of silicon carbide containing large seed grains.Journal of the American Ceramic Society, 80, 99105.

Kingery, W. D. (1959). Densication during sintering in the presence of a liquid phase.Journal of Applied Physics, 30, 301306.

Kingery, W. D., & Berg, M. (1955). Study of initial stages of sintering solids by viscousow, evaporation-condensation and self-diffusion.Journal of Applied Physics, 26, 12051212.

Kistler-De Coppi, P. A., & Richarz, W. (1986). Phase transformations and grain growth in silicon carbide powders.International Journal of High Technology Ceramics, 2, 99113.

Kleykamp, H., & Schumacher, G. (1993). The constitution of silicon-carbon system.Berichte der Bunsengesellschaft fu¨r Physikalische Chemie, 97, 799804.

Knippenberg, W. F. (1963). Growth phenomena in silicon carbide.Philips Research Reports, 18, 161274.

Kollenberg, W., & Travitzky, N. (2010). PT-KeramikÒ: Herstellung und Anwendungspotenziale papiertechnologisch hergestellter Keramik. In J. Kriegesmann (Ed.),Technische Keramische Werkstoffe(pp. 121). Ellerau, Germany: HvB Verlag GbR. Loose-leaf-collection, (Chapter 4).9.1.0., 116th Supplement.

Kostic, E. (1988). Sintering of silicon carbide in the presence of oxide additives.Powder Metallurgy International, 20, 2829.

Krebs, R. (2008). Unshaped refractory materials (monolithics). In R. Routschka (Ed.),Pocket manual: Refractory materials. Design, properties, testing(3rd ed.).

(pp. 233303) Essen, Germany: Vulkan Verlag.

Krenkel, W. (2002). Design of ceramic brake pads and discs.Ceramic Engineering Science Proceedings, 23, 319329.

Krenkel, W. (2003). Anwendungspotenziale faserverstärkter C/C-SiC-Keramiken. In W. Krenkel (Ed.),Keramische Verbundwerkstoffe(pp. 220241). Weinheim, Germany: Wiley-VCH Verlag.

Krenkel, W., & Hald, H. (1989). Liquid inltrated C/SiCan alternative material for hot space structures. In Proceedings of the ESA/EATEC conference on spacecraft structures and mechanical testing(pp. 325328). Paris, France: European Space Agency Publications Division.

Kriegesmann, J. (1986). Sintering phenomena in silicon carbide.Powder Metallurgy International, 18, 341343.

Kriegesmann, J. (1988). Competing sintering mechanisms in silicon carbide.Interceram, 37, 301303.

Kriegesmann, J. (1992). Processing phenomena for recrystallized silicon carbide. In K. Ishizaki, K. Niihara, M. Isotani & R. G. Ford (Eds.),JFCC workshop series: Materials, processing and design:Grain boundary controlled properties of fine ceramics(pp. 176188). London, New York: Elesevier Applied Science.

Kriegesmann, J. (2003). Feinteiliges rekristallisiertes Siliciumcarbidein Werkstoff für Dieselpartikellter. In J. G. Heinrich & H. Gasthuber (Eds.),Keramik im Fahrzeugbau(pp. 131138). Cologne, Germany: Deutsche Keramische Gesellschaft e.V.

Kriegesmann, J. (2004a). Finely layered recrystallized silicon carbide for diesel particulate lters. Ceramic Forum International/Berichte der Deutschen Keramischen Gesellschaft, 81(10), E25E29.

Kriegesmann, J. (2004b). Microstructure control during consolidation ofne grained recrystallized silicon carbide. In H. Mandal & L. Öveço^glu (Eds.),Euro ceramics VIII, proceedings of the 8th conference and exhibition of the European Ceramic Society in Istanbul, 2003(pp. 21992202). Zürich, Switzerland:

Trans Tech Publications Ltd.

Kriegesmann, J. (2005a). SSiC, LPSSiC und RSiCModellwerkstoffe zur Erläuterung von Sintervorgängen. In J. Kriegesmann (Ed.),Technische Keramische Werkstoffe(pp. 150). Ellerau, Germany: HvB Verlag GbR. Loose-leaf-collection, (Chapter 4).3.2.4., 84th supplement.

170 Processing of Silicon Carbide-Based Ceramics

Dalam dokumen COMPREHENSIVE HARD MATERIALS VOLUME 2 (Halaman 187-198)