• Tidak ada hasil yang ditemukan

Chapter 1: Introduction

1.5 Thesis overview

In this thesis, I explore novel microfluidic fabrication techniques that utilize 3D printing, the use of hydrogel materials, and numerical simulations to guide microbial analytical device design. The roadmap of this thesis is shown in Figure 1.4.

Chapter 2 describes the use of multiphysics simulation in the development of several novel 3D microfluidic devices for nucleic acid-based pathogen detection in environmental water samples. The developed simulation models aided the design of a microfluidic chip for live versus dead cell differentiation, the understanding of DNA extraction performance in a milliliter-chamber device for electrochemical cell lysis, and the validation of cell distribution on an asymmetric membrane for integrated digital detection.

Chapter 3 describes the development of a hydrogel bead-based (Gelbead) platform that links single cell phenotypic and molecular analysis. In this chapter, I describe how needles and microcentrifuge tubes were adapted into 3D microfluidic devices for monodispersed droplet generation. The disposable device enabled the combination of fast- crosslinking biocompatible hydrogel with droplet microfluidics. The hydrogel bead-based Figure 1.4 Roadmap of this dissertation.

assays were established for cell viability assessment, digital PCR, digital LAMP, and in situ PCR, following cell viability assessment.

Chapter 4 describes the ongoing work of developing a bead sorter that is a portable and affordable solution for benchtop and potentially point-of-care bead analysis and sorting.

The hydrogel beads are interrogated individually, and are sorted by acoustophoretic force based on the fluorescence intensity for downstream analysis such as PCR or sequencing. The sorter system has been designed and prototyped, and its feasibility was studied through COMSOL simulation.

Chapter 5 describes the provisional work based on the development reported in previous chapters. The proposed work includes the development of DropTube, which is a fully integrated centrifugal device for various in-field pathogen analysis, and the investigation of AMR evolution kinetics through the Gelbead platform.

References

Ahmed, T., Shimizu, T. S., & Stocker, R. (2010). Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Letters, 10(9), 3379-3385.

Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A., & Handelsman, J. (2009). Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. The ISME Journal, 3(2), 243-251. doi:10.1038/ismej.2008.86

Altintas, Z., Akgun, M., Kokturk, G., & Uludag, Y. (2018). A fully automated microfluidic- based electrochemical sensor for real-time bacteria detection. Biosensors and Bioelectronics, 100, 541-548.

Andersson, D. I., Nicoloff, H., & Hjort, K. (2019). Mechanisms and clinical relevance of bacterial heteroresistance. Nature Review Microbiology. doi:10.1038/s41579-019- 0218-1

Armes, N. A., & Stemple, D. L. (2007). Recombinase polymerase amplification. U.S. Patent 7270981B2.

Asiello, P. J., & Baeumner, A. J. (2011). Miniaturized isothermal nucleic acid amplification, a review. Lab on a Chip, 11(8), 1420-1430.

Baym, M., Lieberman, T. D., Kelsic, E. D., Chait, R., Gross, R., Yelin, I., & Kishony, R.

(2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353(6304), 1147-1151.

Besmer, M. D., Weissbrodt, D. G., Kratochvil, B. E., Sigrist, J. A., Weyland, M. S., &

Hammes, F. (2014). The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems. Frontiers in Microbiology, 5, 265.

BMGF. (2019). Enteric and Diarrheal Diseases. Bill & Melinda Gates Foundation. Retrieved Mar 28, 2020, from https://www.gatesfoundation.org/what-we-do/global- health/enteric-and-diarrheal-diseases

Carey, M. E., Diaz, Z. I., Zaidi, A. K., & Steele, A. D. (2019). A global agenda for

typhoid control—a perspective from the Bill & Melinda Gates Foundation. Clinical Infectious Diseases, 68(Supplement_1), S42-S45.

Castillo-León, J. (2015). Microfluidics and lab-on-a-chip devices: History and challenges. In Lab-on-a-Chip Devices and Micro-Total Analysis Systems (pp. 1-15): Springer.

CDC. (2019). Antibiotic resistance threats in the United States. Atlanta, GA: U.S.

Department of Health and Human Services.

Cui, L., Lian, J.-Q., Neoh, H.-m., Reyes, E., & Hiramatsu, K. (2005). DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 49(8), 3404-3413.

Dadonaite, B., Ritchie, H., & Roser, M. (Producer). (2020, Mar 28, 2020). Diarrheal diseases.

Our World in Data.

Deng, J., Zhou, L., Sanford, R. A., Shechtman, L. A., Dong, Y., Alcalde, R. E., Sivaguru, M., Fried, G. A., Werth, C. J., & Fouke, B. W. (2019). Adaptive evolution of escherichia coli to ciprofloxacin in controlled stress environments: Contrasting patterns of resistance in spatially varying versus uniformly mixed concentration conditions. Environmental Science & Technology, 53(14), 7996-8005.

Ellison, C. K., Dalia, T. N., Ceballos, A. V., Wang, J. C.-Y., Biais, N., Brun, Y. V., & Dalia, A. B. (2018). Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nature Microbiology, 3(7), 773-780.

Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of Infection and Public Health, 10(4), 369-378.

Giedraitienė, A., Vitkauskienė, A., Naginienė, R., & Pavilonis, A. (2011). Antibiotic resistance mechanisms of clinically important bacteria. Medicina, 47(3), 19.

Girones, R., Ferrus, M. A., Alonso, J. L., Rodriguez-Manzano, J., Calgua, B., Correa, A. D., Hundesa, A., Carratala, A., & Bofill-Mas, S. (2010). Molecular detection of pathogens in water - The pros and cons of molecular techniques. Water Research, 44(15), 4325-4339. doi:10.1016/j.watres.2010.06.030

Guo, J., Li, J., Chen, H., Bond, P. L., & Yuan, Z. (2017). Metagenomic analysis

reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Research, 123, 468-478.

Hara-Kudo, Y., Yoshino, M., Kojima, T., & Ikedo, M. (2005). Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiology Letters, 253(1), 155-161.

Hatori, M. N., Kim, S. C., & Abate, A. R. (2018). Particle-templated emulsification for microfluidics-free digital biology. Analytical Chemistry, 90(16), 9813-9820.

Hu, L., & Jiang, G. (2017). 3D printing techniques in environmental science and engineering will bring new innovation. In: ACS Publications.

Huang, X., Gowda, H. N., Wu, X., Dumas, S. L., Zhu, Y., Lin, X., Kido, H., Xie, X., Jiang, S., Madou, M., & Hoffmann, M. R. (2017). Portable Pathogen Analysis System (PPAS) for microbial water quality analysis. Paper presented at the 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), Savannah, Georgia, USA.

Justino, C. I., Duarte, A. C., & Rocha-Santos, T. A. (2017). Recent progress in biosensors for environmental monitoring: A review. Sensors, 17(12), 2918.

Kim, T.-H., Abi-Samra, K., Sunkara, V., Park, D.-K., Amasia, M., Kim, N., Kim, J., Kim, H., Madou, M., & Cho, Y.-K. (2013). Flow-enhanced electrochemical immunosensors on centrifugal microfluidic platforms. Lab on a Chip, 13(18), 3747- 3754.

Kim, T.-H., Park, J., Kim, C.-J., & Cho, Y.-K. (2014). Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Analytical Chemistry, 86(8), 3841- 3848.

Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: From targets to networks. Nature Reviews Microbiology, 8(6), 423-435.

Kopp, M. U., De Mello, A. J., & Manz, A. (1998). Chemical amplification: Continuous-flow PCR on a chip. Science, 280(5366), 1046-1048.

Kralik, P., & Ricchi, M. (2017). A basic guide to real time PCR in microbial

diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology, 8, 108.

Kumar, N., Hu, Y., Singh, S., & Mizaikoff, B. (2018). Emerging biosensor platforms for the assessment of water-borne pathogens. Analyst, 143(2), 359-373.

Leclerc, H., Schwartzbrod, L., & Dei-Cas, E. (2002). Microbial agents associated with waterborne diseases. Critical Reviews in Microbiology, 28(4), 371-409.

Lee, C.-Y., Chang, C.-L., Wang, Y.-N., & Fu, L.-M. (2011). Microfluidic mixing: A review.

International Journal of Molecular Sciences, 12(5), 3263-3287.

Lee, H. H., Molla, M. N., Cantor, C. R., & Collins, J. J. (2010). Bacterial charity work leads to population-wide resistance. Nature, 467(7311), 82-85.

Lee, J.-G., Cheong, K. H., Huh, N., Kim, S., Choi, J.-W., & Ko, C. (2006). Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab on a Chip, 6(7), 886-895.

Lee, W., Kwon, D., Choi, W., Jung, G. Y., Au, A. K., Folch, A., & Jeon, S. (2015). 3D- printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Scientific Reports, 5, 7717.

Li, J., Cao, J., Zhu, Y.-g., Chen, Q.-l., Shen, F., Wu, Y., Xu, S., Fan, H., Da, G., & Huang, R.-j. (2018). Global survey of antibiotic resistance genes in air. Environmental Science & Technology, 52(19), 10975-10984.

Li, J., Zhu, Y., Wu, X., & Hoffmann, M. R. (2020). Rapid detection methods for bacterial pathogens in ambient waters at the point-of-sample collection: A brief review.

Clinical Infectious Diseases, In Press.

Lin, X., Huang, X., Zhu, Y., Urmann, K., Xie, X., & Hoffmann, M. R. (2018). Asymmetric membrane for digital detection of single bacteria in milliliters of complex water samples. ACS Nano, 12(10), 10281-10290. doi:10.1021/acsnano.8b05384

Lutz, S., Weber, P., Focke, M., Faltin, B., Hoffmann, J., Müller, C., Mark, D., Roth, G., Munday, P., & Armes, N. (2010). Microfluidic lab-on-a-foil for nucleic acid analysis

based on isothermal recombinase polymerase amplification (RPA). Lab on a Chip, 10(7), 887-893.

Manz, A., Graber, N., & Widmer, H. á. (1990). Miniaturized total chemical analysis systems:

A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1(1-6), 244-248.

Martínez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments.

Science, 321(5887), 365-367.

Meals, D., Harcum, J., & Dressing, S. (2013). Monitoring for microbial pathogens and indicators. US Environmental Protection Agency.

Nguyen, P. L., Sudheesh, P. S., Thomas, A. C., Sinnesael, M., Haman, K., & Cain, K. D.

(2018). Rapid detection and monitoring of flavobacterium psychrophilum in water by using a handheld, field-portable quantitative PCR System. Journal of Aquatic Animal Health, 30(4), 302-311.

Nicoloff, H., Hjort, K., Levin, B. R., & Andersson, D. I. (2019). The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nature Microbiology, 4(3), 504-514. doi:10.1038/s41564-018-0342-0 Nwachcuku, N., & Gerba, C. P. (2004). Emerging waterborne pathogens: Can we kill them

all? Current Opinion in Biotechnology, 15(3), 175-180.

Oh, K. W., & Ahn, C. H. (2006). A review of microvalves. Journal of Micromechanics and Microengineering, 16(5), R13.

Prüss-Ustün, A., Wolf, J., Bartram, J., Clasen, T., Cumming, O., Freeman, M. C., Gordon, B., Hunter, P. R., Medlicott, K., & Johnston, R. (2019). Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low-and middle-income countries. International journal of Hygiene and Environmental Health, 222(5), 765-777.

Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., Borrego, C. M., Barceló, D., & Balcázar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234-242.

Sayad, A., Ibrahim, F., Uddin, S. M., Cho, J., Madou, M., & Thong, K. L. (2018).

A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform. Biosensors and Bioelectronics, 100, 96-104.

Singh, R., & Olson, M. S. (2012). Transverse chemotactic migration of bacteria from high to low permeability regions in a dual permeability microfluidic device.

Environmental Science & Technology, 46(6), 3188-3195.

Sun, Y., Quyen, T. L., Hung, T. Q., Chin, W. H., Wolff, A., & Bang, D. D. (2015). A lab- on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples.

Lab on a Chip, 15(8), 1898-1904.

Sweet, E. C., Chen, J. C.-L., Karakurt, I., Long, A. T., & Lin, L. (2017). 3D printed three- flow microfluidic concentration gradient generator for clinical E. coli-antibiotic drug screening. Paper presented at the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

Syal, K., Mo, M., Yu, H., Iriya, R., Jing, W., Guodong, S., Wang, S., Grys, T. E., Haydel, S.

E., & Tao, N. (2017). Current and emerging techniques for antibiotic susceptibility tests. Theranostics, 7(7), 1795.

Telke, A. A., & Rolain, J.-M. (2015). Functional genomics to discover antibiotic resistance genes: the paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14. International Journal of Antimicrobial Agents, 46(6), 648-652.

Teunis, P., & Schijven, J. (2019). Generic Guidance to Quantitative Microbial Risk Assessment for Food and Water. National Institute for Public Health and the Environment.

Tian, Q., Mu, Y., Xu, Y., Song, Q., Yu, B., Ma, C., Jin, W., & Jin, Q. (2015). An integrated microfluidic system for bovine DNA purification and digital PCR detection.

Analytical Biochemistry, 491, 55-57.

Torres-Cortés, G., Millán, V., Ramírez-Saad, H. C., Nisa-Martínez, R., Toro, N.,

& Martínez‐Abarca, F. (2011). Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. Environmental Microbiology, 13(4), 1101-1114.

Troeger, C., Blacker, B. F., Khalil, I. A., Rao, P. C., Cao, S., Zimsen, S. R., Albertson, S. B., Stanaway, J. D., Deshpande, A., & Abebe, Z. (2018). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases, 18(11), 1211-1228.

Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277.

WHO. (2017). Global antimicrobial resistance surveillance system (GLASS) report: Early implementation 2016-2017. Geneva, Switzerland: Licence: CC BY-NC-SA 3.0 IGO.

Wu, C.-Y., Stoecklein, D., Kommajosula, A., Lin, J., Owsley, K., Ganapathysubramanian, B., & Di Carlo, D. (2018). Shaped 3D microcarriers for adherent cell culture and analysis. Microsystems & Nanoengineering, 4(1), 1-9.

Wu, C. Y., Owsley, K., & Di Carlo, D. (2015). Rapid software-based design and optical transient liquid molding of microparticles. Advanced Materials, 27(48), 7970-7978.

Zhang, J., Yan, S., Yuan, D., Alici, G., Nguyen, N.-T., Warkiani, M. E., & Li, W. (2016).

Fundamentals and applications of inertial microfluidics: A review. Lab on a Chip, 16(1), 10-34.

Zhang, Q. C., Lambert, G., Liao, D., Kim, H., Robin, K., Tung, C. K., Pourmand, N., &

Austin, R. H. (2011). Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science, 333(6050), 1764-1767.

Zilionis, R., Nainys, J., Veres, A., Savova, V., Zemmour, D., Klein, A. M., & Mazutis, L.

(2017). Single-cell barcoding and sequencing using droplet microfluidics. Nature Protocols, 12(1), 44.

C h a p t e r 2

CHAPTER 2: MULTIPHYSICS SIMULATION IN