• Tidak ada hasil yang ditemukan

(a) (b) (c) (d) (e) (f) (h) (g)

N/A
N/A
Protected

Academic year: 2024

Membagikan "(a) (b) (c) (d) (e) (f) (h) (g)"

Copied!
16
0
0

Teks penuh

(1)

(a)

(b)

(c)

(d)

(e)

(f)

(h) (g)

Fig.6-1. Difference patterns created by subtracting the ratio pattern of the –77 ps time point from the ratio patterns recorded at (a) –27 ps, (b) +13 ps, (c) +18 ps, (d) +23 ps, (e) +28 ps, (f) +33 ps, (g) +43 ps, and (h) +73 ps.

(2)

(b)

(c)

(d)

(f)

(g)

Fig.6-2. Difference patterns created by subtracting the ratio pattern of the –77 ps time point from the ratio patterns recorded at (a) +98 ps, (b) +123 ps, (c) +173 ps, (d) +223 ps, (e) +423 ps, (f) +823 ps, and (g) +1273 ps.

(3)

(a) (b)

(c) (d)

Fig.6-3. Comparison between data recorded with and without a neutral-density filter (10% transmission) in the beam path. Difference patterns are created by subtracting the ratio pattern of the –77 ps time point from the ratio patterns recorded at (a) +98 ps with laser filter, (b) +98 ps without laser filter, (c) +1273 ps with laser filter, and (d) +1273 ps without laser filter. The filtered data were used in the analysis reported herein.

(4)

O O

O O

H

O

O

H

O O

H

O O

H

O O

H

O O

H

O H

O

(a)

(b)

(c)

(d)

(e)

(f)

(h) (g)

Fig.6-4. Isomers of the enol tautomer of acetylacetone. The naming convention is defined with respect to rotations about the C–O single bond, the C–C double bond, and the C–C single bond. C = cis; T = trans. (a) CCC, (b) TCC, (c) CTC (d) CTT, (e) TTT, (f) CCT, (g) TCT, (h) TTC.

(5)

O O H

O O

OH

O

OH

O

OH O

OH

O

O O

H

CH3

(a)

(b)

(c)

(d)

(e)

(f)

(h) (g)

O H O

Fig. 6-5. Possible reaction products in the photolysis of (a) CCC enolic acetylacetone.

(b) keto tautomer of acetylacetone. Four isomers of the 2-penten-4-on-2-yl radical + the OH radical (c) TC, (d) TT (e) CT, and (f) CC. (g) The CCC isomer of the formylacetonyl radical + the methyl radical. (h) The acetyl radical loss products.

(6)

4 6 8 10 12 14 -1.0

-0.5 0.0 0.5 1.0

s-1)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

0 1 2 3 4 5 6 7

-2 -1 0

r (Å)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

(b)

(c)

(d)

Fig. 6-6. Fits of possible reactions: left column DsM(s) and right column Df(r) having components’ fractional contributions and polynomial background optimized. The data (squares) is the +1273 ps data point (tref = –77 ps) and theory (solid line) is derived from the DFT structures of possible products, here the enol isomers: (a) CCC, (b) TCC, (c) TCT, (d) TTC. c2 and R are given in Table 6-2.

(7)

4 6 8 10 12 14 -1.0

-0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

(a)

(b)

(c)

(d)

Fig. 6-7. Fits of possible reactions: left column DsM(s) and right column Df(r) having components’ fractional contributions and polynomial background optimized. The data (squares) is the +1273 ps data point (tref = –77 ps) and theory (solid line) is derived from the DFT structures of possible products, here the enol isomers: (a) TTT, (b) CCT, (c) CTC, and (d) CTT. c2 and R are given in Table 6-2.

(8)

4 6 8 10 12 14 -1.0

-0.5 0.0 0.5

s-1)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0

r (Å)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

(a)

(b)

(c)

Fig. 6-8. Fits of possible reactions: left column DsM(s) and right column Df(r) having components’ fractional contributions and polynomial background optimized. The data (squares) is the +1273 ps data point (tref = –77 ps) and theory (solid line) is derived from the DFT structures of possible products, here (a) a 1:1 mixture of vibrationally hot enol CCC and keto acetylacetone tautomers, (b) the methyl radical loss products, and (c) the acetyl radical loss products. c2 and R are given in Table 6-2.

(9)

4 6 8 10 12 14 -1.0

-0.5 0.0 0.5

s-1) 0 1 2 3 4 5 6 7

-2 -1 0

r (Å)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1) 0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

(a)

(b)

(c)

(d)

Fig. 6-9. Fits of possible reactions: left column DsM(s) and right column Df(r) having components’ fractional contributions and polynomial background optimized. The data (squares) is the +1273 ps data point (tref = –77 ps) and theory (solid line) is derived from the DFT structures of possible products, here the OH loss products with the 2-penten-4-on-2-yl radical isomers (a) CC, (b) CT, (c) TC, (d) TT. c2 and R are given in Table 6-2.

(10)

4 6 8 10 12 14 -1.0

-0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

4 6 8 10 12 14

-3 -2 -1 0 1

s-1)

(b)

(c)

Fig. 6-10. The data (squares) and the refined theoretical model (line) corresponding to the reaction of enolic acetylacetone to form the TC 2-penten-4-on-2-yl and OH radicals. (a) DsM(s) comparison and (b) Df(r) comparison. (c) The experimental DsM(s) (squares) and the polynomial background (line). c2 = 8.400 and R = 0.351.

(11)

4 6 8 10 12 14 s-1)

0 1 2 3 4 5 6 7

r (Å)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Fig. 6-11. The experimental (squares) and refined theoretical (solid line) DsM(s) (left) and Df(r) (right) at multiple time points (tref = –77 ps). t = (a) +28 ps, (b) +33 ps, (c) +43 ps, (d) +73 ps, (e) +98 ps, (f) +123 ps, (g) +173 ps, (h) +223 ps, (i) +423 ps, (j) +823 ps, (k) +1273 ps. Fitting information is given in Table 6-4.

(12)

Fig. 6-12. The fit of a single-step reaction process (solid line) to the fraction of product structure at each time point (squares). The time constant for the reaction is 247 ± 34 ps.

-200 0 200 400 600 800 1000 1200 1400

-10 -5 0 5 10 15 20 25

productfraction(%)

time delay (ps)

(13)

(x - y) % intermediate y% product (100 - x)% parent

x% product (100 - x)% parent

-

(x-y)% product -(x-y)% intermediate

=

(a)

(b)

(c)

Fig. 6-13. A schematic illustration of the process used to isolate the reaction of the formation of product from an intermediate structure. Data from a time point (a) when the reaction is complete and only parent and product are present has data from an earlier positive time point (b) subtracted from it. This positive point contains unreacted parent, product, and reaction intermediate. The resulting difference data (c) has the parent contribution removed and contains only the structural information of product and intermediate molecules.

(14)

2 4 6 8 10 12 14 16 s-1)

0 1 2 3 4 5 6 7

r (Å)

S0 428 K S0 2256 K S1 1000 K S2 1000 K T1 1000 K

Fig. 6-14. The calculated molecular structure of some of the electronic states of enolic acetylacetone (a) S , (b) S np*, (c) S pp*, and (d) T pp*. The (a) sM(s) and (b) f(r)0 1 2 1 curves calculated using these structures. S at 428 K (broad solid line), S at 2256 K0 0 (narrow solid line), S at 1000 K (dashed line), S at 1000 K (dotted line), and T at1 2 1 1000 K (dot-dash line).

(a)

(b)

(c)

(e)

(f)

(d)

(15)

4 6 8 10 12 14 -1.0

-0.5 0.0 0.5 1.0

s-1)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

4 6 8 10 12 14

-1.0 -0.5 0.0 0.5 1.0

s-1)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

0 1 2 3 4 5 6 7

-2 -1 0 1

r (Å)

(a)

(b)

(c)

(d)

(e)

(f)

(h) (g)

Fig. 6-15. The alternate DsM(s) (left) and Df(r) (right) created by subtracting the +73 ps time point from the +1273 ps time point. Here the experimental (squares) data is compared with theory (solid line) corresponding to the reaction of the intermediate to the refined product. The intermediate in each is represented by (a) enol S at 2256 K, 0 (b) enol S at 1000 K, (c) enol S at 1000 K, and (d) enol T at 1000 K.1 2 1

(16)

OH loss products

S0

S , 2 pp*

S , np*1

T , 1 pp*

y gr e n E

t

Fig. 6-16. The schematic representation of the dynamics of acetylacetone. Excited molecules arrive in the S state where ultrafast internal conversion sends population to2 the S state. Intersystem crossing to T takes place over 247 ps (t). Dissociation from T 1 1 1

to the radical products is then ultrafast such that its population never builds up enough to be detected by UED.

Referensi

Dokumen terkait

Based on the data analysis which had been carried out same conclusions can be drawn. The average percentage scores in correct answer was 52 and the average percentage in

- Jika Anda menggunakan mangkuk kukusan 2 dan 3 dengan bagian bawah yang dapat dilepas, selalu pastikan bibirnya mengarah ke atas dan bagian bawah tersebut terkunci pada

Fenokris terdiri dari plagioklas, piroksen, hornblende, K- feldspar, mineral opak, bentuk kristal euhedral – subhedral dengan ukuran mencapai 3,0 mm, sedangkan masa dasar terdiri

Aplikasi Sistem Informasi penjualan ikan lele merupakan suatu perangkat lunak yang dirancang sebagai media informasi yang digunakan untuk mempermudah dan

Jika anda tidak menggunakan penggulung rambut dengan betul atau jika anda menggunakannya pada tetapan suhu yang salah, anda boleh menyebabkan rambut anda menjadi terlampau panas

Karena tujuan kita adalah membuat permainan puzzle-8 yang dapat dijalankan melalui web (aplikasi applet), maka mutlak program yang kita buat tersebut menurunkan sifat class

D : 38- Mohammad, Ayoob 1995, The third world security predicament, united states, linne rinner publisher.. deblid; Systematic Political Geography; New York:

[r]