The broad appeal of animal models for the study of aging is apparent even from a cursory overview such as this. Our goal was to provide a reference for researchers and students interested in animal models for the study of pathological aging. The cited material provides a starting point for further research into the individual systems, with a bias towards key studies that have influenced the field.
This survey of the literature is by no means comprehensive—for the motivated researcher, many more model systems are available and can be tailored to specific applications. We are in the midst of an incredibly exciting and important period in the study of aging. The older population in the US will grow at a tremendous rate through 2050, resulting in a nearly twofold increase in the aged population and 16-fold increase in the number of centenarians in the next 30+ years.154,155 The need for aging research has never been greater, and animal models are sure to be a significant component of breakthroughs in the science of the aging mind.
Key Readings
Yeoman, M., Scutt, G., & Faragher, R. Insights into CNS ageing from animal models of senescence.Nature Reviews Neuroscience, 13(6), 435–45 (2012) doi:10.1038/nrn3230
López-Otín, C., Blasco, M. A. Partridge, L, Serrano, M., & Kroemer, G. The hallmarks of aging.Cell153(6), 1194–1217 (2013). doi:10.1016/j.cell.2013.05.039
Mitchell, S. J., Scheibye-Knudsen, M., Longo, D. L. & de Cabo, R. Animal models of aging research: Impli- cations for human aging and age-related diseases.”Annual Review of Animal Biosciences, 3(1), 283–303 (2015). doi:10.1146/annurev-animal-022114-110829
References
1 Zhang Q, Kim YC, Narayanan NS. Disease-modifying therapeutic directions for Lewy-Body dementias.
Front Neurosci. 9:293 (2015); doi: 10.3389/fnins.2015.00293. eCollection 2015. Review. PMID:
26347604 Free PMC Article
2 Yeoman, M., Scutt, G., & Faragher, R. Insights into CNS ageing from animal models of senescence.Nat.
Rev. Neurosci., 13, 435–445 (2012).
3 Mitchell, S. J., Scheibye-Knudsen, M., Longo, D. L., & de Cabo, R. Animal models of aging research:
implications for human aging and age-related diseases.Annu. Rev. Anim. Biosci., 3, 283–303 (2015).
4 Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells.Science, 279, 349–352 (1998).
5 Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human.Science, 277, 955–959 (1997).
6 Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho.Science, 309, 1829–1833 (2005).
7 López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. The hallmarks of aging.Cell, 153, 1194–1217 (2013).
71 Animal Models of Pathological Aging
8 Colman, R. J. et al. Caloric Restriction delays disease onset and mortality in rhesus monkeys.Science, 325, 201–204 (2009).
9 Fontana, L., Partridge, L., & Longo, V. D. Extending healthy life span—from yeast to humans.Science, 328, 321–326 (2010).
10 Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study.Nature, 489, 318–321 (2012).
11 Roth, G. S., Ingram, D. K., & Lane, M. A. Caloric Restriction in Primates and Relevance to Humans.
Ann. N. Y. Acad. Sci., 928, 305–315 (2001).
12 Finkel, T., & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing.Nature, 408, 239– 247 (2000).
13 Sohal, R. S., & Weindruch, R. Oxidative stress, caloric restriction, and aging.Science, 273, 59–63 (1996).
14 Doonan, R. et al. Against the oxidative damage theory of aging: Superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans.Genes Dev., 22, 3236– 3241 (2008).
15 Mesquita, A. et al. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc. Natl. Acad. Sci. 107, 15123– 15128 (2010).
16 Pérez, V. I. et al. Is the oxidative stress theory of aging dead?Biochim. Biophys. Acta BBA–Gen. Subj., 1790, 1005–1014 (2009).
17 Hekimi, S., Lapointe, J., & Wen, Y. Taking a“good”look at free radicals in the aging process.Trends Cell Biol., 21, 569–576 (2011).
18 Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W., & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency.Annu. Rev. Biochem., 78, 959–991 (2009).
19 Dauer, W., & Przedborski, S. Parkinson’s disease: Mechanisms and models.Neuron, 39, 889–909 (2003).
20 Ashe, K. H., & Zahs, K. R. Probing the biology of Alzheimer’s disease in mice.Neuron, 66, 631–645 (2010).
21 Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease.N. Engl. J.
Med., 370, 311–321 (2014).
22 Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP.
Science, 293, 1487–1491 (2001).
23 Osorio, F. G. et al. Splicing-directed therapy in a new mouse model of human accelerated aging.Sci.
Transl. Med., 3, 106ra107–106ra107 (2011).
24 Morrison, J. H., & Hof, P. R. Life and death of neurons in the aging brain.Science, 278, 412–419 (1997).
25 Katzman, R. Education and the prevalence of dementia and Alzheimer’s disease.Neurology, 43, 13– 20 (1993).
26 Stern, Y. et al. Influence of education and occupation on the incidence of Alzheimer’s disease.JAMA 271, 1004–1010 (1994).
27 Bozzali, M. et al. The impact of cognitive reserve on brain functional connectivity in Alzheimer’s disease.
J. Alzheimers Dis., 44, 243–250 (2015).
28 De Reuck, J. L., Deramecourt, V., Durieux, N., Moreau, C., & Leys, D. The Significance of cortical cer- ebellar microbleeds and microinfarcts in neurodegenerative and cerebrovascular diseases.Cerebrovasc Dis., 39, 138–143 (2015).
29 Enroth, L., Raitanen, J., Hervonen, A., Nosraty, L., & Jylhä, M. Is socioeconomic status a predictor of mortality in nonagenarians? The vitality 90+ study.Age Ageing, 44, 123–129 (2015).
30 Azevedo, F. A. C. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an iso- metrically scaled-up primate brain.J. Comp. Neurol., 513, 532–541 (2009).
31 Chechik, G., Meilijson, I., & Ruppin, E. Neuronal regulation: A mechanism for synaptic pruning during brain maturation.Neural Comput., 11, 2061–2080 (1999).
32 Fearnley, J. M., & Lees, A. J. Ageing and Parkinson’s disease: Substantia nigra regional selectivity.Brain, 114, 2283–2301 (1991).
33 Voss, M. W., Vivar, C., Kramer, A. F., & van Praag, H. Bridging animal and human models of exercise- induced brain plasticity.Trends Cogn. Sci., 17, 525–544 (2013).
34 Wu. Y., Bolduc, F. V., Bell, K., Tully, T., Fang, Y., Sehgal, A., & Fischer, J. A. A Drosophila model for Angelman syndrome.Proc. Natl. Acad. Sci. U S A., 105(34), 12399–12404 (2008).
35 O’Callaghan, R. M., Griffin, E. W., & Kelly, A. M. Long-term treadmill exposure protects against age- related neurodegenerative change in the rat hippocampus.Hippocampus, 19(10), 1019–1029 (2009).
72 Eric B. Emmons, Youngcho Kim, and Nandakumar S. Narayanan
36 Boillée, S., Vande Velde, C., & Cleveland, D. W. ALS: A disease of motor neurons and their nonneuronal neighbors.Neuron, 52, 39–59 (2006).
37 Schliebs, R., & Arendt, T. The cholinergic system in aging and neuronal degeneration.Behav. Brain Res., 221, 555–563 (2011).
38 Samuels, M., & Ropper, A.Adams and Victor’s principles of neurology. (McGraw-Hill, 2009).
39 Prete, F. R.Complex worlds from simpler nervous systems. (MIT Press, 2004).
40 Keane, M. et al. Insights into the evolution of longevity from the bowhead whale genome.Cell Rep., 10, 112–122 (2015).
41 Campisi, J., & d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells.Nat.
Rev. Mol. Cell Biol., 8, 729–740 (2007).
42 Kaletta, T., & Hengartner, M. O.Finding function in novel targets: C. elegans as a model organism. Nat.
Rev. Drug Discov., 5, 387–399 (2006).
43 Koch, C., & Laurent, G. Complexity and the nervous system.Science, 284, 96–98 (1999).
44 Kuwabara, P. E., & O’Neil, N.The use of functional genomics in C. elegans for studying human develop- ment and disease. J. Inherit. Metab. Dis., 24, 127–138 (2001).
45 Friedman, D. B., & Johnson, T. E. A Mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility.Sci. Aging Knowl. Environ., 2002, cp22 (2002).
46 Finch, C. E., & Tanzi, R. E. Genetics of aging.Science, 278, 407–411 (1997).
47 Kimura, K., Tanaka, N., Nakamura, N., Takano, S., & Ohkuma, S. Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in Caenorhabditis elegans.J. Biol. Chem., 282, 5910–5918 (2007).
48 Balaban, R. S., Nemoto, S., & Finkel, T. Mitochondria, oxidants, and aging.Cell, 120, 483–495 (2005).
49 Vanfleteren, J. R., & De Vreese, A. Rate of aerobic metabolism and superoxide production rate potential in the nematode Caenorhabditis elegans.J. Exp. Zool., 274, 93–100 (1996).
50 Wadsworth, W. G., & Riddle, D. L. Developmental regulation of energy metabolism in Caenorhabditis elegans.Dev. Biol., 132, 167–173 (1989).
51 Prahlad, V., Cornelius, T., & Morimoto, R. I. Regulation of the cellular heat shock response in Caenor- habditis elegans by thermosensory neurons.Science, 320, 811–814 (2008).
52 Prahlad, V., & Morimoto, R. I. Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins.Proc. Natl. Acad. Sci., 108, 14204–14209 (2011).
53 Tatum, M. C. et al. Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase.Curr. Biol., CB25, 163–174 (2015).
54 Felkai, S. et al. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans.
EMBO J., 18, 1783–1792 (1999).
58 Wong, A., Boutis, P., & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans affect devel- opmental and behavioral timing.Genetics, 139, 1247–1259 (1995).
56 Ishii, N. et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes.Nature, 394, 694–697 (1998).
57 Cooper, A. A. et al.α-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron Loss in Parkinson’s models.Science, 313, 324–328 (2006).
58 Masliah, E. et al. Dopaminergic loss and inclusion body formation inα-synuclein mice: Implications for neurodegenerative disorders.Science, 287, 1265–1269 (2000).
59 Goedert, M. Alpha-synuclein and neurodegenerative diseases.Nat. Rev. Neurosci., 2, 492–501 (2001).
60 van Ham, T. J. et al. C. elegans model identifies genetic modifiers ofα-synuclein inclusion formation during aging.PLoS Genet, 4, e1000027 (2008).
61 Kuwahara, T. et al. Familial Parkinson mutantα-synuclein causes dopamine neuron dysfunction in trans- genic Caenorhabditis elegans.J. Biol. Chem., 281, 334–340 (2006).
62 Saha, S. et al. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans.
J. Neurosci., 29, 9210–9218 (2009).
63 Dawson, T. M., Ko, H. S., & Dawson, V. L. Genetic animal models of Parkinson’s disease.Neuron, 66, 646–661 (2010).
64 Lakso, M. et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing humanα-synuclein.J. Neurochem., 86, 165–172 (2003).
65 Hutton, M. et al. Association of missense and 5 -splice-site mutations in tau with the inherited dementia FTDP-17.Nature, 393, 702–705 (1998).
73 Animal Models of Pathological Aging
66 Lee, M. K. et al. Humanα-synuclein-harboring familial Parkinson’s disease-linked Ala-53 Thr muta- tion causes neurodegenerative disease withα-synuclein aggregation in transgenic mice.Proc. Natl. Acad.
Sci., 99, 8968–8973 (2002).
67 Kraemer, B. C. et al. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy.Proc. Natl. Acad. Sci., 100, 9980–9985 (2003).
68 Miyasaka, T. et al.Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol. Dis., 20, 372–383 (2005).
69 Bellen, H. J., Tong, C., & Tsuda, H. 100 years of Drosophila research and its impact on vertebrate neu- roscience: A history lesson for the future.Nat. Rev. Neurosci., 11, 514–522 (2010).
70 Matthews, K. A., Kaufman, T. C., & Gelbart, W. M. Research resources for Drosophila: The expanding universe.Nat. Rev. Genet., 6, 179–193 (2005).
71 Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. A systematic analysis of human disease- associated gene sequences in Drosophila melanogaster.Genome Res., 11, 1114–1125 (2001).
72 Rubin, G. M. et al. Comparative genomics of the Eukaryotes.Science, 287, 2204–2215 (2000).
73 Tatar, M. Reproductive aging in invertebrate genetic models.Ann. N. Y. Acad. Sci., 1204, 149– 155 (2010).
74 Sgrò, C. M., & Partridge, L. A Delayed wave of death from reproduction in Drosophila.Science, 286, 2521–2524 (1999).
75 Lin, Y.-J., Seroude, L., & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah.Science, 282, 943–946 (1998).
76 Cvejic, S., Zhu, Z., Felice, S. J., Berman, Y., & Huang, X.-Y. The endogenous ligand Stunted of the GPCR Methuselah extends lifespan in Drosophila.Nat. Cell Biol., 6, 540–546 (2004).
77 West, A. P., Llamas, L. L., Snow, P. M., Benzer, S., & Bjorkman, P. J. Crystal structure of the ectodomain of Methuselah, a Drosophila G protein-coupled receptor associated with extended lifespan.Proc. Natl.
Acad. Sci., 98, 3744–3749 (2001).
78 Rogina, B., Benzer, S., & Helfand, S. L. Drosophila drop-dead mutations accelerate the time course of age-related markers.Proc. Natl. Acad. Sci., 94, 6303–6306 (1997).
79 Tower, J. Aging mechanisms in fruit flies.BioEssays18, 799–807 (1996).
80 Harshman, L. G., & Haberer, B. A. Oxidative stress resistance: A robust correlated response to selection in extended longevity lines of Drosophila melanogaster?J. Gerontol. A. Biol. Sci. Med. Sci., 55, B415– B417 (2000).
81 Tatar, M., Khazaeli, A. A., & Curtsinger, J. W. Chaperoning extended life.Nature, 390, 30–30 (1997).
82 Phillips, J. P., Campbell, S. D., Michaud, D., Charbonneau, M., & Hilliker, A. J. Null mutation of cop- per/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity.
Proc. Natl. Acad. Sci., 86, 2761–2765 (1989).
83 Orr, W. C., & Sohal, R. S. Does overexpression of Cu,Zn-SOD extend life span in Drosophila melano- gaster?Exp. Gerontol., 38, 227–230 (2003).
84 Sun, J., & Tower, J. FLP Recombinase-mediated induction of Cu/Zn-Superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies.Mol. Cell. Biol., 19, 216– 228 (1999).
85 Ruan, H., & Wu, C.-F. Social interaction-mediated lifespan extension of Drosophila Cu/Zn superoxide dismutase mutants.Proc. Natl. Acad. Sci., 105, 7506–7510 (2008).
86 Kaspar, J. W., Niture, S. K., & Jaiswal, A. K. Nrf2: INrf2 (Keap1) signaling in oxidative stress.Free Radic.
Biol. Med., 47, 1304–1309 (2009).
87 Sykiotis, G. P., & Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila.Dev. Cell, 14, 76–85 (2008).
88 Feany, M. B., & Bender, W. W. A Drosophila model of Parkinson’s disease. Nature, 404, 394– 398 (2000).
89 Riemensperger, T. et al. A single dopamine pathway underlies progressive locomotor deficits in a Dro- sophila model of Parkinson disease.Cell Rep., 5, 952–960 (2013).
90 Liu, Z. et al. A Drosophila model for LRRK2-linked parkinsonism.Proc. Natl. Acad. Sci., 105, 2693– 2698 (2008).
91 Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila.EMBO J., 27, 2432–2443 (2008).
92 Wang, D. et al. Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopa- minergic neurons.Mol. Neurodegener, 3, (2008).
74 Eric B. Emmons, Youngcho Kim, and Nandakumar S. Narayanan
93 Dawson, T. M., & Dawson, V. L. The role of parkin in familial and sporadic Parkinson’s disease.Mov.
Disord.25, S32–S39 (2010).
94 Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants.Proc. Natl. Acad. Sci., 100, 4078–4083 (2003).
95 Chen, Y., & Dorn, G. W. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria.Science, 340, 471–475 (2013).
96 Wittmann, C. W. et al. Tauopathy in Drosophila: Neurodegeneration without neurofibrillary tangles.
Science, 293, 711–714 (2001).
97 Shulman, L. M. et al. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease.JAMA Neurol., 70, 183–190 (2013).
98 Iijima, K. et al. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: A potential model for Alzheimer’s disease.Proc. Natl. Acad. Sci., U. S. A., 101, 6623– 6628 (2004).
99 Seidner, G. A., Ye, Y., Faraday, M. M., Alvord, W. G., & Fortini, M. E. Modeling clinically heteroge- neous presenilin mutations with transgenic Drosophila.Curr. Biol., CB16, 1026–1033 (2006).
100 Frost, B., Hemberg, M., Lewis, J., & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation.Nat. Neurosci., 17, 357–366 (2014).
101 Dias-Santagata, D., Fulga, T. A., Duttaroy, A., & Feany, M. B. Oxidative stress mediates tau-induced neurodegeneration in Drosophila.J. Clin. Invest., 117, 236–245 (2007).
102 Kenyon, C. J. The genetics of ageing.Nature, 464, 504–512 (2010).
103 Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians.
Proc. Natl. Acad. Sci., 105, 3438–3442 (2008).
104 Yuan, R. et al. Aging in inbred strains of mice: Study design and interim report on median lifespans and circulating IGF1 levels.Aging Cell, 8, 277–287 (2009).
105 Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mam- mals.Nature, 402, 309–313 (1999).
106 Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span.Science, 326, 140–144 (2009).
107 Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.
Nature, 460, 392–395 (2009).
108 Tomás-Loba, A. et al. Telomerase Reverse transcriptase delays aging in cancer-resistant mice.Cell, 135, 609–622 (2008).
109 Brown-Borg, H. M., Borg, K. E., Meliska, C. J., & Bartke, A. Dwarf mice and the ageing process.
Nature, 384, 33–33 (1996).
110 Brown–Borg, H. M., & Rakoczy, S. G. Catalase expression in delayed and premature aging mouse mod- els.Exp. Gerontol., 35, 199–212 (2000).
111 Hauck, S. J., & Bartke, A. Effects of growth hormone on hypothalamic catalase and Cu/Zn superoxide dismutase1.Free Radic. Biol. Med., 28, 970–978 (2000).
112 Quarrie, J. K., & Riabowol, K. T. Murine models of life span extension.Sci. Aging Knowl. Environ., 2004, re5 (2004).
113 Nemoto, S., & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway.Science, 295, 2450–2452 (2002).
114 Alberico SL, Cassell MD, Narayanan NS. The Vulnerable Ventral Tegmental Area in Parkinson’s Dis- ease. Basal Ganglia. 5(2–3):51–55 (2015).
115 Chesselet, M.-F., Fleming, S., Mortazavi, F., & Meurers, B. Strengths and limitations of genetic mouse models of Parkinson’s disease.Parkinsonism Relat. Disord., 14, Supplement 2, S84–S87 (2008).
116 Perez, F. A., & Palmiter, R. D. Parkin-deficient mice are not a robust model of parkinsonism.Proc. Natl.
Acad. Sci. U. S. A., 102, 2174–2179 (2005).
117 Medial frontal 4-Hz activity in humans and rodents is attenuated in PD patients and in rodents with cortical dopamine depletion. Parker KL, Chen KH, Kingyon JR, Cavanagh JF, Narayanan NS.J Neu- rophysiol. 2015 Aug;114(2):1310–20. doi: 10.1152/jn.00412.2015. Epub 2015 Jul 1.
118 Optogenetic Stimulation of Frontal D1 Neurons Compensates for Impaired Temporal Control of Action in Dopamine-Depleted Mice. Kim YC, Han SW, Alberico SL, Ruggiero RN, De Corte B, Chen KH, Narayanan NS.
119 Ungerstedt, U. 6-hydroxy-dopamine induced degeneration of central monoamine neurons.
Eur. J. Pharmacol., 5, 107–110 (1968).
75 Animal Models of Pathological Aging
120 Manning-Bog, A. B. et al. The herbicide paraquat causes up-regulation and aggregation ofα-synuclein in mice.PARAQUAT ANDα-SYNUCLEIN. J. Biol. Chem., 277, 1641–1644 (2002).
121 McCormack, A. L. et al. Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis., 10, 119– 127 (2002).
122 RNA Interference of Humanα-Synuclein in Mouse. Kim YC, Miller A, Lins LC, Han SW, Keiser MS, Boudreau RL, Davidson BL, Narayanan NS. Front Neurol. 2017 Jan 31;8:13. doi: 10.3389/
fneur.2017.00013. eCollection 2017.
123 Przedborski, S. et al. Oxidative post-translational modifications of α-synuclein in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease.J. Neurochem., 76, 637–640 (2001).
124 Tatton, N., & Kish, S. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining.Neuroscience, 77, 1037–1048 (1997).
125 Schneider, J. A., Arvanitakis, Z., Bang, W., & Bennett, D. A. Mixed brain pathologies account for most dementia cases in community-dwelling older persons.Neurology, 69, 2197–2204 (2007).
126 Rossor, M. N., Fox, N. C., Freeborough, P. A., & Harvey, R. J. Clinical features of sporadic and familial Alzheimer’s disease.Neurodegeneration, 5, 393–397 (1996).
127 Götz, J., & Ittner, L. M. Animal models of Alzheimer’s disease and frontotemporal dementia.Nat. Rev.
Neurosci., 9, 532–544 (2008).
128 Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expres- sing mutant (P301L) tau protein.Nat. Genet., 25, 402–405 (2000).
129 SantaCruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function.
Science, 309, 476–481 (2005).
130 Menkes-Caspi, N. et al. Pathological tau disrupts ongoing network activity. Neuron, 85, 959– 966 (2015).
131 Ohlemiller, K. K. Contributions of mouse models to understanding of age- and noise-related hearing loss.Brain Res., 1091, 89–102 (2006).
132 Heffner, H. E., & Heffner, R. S. Hearing ranges of laboratory animals.J. Am. Assoc. Lab. Anim. Sci,.46, 20–22 (2007).
133 Fritzsch, B., Kersigo, J., Yang, T., Jahan, I., & Pan, N. inThe Primary auditory neurons of the mam- malian cochlea(eds., A. Dabdoub, B. Fritzsch, A. N. Popper, & R. R. Fay) 49–84 (New York: Springer, 2016).
134 Di Palma, F. et al. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorgani- zation in waltzer, the mouse model for Usher syndrome type 1D.Nat. Genet., 27, 103–107 (2001).
135 Harman, D.Aging: A theory based on free radical and radiation chemistry. (University of California Radiation Laboratory, 1955).
136 Kujawa, S. G., & Liberman, M. C. Adding insult to injury: Cochlear nerve degeneration after“tempo- rary”noise-induced hearing loss.J. Neurosci., 29, 14077–14085 (2009).
137 Ohlemiller, K. K., McFadden, S. L., Ding, D.-L., Lear, P. M., & Ho, Y.-S. Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice.J. Assoc.
Res. Otolaryngol., 1, 243–254 (2000).
138 Chen, F.-C., & Li, W.-H. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees.Am. J. Hum. Genet., 68, 444– 456 (2001).
139 Roth, G. S. et al. Aging in rhesus monkeys: Relevance to human health interventions.Science, 305, 1423–1426 (2004).
140 Bronikowski, A. M. et al. Aging in the natural world: Comparative data reveal similar mortality patterns across primates.Science, 331, 1325–1328 (2011).
141 Jenner, P. The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease.Parkinsonism Relat. Disord., 9, 131–137 (2003).
142 Bové, J., & Perier, C. Neurotoxin-based models of Parkinson’s disease. Neuroscience, 211, 51– 76 (2012).
143 Collier, T. J., Kanaan, N. M., & Kordower, J. H. Ageing as a primary risk factor for Parkinson’s disease:
Evidence from studies of non-human primates.Nat. Rev. Neurosci., 12, 359–366 (2011).
76 Eric B. Emmons, Youngcho Kim, and Nandakumar S. Narayanan
144 Burns, R. S. et al. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Proc. Natl.
Acad. Sci. U. S. A., 80, 4546–4550 (1983).
145 Kostic, V., Przedborski, S., Flaster, E., & Sternic, N. Early development of levodopa-induced dyskine- sias and response fluctuations in young-onset Parkinson’s disease.Neurology, 41, 202–202 (1991).
146 Mounayar, S. et al. A new model to study compensatory mechanisms in MPTP-treated monkeys exhi- biting recovery.Brain, 130, 2898–2914 (2007).
147 Forno, L., DeLanney, L., Irwin, I., & Langston, J. Similarities and differences between MPTP-induced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv. Neurol., 60, 600– 608 (1992).
148 Bergman, H., Wichmann, T., & DeLong, M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus.Science, 249, 1436–1438 (1990).
149 Bading, J. R. et al.Brain clearance of Alzheimer’s amyloid-β40 in the squirrel monkey: A SPECT study in a primate model of cerebral amyloid angiopathy. (2008). doi:10.1080/10611860290031831
150 Mackic, J. B. et al. Cerebrovascular accumulation and increased blood-brain barrier permeability to cir- culating Alzheimer’s amyloidβpeptide in aged squirrel monkey with cerebral amyloid angiopathy.
J. Neurochem., 70, 210–215 (1998).
151 Nagahara, A. H. et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and pri- mate models of Alzheimer’s disease.Nat. Med., 15, 331–337 (2009).
152 Wang, M. et al. Neuronal basis of age-related working memory decline.Nature, 476, 210–213 (2011).
153 Burke, S. N., & Barnes, C. A. Neural plasticity in the ageing brain. Nat. Rev. Neurosci., 7, 30– 40 (2006).
154 WHO | World report on ageing and health. (World Health Organization). Retrieved from http://
www.who.int/ageing/publications/world-report-2015/en
155 He, W., Sengupta, M., Velkoff, V. A., & DeBarros, K. A.65+ in the United States, 2005. (US Depart- ment of Commerce, Economics and Statistics Administration, US Census Bureau, 2005).
156 Gasser, T. Mendelian forms of Parkinson’s disease.Biochim. Biophys., Acta BBA - Mol. Basis Dis.1792, 587–596 (2009).
157 Lees, A. J., Hardy, J., & Revesz, T. Parkinson’s disease.Lancet, 373, 2055–2066 (2009).
158 Sakaguchi-Nakashima, A., Meir, J. Y., Jin, Y., Matsumoto, K., & Hisamoto, N. LRK-1, a C. elegans PARK8-Related Kinase, Regulates Axonal-Dendritic Polarity of SV Proteins.Curr. Biol., 17, 592– 598 (2007).
159 Li, Y. et al. Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson’s disease.Nat. Neurosci., 12, 826–828 (2009).
160 Gautier, C. A., Kitada, T., & Shen, J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress.Proc. Natl. Acad. Sci., 105, 11364–11369 (2008).
161 Yang, Y. et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl. Acad. Sci. U. S. A., 102, 13670– 13675 (2005).
162 Andres-Mateos, E. et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like perox- idase.Proc. Natl. Acad. Sci. U. S. A., 104, 14807–14812 (2007).
163 Fossgreen, A. et al. Transgenic Drosophila expressing human amyloid precursor protein show gamma- secretase activity and a blistered-wing phenotype. Proc. Natl. Acad. Sci. U. S. A., 95, 13703– 13708 (1998).
164 Gunawardena, S., & Goldstein, L. S. B. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila.Neuron, 32, 389–401 (2001).
165 Chartier-Harlin, M.-C. et al. Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene.Nature, 353, 844–846 (1991).
166 Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer dis- ease with cerebral amyloid angiopathy.Nat. Genet., 38, 24–26 (2006).
167 Nilsberth, C. et al. The“Arctic”APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation.Nat. Neurosci., 4, 887–893 (2001).
77 Animal Models of Pathological Aging