• Tidak ada hasil yang ditemukan

THE AEGIS COMBAT SYSTEM

Captain Pete Galluch is commander of the Aegis Training and Readiness Center, where he oversees training for all Aegis-qualified officers and enlisted sailors. The phrase “steely-eyed missile man” comes to mind upon meeting Galluch. He speaks with the calmness and decisiveness of a surgeon, a man who is ready to let missiles fly if need be. I can imagine Galluch standing in the midst of a ship’s combat information center (CIC) in wartime, unflappable in the midst of the chaos, ordering his sailors when to take the shot and when to hold back. If I were flying within range of an Aegis’s weapons or was counting on its ballistic missile defense capabilities to protect my city, I would trust Galluch to make the right call.

Aegis is a weapon system of staggering complexity. At the core of Aegis is a computer called “Command and Decision,” or C&D, which governs the behavior of the radar and weapons. Command and Decision’s actions are governed by a series of statements—essentially programs or algorithms—that the Navy refers to as “doctrine.” Unlike the Patriot circa 2003, however, which had only a handful of different operating modes, Aegis doctrine is almost infinitely customizable.

With respect to weapons engagements, Aegis has four settings. The manual setting, in which engagements against radar “tracks” (objects detected by the radar) must be done directly by a human, involves the most human control. Ship commanders can increase the degree of automation in the engagement process by activating one of three types of doctrine: Semi- Auto, Auto SM, and Auto-Special. Semi-Auto, as the term would imply, automates part of the engagement process to generate a firing solution on a radar track, but final decision authority is withheld by the human operator.

Auto SM automates more of the engagement process, but a human must still take a positive action before firing. Despite the term, Auto SM still retains a human in the loop. Auto-Special is the only mode where the human is “on the loop.” Once Auto-Special is activated, the Aegis will automatically fire against threats that meet its parameters. The human can

intervene to stop the engagement, but no further authorization is needed to fire.

It would be a mistake to think, however, that this means that Aegis can only operate in four discrete modes. In fact, doctrine statements can mix and match these control types against different threats. For example, one doctrine statement could be written to use Auto SM against one type of threat, such as aircraft. Another doctrine statement might authorize Auto- Special against cruise missiles, for which there may be less warning. These doctrine statements can be applied individually or in packages. “You can mix and match,” Galluch explained. “It’s a very flexible system. . . . we can do all [doctrine statements] with a push of a button, some with a push of a button, or bring them up individually.”

This makes Aegis less like a finished product with a few different modes and more like a customizable system that can be tailored for each mission. Galluch explained that the ship’s doctrine review board, consisting of the officers and senior enlisted personnel who work on Aegis, begin the process of writing doctrine months before deployment. They consider their anticipated missions, intelligence assessments, and information on the region for the upcoming deployment, then make recommendations on doctrine to the ship’s captain for approval. The result is a series of doctrine statements, individually and in packages, that the captain can activate as needed during deployment. “If you have your doctrine statements built and tested,” Galluch said, the time to “bring them up is seconds.”

Doctrine statements are typically grouped into two general categories:

non-saturation and saturation. Non-saturation doctrine is used when there is time to carefully evaluate each potential threat. Saturation doctrine is needed if the ship gets into a combat situation where the number of inbound threats could overwhelm the ability of operators to respond. “If World War III starts and people start throwing a lot of stuff at me,” Galluch said, “I will have grouped my doctrine together so that it’s a one-push button that activates all of them. And what we’ve done is we’ve tested and we’ve looked at how they overlap each other and what the effects are going to be and make sure that we’re getting the defense of the ship that we expect.”

This is where something like Auto-Special comes into play, in a “kill or be killed” scenario, as Galluch described it.

It’s not enough to build the doctrine, though. Extensive testing goes into ensuring that it works properly. Once the ship arrives in theater, the first

thing the crew does is test the weapons doctrine to see if there is anything in the environment that might cause it to fire in peacetime, which would not be good. This is done safely by enabling a hardware-level cutout called the Fire Inhibit Switch, or FIS. The FIS includes a key that must be inserted for any of the ship’s weapons to fire. When the FIS key is inserted, a red light comes on; when it is turned to the right, the light turns green, meaning the weapons are live and ready to fire. When the FIS is red—or removed entirely—the ship’s weapons are disabled at the hardware level. As Galluch put it, “there is no voltage that can be applied to light the wick and let the rocket fly out.” By keeping the FIS red or removing the key, the ship’s crew can test Aegis doctrine statements safely without any risk of inadvertent firing.

Establishing the doctrine and activating it is the sole responsibility of the ship’s captain. Doctrine is more than just a set of programs. It is the embodiment of the captain’s intent for the warship. “Absolutely, it’s automated, but there’s so much human interface with what gets automated and how we apply that automation,” Galluch said. Aegis doctrine is a way for the captain to predelegate his or her decision-making against certain threats.

The Aegis community uses automation in a very different way than the Patriot community did in 2003. Patriot operators sitting at the consoles in 2003 were essentially trusting in the automation. They had a handful of operational modes they could activate, but the operators themselves didn’t write the rules for how the automation would function in those modes.

Those rules were written years beforehand. Aegis, by contrast, can be customized and tailored to the specific operating environment. A destroyer operating in the Western Pacific, for example, might have different doctrine statements than one operating in the Persian Gulf to account for different threats from Chinese versus Iranian missiles. But the differences run deeper than merely having more options. The whole philosophy of automation is different. With Aegis, the automation is used to capture the ship captain’s intent. In Patriot, the automation embodies the intent of the designers and testers. The actual operators of the system may not even fully understand the designers’ intent that went into crafting the rules. The automation in Patriot is largely intended to replace warfighters’ decision-making. In Aegis, the automation is used to capture warfighters’ decision-making.

Another key difference is where decision authority rests. Only the captain of the ship has the authority to activate Aegis weapons doctrine.

The captain can predelegate that authority to the tactical action officer on watch, but the order must be in writing as part of official orders. This means the decision-maker’s experience level for Aegis operations is radically different from Patriot. When Captain Galluch took command of the USS Ramage, he had eighteen years of experience and had served on three prior Aegis ships. By contrast, the person who made the call on the first Patriot fratricide was a twenty-two-year-old second lieutenant fresh out of training.

Throughout our conversation, Galluch’s experience was apparent. He was clearly comfortable using Aegis, but he wasn’t flippant about its automation. What came through was a healthy respect for the weapon system. Activating Aegis doctrine is a serious decision, not be taken lightly.

“You’re never driving around with any kind of weapons doctrine activated”

unless you expect to get into a fight, he explained. Even on manual mode, it is possible to launch a missile in seconds. And if need be, doctrine can be activated quickly. “I’ve made more Gulf deployments than I care to,” he said. “I’m very comfortable with driving around for months at a time with no active doctrine, but making damn sure that I have it set up and tested and ready to go if I need to.” Because there can be situations that call for that level of automation. “You can get a missile fired pretty quickly, so why don’t you do everything manually?” Galluch explained: “My view is that [manual control] works well if it’s one or two missiles or threats. But if you’re controlling fighters, you’re doing a running gun battle with small patrol boats, you’re launching your helicopter. . . . and you’ve got a bunch of cruise missiles coming in from different angles. You know, the watch is pretty small. It’s ten or twelve people. So, there’s not that many people . . . You can miss things coming in. That’s where I get to the whole concept of saturation vs. normal. You want the man in the loop as much as possible, but there comes a time when you can get overwhelmed.”

Aegis philosophy is one of human control over engagements, even when doctrine is activated. What varies is the form of human control. In Auto-Special doctrine, firing authority is delegated to Aegis’s Command &

Decision computer, but the human intent is still there. The goal is always to ensure “there is a conscious decision to fire a weapon,” Galluch said. That doesn’t mean that accidents can’t happen. In fact, it is the constant preoccupation with the potential for accidents that helps prevent them.

Galluch and others understand that, with doctrine activated, mishaps can happen. That’s precisely why tight control is kept over the weapon. “[Ship commanding officers] are constantly balancing readiness condition to fire the weapon versus a chance for inadvertent firing,” he explained.

I saw this tight control in action when Galluch took me to the Aegis simulation center and had his team run through a series of mock engagements. Galluch stood in as the ship’s commanding officer and had Aegis-qualified sailors sitting at the same terminals doing the same jobs they would on a real ship. Then they went to work.