• Tidak ada hasil yang ditemukan

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information

N/A
N/A
Protected

Academic year: 2023

Membagikan "In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information"

Copied!
10
0
0

Teks penuh

(1)

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

(2)

ContentslistsavailableatScienceDirect

Agricultural and Forest Meteorology

jo u r n al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / a g r f o r m e t

Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia

Lucas A. Cernusak

a,∗

, Lindsay B. Hutley

a,b

, Jason Beringer

c

, Joseph A.M. Holtum

d

, Benjamin L. Turner

e

aSchoolofEnvironmentalandLifeSciences,CharlesDarwinUniversity,Darwin,NorthernTerritory0909,Australia

bSchoolofEnvironmentalResearch,CharlesDarwinUniversity,Darwin,NorthernTerritory0909,Australia

cSchoolofGeographyandEnvironmentalScience,MonashUniversity,Clayton,Victoria3800,Australia

dSchoolofMarineandTropicalBiology,JamesCookUniversity,Townsville,Queensland4811,Australia

eSmithsonianTropicalResearchInstitute,Balboa,Ancon,Panama

a r t i c l e i n f o

Articlehistory:

Received30July2010 Receivedinrevisedform 11November2010 Accepted4January2011

Keywords:

Carbon-isotopediscrimination Leafmassperarea

Photosyntheticcapacity Rainfallgradient Savanna

a b s t r a c t

Leaf-levelphotosyntheticparametersofspeciesinthecloselyrelatedgeneraEucalyptusandCorymbia wereassessedalongastrongrainfallgradientinnorthernAustralia.Bothinstantaneousgasexchange measurementsandleafcarbonisotopediscriminationindicatedlittlevariationinintercellularCO2con- centrationsduringphotosynthesis(ci)inresponsetoadecreaseinmeanannualprecipitationfrom

∼1700mmto∼300mm.Correlationbetweenstomatalconductanceandphotosyntheticcapacitycon- tributedtowardthemaintenanceofrelativelyconstantciamongthesampledleaves,whenassessedat ambientCO2concentrationandphotonirradiancesimilartofullsunlight.Leafmassperareawasthe mostplasticleaftraitalongtherainfallgradient,showingalinearincreaseinresponsetodecreasing meanannualprecipitation.ThemaximumRubiscocarboxylationvelocity,Vcmax,expressedonaleaf- areabasis,showedamodestincreaseinresponsetodecreasingrainfall.ThismodestincreaseinVcmax

wasassociatedwiththestronglyexpressedincreaseinleafmassperarea.Theseresultssuggestthat variationinecosystem-levelgasexchangeduringthedryseasoninnorth-Australiansavannaswilllikely bedominatedbychangesinleafareaindexinresponsetoincreasingaridity,ratherthanbychangesin photosyntheticperformanceperunitleafarea.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Understanding physiologicalresponsesof plants toenviron- mental resource gradients is important for predicting spatial variation in ecosystem processes and for predicting ecosystem responses to climatechange (Kochet al., 1995; Schulze et al., 1996).AstrongrainfallgradientexistsinnorthernAustralia(Table1 andFig.1),withhighestmeanannualprecipitation(MAP)occur- ringnearthecoastand decreasingfromnorthtosouth,roughly atarateof1mmkm1 (BowmanandConnors,1996;Cookand Heerdegen,2001;Kochetal., 1995).Thisprecipitationgradient isassociatedwithstructuralandfloristicchangesinlocallydomi- nantvegetationcommunities(BowmanandConnors,1996;Hutley etal.,2011;Williamsetal.,1996).Northofthe500mmyr1iso- hyet,dominantvegetationcommunitiestendtobesavannas,with adiscontinuoustreecanopyoverlyingagrassyunderstory.Euca- lypts,comprisingspeciesinthecloselyrelatedgeneraEucalyptus andCorymbia,dominatetheover-storiesofthesesavannas.The heightandabundanceoftheover-storyeucalyptsdecreasewith

Correspondingauthor.Tel.:+61889467630;fax:+61889466847.

E-mailaddress:[email protected](L.A.Cernusak).

decliningMAPfromnorthtosouth(Hutley etal.,2011;Schulze et al.,1998;Williams etal.,1996).WhereMAPdeclinestoless than about 500mm, the eucalypt-dominated savannas tend to givewaytoAcacia-dominatedshrublands(BowmanandConnors, 1996).Eucalyptsarestillfoundinthesecommunities,butgener- allyoccurasscatteredindividuals,ratherthancanopy-dominant components.

Previousinvestigationsofleaf-levelresponsesofeucalyptsto variation in MAP in the Northern Territory of Australia have focussedonmeasurementsofstable carbonisotopediscrimina- tion(13C)inleafdrymatter(Milleretal.,2001;Schulzeetal., 1998).Leaveswerecollectedatsitesrangingfromapproximately 12Sto25Slatitude,encompassingMAPrangingfromapproxi- mately1800to200mm.Overmostofthisrange,littlevariation wasobservedinleaf13C,withamarkedresponseonlybecoming apparentwhenMAPdeclinedtobelowabout400mm(Milleretal., 2001;Schulzeetal.,1998).Asimilarlyflatresponseofeucalypt 13CtovariationinMAPhasalsobeenobservedinsouth-western Australia(Schulzeetal.,2006a;Turneretal.,2008).Theseresults contrastwitharecentglobalmeta-analysisoftreeleaf13C,which showedanapproximatelylinearincreasein13Cwithincreasing MAPbetween200and2000mm.Overthisrange,theaverage13C ofevergreenangiospermsincreasedbymorethan5‰(Diefendorf 0168-1923/$seefrontmatter© 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.agrformet.2011.01.006

(3)

Table1

Summarydataforthesixstudysites.Meanannualprecipitationestimatesarebasedontheyears2000to2007,andwerecomputedfrominterpolatedrainfallsurfaces.Mean annualtemperatureestimatesareaveragesofmeanminimumandmeanmaximumtemperaturesfortheyears1981–2009,usingdatafromthelongtermweatherstation nearesttoeachstudysite(http://www.bom.gov.au/index.shtml).

Site Location Species Elevation(m) Meanannual

precipitation(mm)

Meanannual temperature(C) HowardSprings 122907S

1310846E

Eucalyptusminiata Eucalyptustetrodonta

37 1714 27.8

AdelaideRiver 130437S 1310704E

Eucalyptustectifica Corymbialatifolia

75 1532 27.0

DalyRiver 140933S 1312317E

Eucalyptustetrodonta Corymbialatifolia

73 1170 27.2

DryCreek 151532S

1322214E

Eucalyptustetrodonta Corymbiaterminalis

167 958 27.1

SturtPlains 170759S 1331944E

Eucalyptuspruinosa Eucalyptuscoolabah

228 672 26.8

Boulia 225940S

1395643E

Corymbiaterminalis Corymbiaaparrerinja

151 291 24.9

etal.,2010).Notably,thismeta-analysisdidnotincludedatafor anytreessampledinAustralia.

Analysis of 13C of leaf dry matter provides a convenient methodforinvestigatingleafphysiologybecauseitrelatestothe ratioof intercellularto ambientCO2 molefractions (ci/ca)dur- ingphotosynthesis(Farquharetal.,1982,1989).Thus,the13C providesaproxymeasurementofanimportantleafgasexchange characteristic.Analysisofdrymatter13Chasthefurtheradvan- tagethatleavescanbecollected,dried,andstoredformeasurement atalatertime.InC3plants,the13Crelatestoci/caaccordingtothe followingequation(Farquharetal.,1982;FarquharandRichards, 1984):

13C=a−d+(b−a)ci

ca, (1) whereaisthe13C/12Cfractionationthatoccursduringdiffusion ofCO2throughthestomata(4.4‰),bisthediscriminationagainst

13Cbycarboxylatingenzymes(29‰forRubisco),anddisacom- positetermthatincludesfractionationscausedbydissolutionof CO2,liquidphasediffusion,photorespiration,anddayrespiration

Fig.1. AmapshowingthelocationsofthestudysitesinnorthernAustralia.Addi- tionalinformationabouteachsiteisprovidedinTable1.

(Farquharetal.,1989).Thedwaspreviouslyestimatedtohavea meanvalueofabout3‰in15tropicaltreespecies(Cernusaketal., 2008),withotherestimatesintheliteraturerangingfromabout0 to4‰(Cernusaketal.,2007;Hubick,1990;HubickandFarquhar, 1989;Hubicketal.,1986).

Theci/caiscontrolledbythebalancebetweenphotosynthesis (A)andstomatalconductance(gs).Foragivengs,anincreaseinA willcauseadecreaseinci/ca.SimilarlyforagivenA,adecreaseings

willcauseadecreaseinci/ca.Thus,whiletherelativelyflatresponse ofleaf13CtoMAPineucalyptsinnorthernAustraliasuggests relativelyconstantci/ca,thispatterndoesnotindicatewhetherA andgsarerelativelyconstantalongtheprecipitationgradient,or whetherthetwodeclineinconcertasMAPdeclines.Afurtherambi- guityassociatedwithinterpretingthe13Cofleafdrymatteris thatthesignalrecordedislikelydominatedbythecanopyci/caat thetimewhentheleafdrymatterwassynthesized.Therefore,itis unclearwhethertheobservedpatterninleafdrymatter13Cin north-Australianeucalyptsmightprovideinformationaboutci/ca

onlyduringfavourableconditionsinthewetseasonwhencanopy photosynthesisismostactive,orwhetheritprovidesinformation aboutyear-roundvariationinci/caalongtheprecipitationgradi- ent,includingduringthedryseasonwhendroughtstressismost severe.Althoughtheyrepresentonlyasnapshotintime,instan- taneousmeasurementsofleafgasexchangecanhelptoresolve theseambiguitiesbyprovidingcomplementaryinformationtothat providedbyleaf13C.

Leafphotosyntheticcapacityisanimportantparameterinbio- geochemicalmodelsthat predictcanopyC and water exchange (Baldocchiand Amthor,2001).Leaf-levelphotosynthesis canbe predictedaccordingtothebiochemicalmodelofFarquharetal.

(1980).Akeyparameterinthis modelisthemaximumRubisco carboxylation velocity (Vcmax). Thus, Vcmax provides a measure ofphotosyntheticcapacitythatcanbereadilyincorporatedinto canopyprocessmodels.Maximumleafphotosynthesisrates(Amax) aregenerallyrelatedtoleafNconcentrations(FieldandMooney, 1986),althoughtherelationshipbetweenthetwocanvaryamong taxaandamongregions(Wrightetal.,2005).Establishingglobal relationshipsbetweenphotosyntheticparameterslikeVcmaxand AmaxandmoreeasilymeasuredleaftraitslikeNconcentrationand leafmassperarea(LMA)offersapromisingavenuetowardparam- eterizationofglobalbiogeochemicalmodels(Reichetal.,2007).To preventregionalortaxon-specificbiasesinsuchglobalrelation- ships,itisimportanttoincludemeasurementsfromregionsand vegetationtypesthatareunder-representedtodate(Domingues et al., 2010). Photosynthetic capacity has not previously been assessedbyleafgasexchangeanalysisinnorth-Australianeuca- lyptsalongtheapproximately1500kmnorthtosouthgradientin MAP.

(4)

RainfallinourstudyregionofnorthernAustraliaishighlysea- sonal,witha pronounceddryseasonextendingfromMayuntil September/October.InsavannacommunitiesnearDarwin,atthe northern end of theprecipitation gradient, thesoil water that accumulatesduringthewetseasonissufficienttomaintaintranspi- rationratesatconstant,orevenhigher,ratesinsavannaeucalypts throughoutthedryseasoncomparedtoratesinthewetseason (Eamusetal.,1999,2000;Hutleyetal.,2000,2001;O’Gradyetal., 1999).Measurementsofpredawnwaterpotentialsuggestedthat thesetreeshaveaccesstoavailablewaterevenattheendofthe dryseason,presumablyfromrootsthatextendtoseveralmeters depthinthesoilprofile(Eamusetal.,2000;Hutleyetal.,2000).

Ontheotherhand,predawnwaterpotentialbecamemoreneg- ative during the dry season with increasing distance from the coast(Eamusetal.,2000),suggestingthatlatitudinalvariationin seasonaldrought stress alongthegradient in MAPin northern Australiashouldbemostpronouncedtowardtheendofthedry season.

Inthisstudy,wemeasuredleafgasexchangeinEucalyptusand CorymbiaspeciesatsixsitesinnorthernAustraliaranginginMAP fromabout1700mmtoabout300mm.Measurementswerecar- riedoutaspartofalargercampaigntoinvestigatebiogeochemical cyclinginnorth-Australiansavannas(Beringeretal.,2011).Most measurementstookplaceinSeptember,whenwe expectedlat- itudinalvariation indroughtstresstobemostpronounced.Our objectiveswere(1)toinvestigatetheapparentlackofvariation inci/caalongtheprecipitationgradient,assuggestedbyprevious measurementsofleafdrymatter13C,usinginstantaneousmea- surementsofleafgasexchangeand(2)toassessvariationinleaf photosyntheticcapacityalongtheprecipitationgradient.

2. Materialsandmethods

Leafgasexchangemeasurementsweremadeatsixsitesalonga sub-continentalrainfallgradientinnorthernAustralia(Fig.1).The sitescoveredalatitudinalrangefromapproximately12Sto23S, withcorrespondingMAPrangingfromapproximately1700mmto 300mm(Table1).Twocanopytreespeciescharacteristicofeach sitewereselectedfor measurements.Alloftheselectedspecies werefromthegenusEucalyptus,orthecloselyrelatedgenusCorym- bia(Table1).Twoindividualsofeachofthetwospeciesateachsite wereselectedformeasurements.Atotalofsixleavesweresampled fromeachspeciesateachsite.Canopyaccesswasachievedwitha 16melevatedworkplatformatthefourmorenortherlysites,and withladdersorfromthegroundatthetwomoresoutherlysites wheretreeswereshorter.

Two portable photosynthesis systems (Li-6400, LiCor Inc., Lincoln,NE,USA)wereusedtomeasuretheresponseofphotosyn- thesistointercellularCO2 concentration(A–cicurve)andtolight (lightresponsecurve).Thetwosystemswerecrosscalibrated,and gaveunbiasedresultswithrespecttoeachother.Themeasurement sequenceforeach sampledleafstartedwiththeA–cicurveand thenproceededtothelightresponsecurve.TheCO2concentration (␮molmol1)enteringtheleafgasexchangecuvettewasaltered inthefollowingsequence:400,280,230, 150,70,40, 230,400, 640,980,and1200.Ameasurementofphotosynthesiswaslogged approximately2minaftereachstepchangeinCO2concentration enteringthecuvette.Irradiance duringtheA–cicurvemeasure- mentswasset at2000␮molphotosynthetically activeradiation (PAR)m2s1,suppliedbyanartificiallightsource(6400-02BLED, LiCorInc.).AttheconclusionoftheA–cicurve,thelightresponse curvewasmeasuredonthesameleaf.TheCO2concentrationofair enteringthecuvettewasmaintainedat1200␮molmol1,andirra- diance(␮molPARm2s1)wasalteredinthefollowingsequence:

2000,1500,1000,500,200,120,70,40,20,and0.Ameasurement

ofphotosynthesiswasloggedapproximately2minaftereachstep changeinirradiance.

Weendeavouredtomaintaintheleaf-to-airvapour pressure difference(D)andtheleaftemperature(T)constant acrosssites and within a site for each sample leaf during A–ci and light responsemeasurements.ThetargetDwas2.5kPaandthetarget T was33C. Meansite values (mean±1 SD)for T duringmea- surements rangedfrom32.3±0.6C attheHowardSpringssite to33.9±2.0C attheBouliasite.Meansite valuesduringmea- surementsforDrangedfrom2.1±0.2kPaattheHowardSprings site to3.1±0.7kPa attheBouliasite.Measurementsatallsites except theBouliasite tookplace between2and 15 September 2008.MeasurementsattheBouliasitetookplacebetween5and 8December2008.PrecipitationattheBouliasitedoesnotshow ashighlypronouncedaseasonalvariationasthemorenortherly sites. Acumulative precipitationof 56mmwasrecorded atthe Boulia Airport in the nine monthspreceding themeasurement campaign (http://www.bom.gov.au/index.shtml). Gas exchange measurementsweretakenbetween0800hand1700hlocaltime ateachsite.

Attheconclusionofthegasexchangemeasurements,eachleaf wascollectedandleafareawasdeterminedwithanimageanalysis system(Delta-TScan,Delta-TDevices,Cambridge,UK).Leaveswere driedat70Ctoconstantmass,andleafdrymasswasdetermined tothenearestmg.Leaveswerethenground toa fine,homoge- neouspowder.Thenitrogenconcentrationandleafcarbonisotope ratioasubsampleofapproximately3mgleafmaterialweredeter- minedusingastableisotoperatiomassspectrometer(DeltaXP, FinniganMAT,Bremen,Germany),coupledtoanelementalanal- yser(ECS4010,CostechAnalyticalTechnologies,Valencia,CA,USA).

These analyseswereperformedin theStableIsotopeCore Lab- oratory,WashingtonStateUniversity,Pullman,WA,USA.Carbon isotopediscrimination(13C)inleafdrymatterwascalculatedas 13C=(␦13Ca−␦13Cp)/(1+␦13Cp),where␦13Cpis␦13Cofleafdry matter,and␦13CaisthatofatmosphericCO2.Weassumedavalue of−8‰for␦13Ca.Phosphorusconcentrationwasdeterminedby ashing100mgofleafdrymatterat550C,followedbydissolution in1MH2SO4 andphosphatedetectionbyautomatedmolybdate colorimetry(LachatQuickchem8500,HachLtd,Loveland,CO,USA).

The A–ci curves were analysed usingthespreadsheet utility (version2007.1)providedbySharkeyetal.(2007).Thespreadsheet utilityfitsthephotosynthesismodelofFarquharetal.(1980)to theobservedCO2responsecurve.Estimatesaregeneratedofthe maximumRubiscocarboxylationrate,Vcmax(␮molCO2m2s1);

theelectrontransportrate,J(␮molelectronsm−2s−1);triosephos- phateuse,TPU(␮moltriosephosphatem−2s−1);dayrespiration, Rd (␮molCO2m2s1); and mesophyllconductance toCO2,gm

(␮molm2s1Pa1).Thespreadsheet utility providesestimates oftheseparametersnormalizedto25Ctofacilitatecomparisons withmeasurementsmadeatotherleaftemperatures.

Thelightresponsecurveswereanalysedbyfittingtheobserved datatoanon-rectangularhyperbola:

A= I+Amax

(I+Amax)2−4AmaxI

2 −RD (2)

where is theapparentquantumyield(molCO2mol1 PAR),I is theirradiance(␮molPARm2s1),Amaxis thelight-saturated gross photosynthetic rate(␮molCO2m−2s−1), is the slope of the curve (dimensionless), and RD is the dark respiration rate (␮molCO2m2s1). Values for and RD were fitted first by linear regression for measurements made at I of 0, 20, and 40␮molPARm−2s−1. The and Amax were then estimated by fitting Eq. (1) tothe light response curve using the non-linear regression routine in Systat 12 (Systat Software Inc., Chicago, IL,USA).Becausethelightresponsecurvesweremeasuredwith

(5)

the CO2 concentration in air entering the leaf gas exchange cuvetteset at 1200␮molmol−1,we assume that theAmax val- uesestimatedfromEq.(1)representbothCO2andlightsaturated photosynthesis.

Wetestedforvariationamongsitesandbetweenspecieswithin a site in photosynthetic parameters using a nested analysis of variance.Posthoctestsforpair-wisedifferencesbetweenspecies werecarriedoutbyTukey’smethod.Relationshipsbetweencon- tinuousvariablesweretestedusingleast-squareslinearregression analyses.ResultswereconsideredsignificantatP<0.05.Statistical analyseswereperformedinSystat12(SystatSoftwareInc.).

3. Results

Leafmassperarea,LMA,increasedwithdecreasingMAPalong therainfallgradient(Fig.2A).TheMAPexplained60%ofvariation inLMAinalinearregressionanalysis(R2=0.60,P<0.001,n=81).

TherewasalsovariationinLMAbetweenspecieswithinseveral ofthesites(Fig.2A).Thus,speciesnestedwithinsite wasasig- nificanttermintheanalysisofvariance(P<0.001,n=81).There wassignificantvariationinmass-basedleafNconcentration(Nmass) amongsites andbetweenspecies withinsomeof thesites,but therewasnooveralltrendinthisparameterwithMAP(Fig.2B).

LeafNconcentrationexpressedonanareabasis(Narea)increased withdecreasingMAP(R2=0.35,P<0.001,n=81),duetothestrong trendinLMAwithMAP.Mass-basedleafPconcentration(Pmass) decreasedsignificantly with increasing MAP (R2=0.06, P=0.02, n=81),andvariedbetweenspeciesatsomeofthesites(Fig.2C).

ThedecreasingtrendsinPmassandLMAwithincreasingMAPalso resultedindecreasingarea-basedleafPconcentration(Parea)with increasingMAP(R2=0.40,P<0.001,n=81).Leafdrymatter13C wasnotrelatedtoMAP(P=0.36,n=81).Analysisofvarianceindi- catedthattherewassignificantvariationamongsomeofthesites andbetweenspecieswithinsomesitesforleaf13C,butthisvari- ationshowednooveralltrendwithMAP(Fig.2D).Leaf13Cdid notcorrelatewithNmass(P=0.38,n=81)orNarea(P=0.87,n=81), butdidcorrelatesignificantlywithbothPmass(R2=0.14,P<0.001, n=81)andParea(R2=0.20,P<0.001,n=81).

Instantaneous measurements of stomatal conductance (gs), madeat ca ofapproximately 380␮molmol1 and irradiance of 2000␮molPARm−2s−1,tendedtodecreasewithdecreasingMAP, butthetrendwasnotstatisticallysignificant(P=0.08,n=76).Mean valuesforgs foreach speciesateachsiteareshowninTable2.

Netphotosynthesismeasuredunderthesameconditionsshowed asimilartrend,withaweakdependenceonMAP(R2=0.06,P=0.03, n=76).Specieswithinasitedifferedfromeachotherattwoofthe sitesfornetphotosynthesisundertheseconditions(Table2).Vari- ationinnetphotosynthesiswascloselycorrelatedwithvariation ings whenmeasuredatca of380␮molmol1 andirradianceof 2000␮molPARm2s1(Fig.3).Alinearrelationshipbetweennet photosynthesisandgswouldimplyaconstantci/caacrossthesetof measurements.Accordingly,ci/cawasrelativelyconstantacrossthe sampledleaves,withonlyEucalyptustetrodontaatDalyRiverand CorymbiaaparrerinjaatBouliadifferingfromeachotherinthepair- wisecomparisons(Table2).Theci/cawasindependentofvariation inMAP(P=0.67,n=76).

Theci/cashowedalinearandrelativelyweakdependenceongs

forgasexchangemeasurementsmadeatcaof380␮molmol−1and irradianceof2000␮molPARm2s1 (R2=0.11,P=0.003,n=76), asshowninFig.4.ThedashedlineinFig.4showsthepredicted relationshipbetweenci/caandgsifVcmax,J,gm,andotherparam- etersintheFarquharetal.(1980)photosynthesismodelwereto remainconstantacrosstherangeofgsencounteredinthestudy.

ThedepartureofthesolidregressionlineinFig.4fromthepre- dicteddashedlinesuggeststhatci/cadeclinedlessatlowgsthan

Leaf mass per area (g m-2 ) 150 200 250 300

Eucalyptus miniata Eucalyptus tetrodonta Eucalyptus tectifica Corymbia latifolia Corymbia terminalis Eucalyptus pruinosa Eucalyptus coolabah Corymbia aparrerinja

Leaf N concentration (mg g-1 ) 2 4 6 8 10 12 14

Mean annual precipitation (mm) 2000 1500 1000 500

0 Leaf Δ13 C (‰)

18 20 22 24

A

D B

Leaf P concentration (mg g-1 ) 0.2 0.4 0.6

0.8

C

Fig.2. Leafmassperarea(A),leafnitrogenconcentration(B),leafphosphoruscon- centration(C),andcarbonisotopediscriminationinleafdrymatter(D)plottedas functionsofmeanannualprecipitation.Eachsymbolrepresentsthemeanofsixto eightleaves.Errorbarsareonestandarderror.

(6)

Table2 GasexchangeparametersforeucalyptleavesalongarainfallgradientinnorthernAustralia.Stomatalconductance,netphotosynthesis,andtheratiooftheinternaltoambientCO2molefractions(ci/ca)weremeasuredat irradianceof2000molphotosyntheticallyactiveradiation(PAR)m2s1andcaofapproximately380molmol1.ThemaximalRubiscocarboxylationvelocity(Vcmax)andelectrontransportrate(J)weredeterminedat irradianceof2000molPARm2s1fromCO2responsecurves.Apparentquantumyield()andmaximumphotosyntheticrate(Amax)weredeterminedfromlightresponsecurvesatcaofapproximately1170molmol1.Values shownarethemeanofsixtoeightleavesforeachspeciesateachsite±1standarddeviation.ValueswithinacolumnnotfollowedbyacommonletterdifferedfromeachotheratP<0.05. SiteSpeciesStomatal conductance (molm2s1) Net photosynthesis (molm2s1) ci/caVcmaxat25C(molm2s1)Jat25C(molm2s1)Apparent quantumyield, (molmol1)

Amax (molm2s1) HowardSpringsEucalyptusminiata0.170±0.062a16.2±5.5a0.54±0.06a,b77.6±6.4a,b85.0±14.8a,b,c0.067±0.017a34.0±7.2a,b,c Eucalyptustetrodonta0.085±0.028a,b8.0±2.3b,c0.53±0.03a,b62.8±12.4b69.6±9.4b,c0.059±0.013a,b23.6±5.7b,c AdelaideRiverEucalyptustectifica0.160±0.032a14.4±3.0a,b0.57±0.03a,b84.1±15.9a,b103.3±20.3a,b0.057±0.012a,b39.5±9.2a,b Corymbialatifolia0.078±0.034a,b7.4±3.0b,c0.55±0.07a,b64.4±20.0b83.4±22.8a,b,c0.049±0.013a,b29.3±7.8a,b,c DalyRiverEucalyptustetrodonta0.151±0.049a11.9±3.2a,b0.59±0.04a,b93.4±14.3a,b98.0±12.0a,b0.060±0.013a,b44.0±8.9a Corymbialatifolia0.133±0.056a9.3±2.8a,b,c0.63±0.06a73.2±14.9b80.2±14.1a,b,c0.049±0.012a,b29.8±4.0a,b,c DryCreekEucalyptustetrodonta0.107±0.061a9.3±5.2b,c0.59±0.05a,b84.6±22.2a,b85.3±22.0a,b,c0.047±0.015a,b28.9±16.8a,b,c Corymbiaterminalis0.081±0.039a,b7.7±3.1b,c0.54±0.04a,b94.1±34.1a,b95.0±32.2a,b0.059±0.009a,b42.3±8.1a SturtPlainsEucalyptuspruinosa0.135±0.056a10.9±2.8a,b0.59±0.07a,b82.1±12.2a,b91.1±15.5a,b,c0.041±0.018b31.7±7.6a,b,c Eucalyptuscoolabah0.042±0.019b3.3±0.8c0.59±0.1a,b65.0±9.1b58.4±7.6c0.051±0.006a,b18.8±2.9c BouliaCorymbiaterminalis0.125±0.080a10.7±5.7a,b0.57±0.03a,b109.6±24.1a113.1±27.7a0.063±0.009a,b39.2±14.3a,b Corymbiaaparrerinja0.083±0.011a,b8.7±1.1b,c0.51±0.02b77.1±9.7a,b100.1±11.1a,b0.059±0.004a,b31.0±2.7a,b,c

Stomatal conductance to H

2

O (mol m

-2

s

-1

)

0.3 0.2

0.1 0.0

Net photosynthesis (µmol CO

2

m

-2

s

-1

)

0 5 10 15 20 25

Eucalyptus miniata Eucalyptus tetrodonta Eucalyptus tectifica Corymbia latifolia Corymbia terminalis Eucalyptus pruinosa Eucalyptus coolabah Corymbia aparrerinja

Fig.3.Netphotosynthesisplottedagainststomatalconductanceforeucalyptleaves sampledalongarainfallgradientinnorthernAustralia.Measurementsweremade atexternalCO2concentrationof380␮molmol−1andirradianceof2000␮molpho- tosyntheticallyactiveradiationm−2s−1.

wouldbeexpectedinthecaseforinvariantphotosyntheticcapacity andgm.

TheVcmaxnormalizedto25Candexpressedonanareabasis showedaweakincreasingtrendwithdecreasingMAP(R2=0.07, P=0.02,n=79).ThisrelationshipwastheresultofincreasingLMA with decreasing MAP; when expressedon a mass basis, Vcmax showed an opposite trend of increasing with increasing MAP (R2=0.10, P=0.004,n=79).The Vcmax wasnot related toleafN concentration,neitherwiththetwoparametersexpressedonan areabasis(P=0.34,n=79),noronamassbasis(P=0.78,n=79).

Similarly,VcmaxwasnotrelatedtoleafPconcentration,neitherfor mass-based(P=0.86,n=79)norarea-based(P=0.44,n=79)com- parisons.However,area-basedVcmaxwaspositivelycorrelatedwith LMA(Fig.5).Area-basedVcmaxalsocorrelatedwithgsmeasured atcaof380␮molmol−1andPARof2000␮molm−2s−1(R2=0.15, P<0.001,n=76).The electron transportrate,J,correlatedposi- tivelywithVcmax.Theregressionequationwiththetwoparameters normalized to25C wasJ=0.91Vcmax+14.4(R2=0.76, P<0.001, n=79).Meanvalues ofVcmax and Jforeach speciesateachsite aregiveninTable2.

The apparent quantum yield, , estimated from the initial slopeofthelightresponsecurves,showedlittlevariationacross thesampledleaves(Table2).Thelight-saturatedgrossphotosyn- thetic rate, Amax, was positively correlated withVcmax (Fig. 6), suggestingthatthetwomeasurementsprovidedconsistentindi- cationsofvariation inphotosyntheticcapacity. Area-basedAmax

wasunrelatedtoMAP(P=0.90,n=74),whereasmass-basedAmax

increased withincreasing MAP (R2=0.16, P<0.001,n=74). The Amax showednosignificantrelationship withleafN concentra-

(7)

Stomatal conductance to H

2

O (mol m

-2

s

-1

)

0.3 0.2

0.1 0.0

Instantaneous c / c

ia

0.0 0.2 0.4 0.6 0.8 1.0

Eucalyptus miniata Eucalyptus tetrodonta Eucalyptus tectifica Corymbia latifolia Corymbia terminalis Eucalyptus pruinosa Eucalyptus coolabah Corymbia aparrerinja

Fig.4. TheratioofintercellulartoambientCO2molefractionplottedagainststo- matalconductance.Thesolidlineisalinearregressionthroughthedata(R2=0.11, P=0.003,n=76).Thedashedlineisthepredictedrelationshipbetweenthetwo parametersifthemaximumRubiscocarboxylationvelocity,theelectrontransport rate,andmesophyllconductancewereassumedconstantovertheobservedrange ofstomatalconductance.

tion or with leaf P concentration.The Amax correlatedwith gs

measuredatcaof380␮molmol1andPARof2000␮molm2s1 (R2=0.39, P<0.001, n=69). The parameter, , representing the slope of thelight response curve,did not vary among sites or betweenspecieswithinasite.Themeanvalueacrossallsampled leaveswas0.17±0.06 (mean±1SE,n=74).Thedarkrespiration ratemeasuredduringthelightresponsecurvesvariedasafunction ofAmaxaccordingtotheregressionequationRD=0.028Amax+0.61 (R2=0.19,P<0.001,n=74).Thegrossphotosyntheticrateatirra- dianceof 2000␮molPARm2s1 wason average 81% of Amax, suggestingthatphotosynthesisat2000␮molPARm−2s−1wasnot light-saturated.MeanAmaxforeachspeciesateachsiteisgivenin Table2.

4. Discussion

Measurementsofleafdrymatter13Cforsavannaeucalypts inthisstudyweresimilartopreviousobservations,showinglit- tlevariationinresponsetoastrongrainfallgradientinnorthern Australia(Miller etal.,2001; Schulzeet al.,1998).Thispattern contrastswithrelativelystrongrelationshipsbetweenleafdrymat- ter13CandMAPfortreessampledinNorthAmericaandAsia (Diefendorfet al.,2010),and inAfrica(Midgleyetal.,2004).In thepresentstudy,wewereabletoconfirm,usinginstantaneous gasexchange measurements, that ci/ca was nearly constant in savannaeucalyptsalongthestrongrainfallgradientinnorthern Australia.Thisobservationtookplaceattheendofthedry sea- son,whenweexpectedlatitudinalvariationindroughtstresstobe

Leaf mass per area (g m

-2

)

350 300

250 200

150 100

V

cmax

at 25°C (µmol CO

2

m

-2

s

-1

)

0 20 40 60 80 100 120 140 160

Eucalyptus miniata Eucalyptus tetrodonta Eucalyptus tectifica Corymbia latifolia Corymbia terminalis Eucalyptus pruinosa Eucalyptus coolabah Corymbia aparrerinja

Fig.5.ThemaximumRubiscocarboxylationvelocityplottedagainsttheleafmass perareaforeucalyptleavessampledalongarainfallgradientinnorthernAustralia.

Thesolidlineisaregressionline:Vcmax=0.17LMA+45(R2=0.11,P=0.003,n=79).

mostpronounced.Thenearlyconstantci/caobservedinthisstudy resultedatleastpartlyfromacorrelationbetweenphotosynthetic capacityandstomatalconductance.Aclosecouplingbetweenpho- tosyntheticcapacityandstomatalconductancehasbeenpreviously observedinarangeofC3andC4plantspecies(BrodribbandFeild, 2000;CernusakandMarshall,2001;Hubbardetal.,2001;Wong etal.,1978,1979,1985).

Wefoundthree linesof evidence suggestingthat photosyn- thetic capacity in the leaves that we sampled was linked to stomatalconductance.Firstly,estimatesofVcmaxcorrelatedwith gs measured at ambient CO2 concentration and irradiance of 2000␮molPARm2s1.Secondly,theAmaxestimatedfromlight responsecurves conductedatsaturating CO2 concentrationcor- related with gs measured at ambient CO2 and irradiance of 2000␮molPARm2s1.Andthirdly,theobservedci/cadecreased less withdecreasinggs thanwasexpectedtheoretically for the caseofinvariantVcmax,J,andgm(Fig.4).Theseobservationssug- gestthat modellingapproachesforpredictingphotosynthesisin north-Australiansavannatreesmaybenefitbylinkingphotosyn- theticcapacitytogs.Severalauthorshaveformulatedmodelsthat applythisconcept(Balletal.,1987;Buckleyetal.,2003;Farquhar andWong,1984;JarvisandDavies,1998;Leuning,1990;Leuning, 1995),althoughthemechanisticbasisforcouplingbetweenpho- tosyntheticcapacityandgsisstilluncertain(vonCaemmereretal., 2004).

Acorrelationbetweengsandmesophyllconductance,gm,could havealsocontributedtotheapparentcorrelationbetweenpho- tosyntheticcapacityandgs,ifgmwerelowerinleaveswithlowgs

thaninleaveswithhighgs.Althoughthespreadsheetutilitythatwe usedtoestimateVcmaxalsoprovidesestimatesofgm(Sharkeyetal., 2007),thismethodforestimatinggmwasfoundtobelessreliable

(8)

V

cmax

at 25°C (nmol CO

2

g

-1

s

-1

)

800 600

400 200

0

A

max

(nmol CO

2

g

-1

s

-1

)

0 50 100 150 200 250 300 350

Eucalyptus miniata Eucalyptus tetrodonta Eucalyptus tectifica Corymbia latifolia Corymbia terminalis Eucalyptus pruinosa Eucalyptus coolabah Corymbia aparrerinja

Fig.6. Maximumgrossphotosynthesisdeterminedfromlightresponsecurvesplot- tedagainstthemaximumRubiscocarboxylationvelocitydeterminedfromCO2

responsecurves.Bothparametersareexpressedonamassbasis.Thesolidlineisa linearregression:Amax=0.46Vcmax21(R2=0.63,P<0.001,n=72).

thanmethodsthatapplychlorophyllflorescenceoron-line13C measurements(Pons etal.,2009).Wedidobserveacorrelation betweentheestimatedgmandgsmeasuredatambientCO2con- centrationand2000␮molPARm2s1,buttherelationshipwas weak(R2=0.09,P=0.01,n=76).Themeanestimateofgmacross allleavesinthestudywas10␮molm−2s−1Pa−1.Thisestimateis considerablyhigherthanvaluesdeterminedpreviouslyforarange ofAustralianplantspecieswithsclerophyllousleaves(Niinemets etal.,2009).Consistentwithpreviousobservations(Flexasetal., 2008;Hassiotouetal.,2009),wealsoobservedanegativecorrela- tionbetweengmandLMA(R2=0.26,P<0.001,n=79).Thissuggests thatgmshoulddecreasewithdecreasingMAPduetotheincrease inLMA.Amoredetailedinvestigationofvariationingminsavanna eucalyptsalongthenorth-Australianrainfallgradientusingchloro- phyllflorescenceoron-line13Cmethodsincombinationwithgas exchangewouldbehelpfultoverifythistrend.

Therelativelyflatresponsesofleafdrymatter13Candinstan- taneous ci/ca toa strongrainfall gradient innorthern Australia observedhereandpreviously(Milleretal.,2001;Schulzeetal., 1998)contrasts withresultsoftwo studiesineastern Australia (Stewartetal.,1995;Wrightetal.,2001).Thestudiesineastern Australiainvestigatedvariationsin13Candci/caofbroaderveg- etationcommunitiesinresponsetoMAP,whereasourstudyonly investigatedspecieswithinthecloselyrelatedgeneraofEucalyp- tusandCorymbia.However,thenorth-Australiantransectstudy of Schulze et al. (1998) included a broad taxonomic range of woodyplantspecies,andtheseauthorsstillonlyobservedaweak community-levelresponse of13C toMAP.Seasonalityofrain- fallcouldbe a featurecontributing tothesecontrasting results forresponsesof13Candci/catoMAPinnorthernversuseast-

ernAustralia(Milleretal.,2001;Schulzeetal.,1998).Rainfallin monsoonalnorthernAustraliashowsamuchstrongerseasonaldis- tributionthanrainfallineasternAustralia.Withineucalyptsmore generally,somespeciesappeartoshownoresponseof13Ctovari- ationinMAP,whereasotherspeciesshowamoreplasticresponse, with13C increasing in responseto increasingMAP(Cernusak etal.,2005;Milleretal.,2001;Schulzeetal.,2006a,b;Turneretal., 2010;Warrenetal.,2006).

ThemostplasticleaftraitinresponsetoMAPassessedinour studywastheleafmassperarea.TheLMAdecreasedwithincreas- ing MAPatarateof 70gleafdrymass m2leafaream1 mean annualprecipitation.BecauseleafNmasswasindependentofMAP, leafNareaincreasedasMAPdecreasedduetothevariationinLMA.

The Vcmax,expressed perunit leaf area, also increasedas MAP decreased,althoughtheincrease wasnotaspronouncedasthat forleafNarea.ThischangeinLMA,leafNarea,andphotosynthetic capacitywithdecreasingMAPisconsistentwiththeoreticalpredic- tions(Farquharetal.,2002),andwithpreviousobservationsinthis andotherecosystems(Midgleyetal.,2004;Mooneyetal.,1978;

Schulzeetal.,1998;Wrightetal.,2001).

Leafphotosyntheticcapacityisoftenobservedtocorrelatewith leafNconcentration(Dominguesetal.,2010;FieldandMooney, 1986;Wrightetal.,2004).Thishasbeenexplainedonthebasisof theproportionallylargeallocationofNtophotosyntheticenzymes and light-harvesting pigments in leaves (Evans, 1989). In the presentstudywedidnotobserveasignificantrelationshipbetween leafNconcentrationandVcmax,Amax,orphotosynthesisatambi- entCO2concentration.Thislackofcorrelationmostlikelyresulted fromtherelativelynarrowrangeofleafNconcentrationencoun- teredinthestudy(Fig.2B).LeafNconcentrationsintheleavesthat wesampledwerelowcomparedtotherangeofvaluestypically observedinangiospermtrees(ReichandOleksyn,2004),butsim- ilartoobservationsforothereucalypts(BellandWilliams,1997;

Prioretal.,2003;Schulzeetal.,1998).

In ordertocoveralargerrangeof leafN concentrations,we combined Vcmax data fromthepresent studywithobservations recently reportedfor seedlings ofnorth-Australian tree species grownina shadehouseontheCharlesDarwin Universitycam- pus (Orchardetal.,2010).Meanvaluesforeach speciesateach site weretakenasdatapoints.Asignificantcorrelationresulted between Vcmax at 25C (nmolg1s1) and leaf Nmass (mgg1):

Vcmax=41.2Nmass+151(R2=0.67,P<0.001,n=22).Inthedataset, leafNmassrangedfrom5.7to33.7mgg−1,andVcmaxat25Cfrom 301to1380nmolg1s1.Thisdemonstratesthateventhoughwe didnotobservearelationshipbetweenVcmaxandleafNmassinthe presentstudy,leafNmassisstillausefulpredictorofVcmax when a largerrange of leafNmass is taken intoaccount. TheVcmax–N slopeoftherelationshipobtainedfromthiscombinedanalysisof 41.2␮molCO2g−1Ns−1isinthemiddlerangeofVcmax–Nslopes observedinarangeofpreviousstudies(Kull,2002).

Ithasbeenpreviouslyobservedthatleafphotosyntheticcapac- itycorrelatedwithleafPconcentrationinsomeP-limitedtropical ecosystems(Dominguesetal.,2010;Meiretal.,2007),andthatleaf photosynthesis–NslopescanbeinfluencedbyleafPconcentrations (Reichetal.,2009).Wedidnotobserveanystrongrelationship betweenleafgasexchangeratesandleafPconcentrationsinour dataset.IncommonwiththeNcomparisons,thislikelyresulted fromalimitedrangeofvariationinPconcentrationsamongthe experimentalleaves(Fig.2C).Wedid,however,observeasignif- icantcorrelationbetweenleaf13CandleafParea,whichhintsat thepossibilitythatleafPareacouldhavebeeninfluencingphotosyn- theticcapacityintheleavesthatwesampled.TheaverageN:Pratio acrossthedatasetwas16.4gg−1.Accordingtoasimpleinterpreta- tionofleafN:Pratios,thiswouldbeconsistentwithco-limitationof productivityinover-storyeucalyptsalongtherainfallgradientby bothNandP(AertsandChapin,2000;Güsewell,2004;Koerselman

Referensi

Dokumen terkait

Tingkat akurasi sudut pada alur segitiga sama sisi Data Feedrate mm/menit 50 100 150 Sudut A 0 1 1 0 Sudut B 0 0 0 1 Sudut C 0 0 0 1 Dari tabel 4 di atas maka bisa dilihat

No Keterangan Jumlah Responden Persentase % 1 Sangat Setuju 3 6% 2 Setuju 31 62% 3 Ragu-ragu 16 32% 4 Tidak Setuju 0 0% 5 Sangat Tidak Setuju 0 0%