• Tidak ada hasil yang ditemukan

daftar pustaka

N/A
N/A
Protected

Academic year: 2023

Membagikan "daftar pustaka"

Copied!
21
0
0

Teks penuh

(1)

74 DAFTAR PUSTAKA

1. WHO. Vector Borne Diseases. World Health Organization. 2017. Available from: https://www.who.int/en/news-room/fact-sheets/detail/vector-borne- diseases.

2. WHO. Neglected Tropical Diseases. World Health Organizationation South

East Region. 2019. Available from:

www.searo.who.int/entity/vector_borne_tropical_diseases/en/.

3. WHO. Dengue and severe dengue. World Health Organization. 2019.

Available from: https://www.who.int/en/news-room/fact- sheets/detail/dengue-and-severe-dengue.

4. WHO. Dengue Control. World Health Organization. 2016. Available from:

https://www.who.int/denguecontrol/epidemiology/en/.

5. WHO. Variable Endemicity For DF/DHF In Country Of SEA Region.

World Health Organization. 2019. Available from:

www.searo.who.int/entity/vector_borne_tropical_diseases/data/data_factsh eet/en/index1.html.

6. Kusuma PA, Sukendra DM. Analisis Spasial Kejadian Demam Berdarah Dengue Berdasarkan Kepadatan Penduduk. Unnes J Public Heal. 2016;5 (1). Available from: http://journal.unnes.ac.id/sju/index.php/ujph.

7. Kemenkes. Situasi Penyakit Demam Berdarah Di Indonesia Tahun 2017.

Jakarta; 2017.

8. Siregar, Faizah A. Epidemiologi Dan Pemberantasan Demam Berdarah Dengue (DBD) Di Indonesia. Medan: FKM USU; 2004. Available from:

(2)

75 http://repository.usu.ac.id/handle/123456789/3673.

9. WHO. Test Prosedure For Insecticide Resistance Monitoring In Malaria Vector Mosqito. WHO Library Cataloguing in Publication Data : WHO Press; 2013.

10. WHO. Pencegahan dan Pengendalian Dengue dan Demam Berdarah. 15th edito. Wold Health Organization; 2005.

11. Peraturan Pemerintah. Pengawasan atas Pengedaran, Penyimpanan dan Penggunaan Pestisida. Indonesia; 1973.

12. Kemenkes. Pedoman Penggunaan Insektisida (PESTISIDA) Dalam Pengendalian Vektor. Vol.126. Jakarta: Kementerian Kesehatan RI; 2012.

13. Chitra GA, Kaur P, Bhatnagar T, Manickam P, Murhekar M V. High prevalence of household pesticides and their unsafe use in rural South India. Int J Occup Med Environ Health. 2013;26(2):275–282.

14. Loroño-Pino MA, Chan-Dzul YN, Zapata-Gil R, Carrillo-Solís C, Uitz- Mena A, García-Rejón JE, et al. Household use of insecticide consumer products in a dengue-endemic area in México. Trop Med Int Heal.

2014;19(10):1267–1275.

15. Prasetyowati H, Astuti EP, Ruliansyah A. Penggunaan Insektisida Rumah Tangga dalam Pengendalian Populasi Aedes aegypti di Daerah Endemis Demam Berdarah Dengue (DBD) di Jakarta Timur. ASPIRATOR - J Vector-borne Dis Stud. 2016;8(1):29–36.

16. Sunaryo S, Astuti P, Widiastuti D. Description of Aplication Household Insecticide in DHF Endemic Area Grobogan District 2013. Balaba J

(3)

76 Litbang Pengendali Penyakit Bersumber Binatang Banjarnegara.

2015;11(1):9–14.

17. Hidayati KN. Penggunaan Insektisida Rumah Tangga Antinyamuk.

Widyariset.2014;17(3):417–424.Available from:

http://widyariset.pusbindiklat.lipi.go.id/index.php/widyariset/article/viewFi le/286/274.

18. Pradani FY, Ipa M, Marina R, Yuliasih Y. Penentu Status Resisten Aedes aegypty Dengan Metode Susceptibility Di Kota Cimahi Terhadap Cypermethrin. J Vektora. 2018;III(1):35–43.

19. Raini M. Toksikologi Insektisida Rumah Tangga Dan Pencegahan Keracunan. Media Heal Res Dev. 2012;14(2):27–33.

20. Sandra Tuti, Muchlis AU Sofro et all. Faktor-Faktor Yang Berpengaruh Terhadap Kejadian Demam Berdarah Dengue Pada Anak Usia 6-12 Tahun di Kecamatan Tembalang. J Epidemiol Kesehat Komunitas. 2019;4(1):1–

10.

21. Wigati RA, Susanti L. Hubungan Karakteristik, Pengetahuan, Dan Sikap, Dengan Perilaku Masyarakat Dalam Penggunaan Anti Nyamuk Di Kelurahan Kutowinangun. Bull Heal Res. 2013;40(3):129–138.

22. Christijanti. W, Utami N.R DI. Efek Pemberian Antioksidan Vitamin C dan E Terhadap KUalitas Spermatozoa Tikus Putih Terpapar Allethrin.

Biosantifika. 2010;2(1):18–26. Available from:

https://journal.unnes.ac.id/nju/index.php/biosaintifika/article/view/1148.

23. Widyantoro W. Pengaruh Formulasi Daun teh Jambu Biji (psidium

(4)

77 guajava) sebagai Campuran Teh Terhadap Zona Daya Hambat Mikroba Anti Diare (Shigela dysenteriae). Yogyakarta: Politeknik Yogyakarta;

2011.

24. Hemingway J HR. Insecticide Resistence In Insect Vector Control of Human Disease. Annu Rev Epidemiol. 2000;45.

25. Das B, Hazra RK. Entomological investigations with special attention to pupal indicators of Aedes vectors during outbreaks of dengue in coastal Odisha, India. J Vector Borne Dis. 2013;50(2):147–150.

26. Sunaryo et all. Status Resistensi Vektor Demam Berdarah Dengue (Aedes aegepty) Terhadap Malathion 0,8% Dan Permethrin 0,25% Di Provinsi Jawa Tengah. J Ekol Kesehat. 2014;13(2):146–152.

27. Iswidati Tyas; Martini; Dyah Widiastuti. Status Resistensi Nyamuk Aedes aegepty Terhadap Malathion 0,8% di Area Buffer dan Perimeter Pelabuhan Tanjung Emas Semarang (Pengujian Berdasarkan Teknik Bioassay dan Biokimia). J Kesehat Masy. 2016;4(1):211–217. Available from:

https://media.neliti.com/media/publications/18432-ID-status-resistensi- nyamuk-aedes-aegypti-terhadap-malathion-08-di-area-perimeter-d.pdf.

28. Sunaryo, Widiastuti D. Resistensi Aedes Aegypti Terhadap Insektisida Kelompok Organopospat Dan Sintetik Piretroid Di Provinsi Sumatera Utara Dan Provinsi Jambi. Balaba J Litbang Pengendali Penyakit Bersumber Binatang Banjarnegara. 2018;14(1).

29. Triana D, Umniyati SR, Mulyaningsih B. Resistance Status of Aedes albopictus (Skuse) On Malathion In Bengkulu City. Unnes J Public Heal.

(5)

78

2018;7(2):113–119. Available from:

http://journal.unnes.ac.id/sju/index.php/ujph.

30. Panneerselvam C, Murugan K, Kovendan K, Kumar PM. Mosquito Larvicidal, Pupicidal, Adulticidal, And Repellent Activity of Artemisia nilagirica (Family: Compositae) Against Anopheles stephensi and Aedes aegypti. Parasitol Res. 2012;111(6):2241–2251.

31. Yoke Astri MW. Potensi Tanaman Di Indonesia Sebagai Larvasida Alami Untuk Aedes Aegypti. SPIRAKEL. 2016;8(2):37–46. Available from:

http://ejournal.litbang.depkes.go.id/index.php/spirakel/article/viewFile/616/

4745.

32. I Gusti Ayu Prapti Adnyani IMS. Pengaruh Konsentrasi Ekstrak Etanol Daun Pepaya (Carica papaya L) Terhadap Kematian Larva Nyamuk Aedes aegepty. E- J Med. 2016;5(8):112–115. Available from:

http://ojs.unud.ac.id/index.php/eum.

33. Septiani R, Ami T. Tanaman Pepaya (Carica Papaya L.) Dan Manfaatnya Dalam Pengobatan. Farmaka. 2016;14(1).

34. Luhung A, Nur F, Widya H, Cahyati. Uji Daya Proteksi Ekstrak Daun Pepaya (Carica Papaya L) Dalam Sediaan Lotion Dengan Basis Peg400 Sebagai Repellent Terhadap Aedes Aegypty. Care. 2017;5(3).

35. Agung N, Hesty H, Choi JS, Park H-J. Identification and Qualification of Flavonoids In Carica papaya Leaf and Peroxynitritescavenging Activity.

Asian Pac J Trop Biomed. 2017;7(3):208–213. Available from:

https://www.sciencedirect.com/science/article/pii/S2221169116306402.

(6)

79 36. Baby Joseph, P. Sankarganesh, Koji Ichiyama NY. Invitro Study On Cytotoxic Effect And Anti DENV2 Activity Of Carica Papaya L. Front Life Sci. 2015;8(1):18–22.

37. Agarwal A, Vyas S, Agarwal DP. Therapeutic Benefit Of Carica Papaya Leaf Extracts In Dengue Fever Patients. Sch J Appl Med Sci.

2016;4(2A):299–302. Available from:

https://pdfs.semanticscholar.org/e239/846c895b91793aa8d3126a655c5caad 6abda.pdf.

38. Duncan T V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface

Sci. 2011;363(1):1–24. Available from:

http://dx.doi.org/10.1016/j.jcis.2011.07.017.

39. Rosarin FS, Mirunalini S. Nobel Metallic Nanoparticles with Novel Biomedical Properties. J Bioanal Biomed. 2011;03(04):85–91.

40. Amerasan. D, Nataraj. T, Muguran. K, Panneerselvam. C, Madhiyazhagan.

P, Nicoletti. M, et al. Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci (2004). 2016;89(1):249–

256.

41. Govindarajan M, Vijayan P, Kadaikunnan S, Alharbi NS, Benelli G. One- pot biogenic fabrication of silver nanocrystals using Quisqualis indica : Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms. J Photochem Photobiol B Biol. 2016

(7)

80

Sep;162:646–55. Available from:

https://www.sciencedirect.com/science/article/abs/pii/S1011134416305504 .

42. Benelli G. Research in mosquito control: current challenges for a brighter future. Parasitol Res. 2015;114(8):2801–2805. Available from:

https://doi.org/10.1007/s00436-015-4586-9.

43. Benelli G. Green synthesized nanoparticles in the fight against mosquito- borne diseases and cancer—a brief review. Enzyme Microb Technol.

2016;95:58–68. Available from:

http://dx.doi.org/10.1016/j.enzmictec.2016.08.022.

44. Benelli G. Mode of action of nanoparticles against insects. Environ Sci Pollut Res. 2018;25(13):1232–1241. Available from:

https://doi.org/10.1007/s11356-018-1850-4.

45. Soni N, Prakash S. Green Nanoparticles For Mosquito Control. Sci World J. 2014;

46. Nalini M, Lena M, Sumathi P, Sundaravadivelan C. Effect of Phyto- Synthesized Silver Nanoparticles on Developmental Stages of Malaria Vector, Anopheles Stephensi and Dengue Vector, Aedes aegypti. Egypt J Basic Appl Sci. 2017;4(3):212–218. Available from:

http://dx.doi.org/10.1016/j.ejbas.2017.04.005.

47. Rawani A, Professor A. Mosquito larvicidal activity of green silver nanoparticle synthesized from extract of bud of Polianthus tuberosa L. Int J Nanotechnol Appl. 2017;973(1):17–28. Available from:

(8)

81 http://www.ripublication.com.

48. Mondal NK, Chowdhury A, Dey U, Mukhopadhya P, Chatterjee S, Das K, et al. Green Synthesis Of Silver Nanoparticles And Its Application For Mosquito Control. Asian Pacific J Trop Dis. 2014;4(1).

49. Muthukumaran U, Govindarajan M, Rajeswary M. Mosquito Larvicidal Potential of Silver Nanoparticles Synthesized Using Chomelia asiatica (Rubiaceae) Against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). J Basic Appl Zool.

2015;114(3):989–999.

50. Raharjo M, Subagyo A, Sulistyani. Nanoparticle of Silver Nitrate (Ag2NO3) and Carbamate (CO2NH3 derivatives) for Vector Control of Aedes aegypti. E3S Web Conf. 2019;125(3):2–6.

51. Benelli G, Caselli A, Canale A. Nanoparticles for mosquito control:

Challenges and constraints Nanoparticles for mosquito control. J King Saud Univ - Sci. 2017;29(4):424–435. Available from:

https://doi.org/10.1016/j.jksus.2016.08.006.

52. Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol.

2009;84(2):151–157. Available from: http://dx.doi.org/10.1002/jctb.2023 53. Marzulio M, Marsum M. Pengaruh Berbagai Dosis Ekstrak Daun Pepaya

California (Carica papaya L) Terhadap Kematian Larva Aedes aegypti Di Laboratorium Balai Litbang P2B2 Banjarnegara Tahun 2016. Bul Keslingmas. 2017;36(1):56–60.

(9)

82 54. Sathiya Priya R, Geetha D, Ramesh PS. Nanofabrication and Characterization of Silver Nanostructures from Carica papaya Leaf Extract and their Antioxidant Activity. Int J Adv Sci Eng. 2016;3(2):271–277.

55. Geetha MS, Shahbaz M, Upadhyay SN, Mishr PK. Green Synthesis Of Silver Nanoparticles Using Carica papaya Juice Their Characterization. J Pharm Sci Res. 2019;11(3).

56. Sorbiun M, Shayegan Mehr E, Ramazani A, Mashhadi Malekzadeh A.

Biosynthesis of Metallic Nanoparticles Using Plant Extracts and Evaluation of Their Antibacterial Properties. Nanochem Res. 2018;3(1):1–16.

Available from: http://creativecommons.org/licenses/by/4.0/.

57. Handoko CT, Huda A, Bustan MD, Yudono B, Gulo F. Green Synthesis Of Silver Nanoparticle And Its Antibacterial Activity. Rasayan J Chem.

2017;10(4):1137–1144.

58. Sunkari S, Gangapuram BR, Dadigala R, Bandi R, Alle M, Guttena V.

Microwave-irradiated green synthesis of gold nanoparticles for catalytic and anti-bacterial activity. J Anal Sci Technol. 2017;8(1):1–9.

59. Balavijayalakshmi J, Ramalakshmi V. Carica papaya Peel Mediated Synthesis of Silver Nanoparticles And Its Antibacterial Activity Against Human Pathogens. J Appl Res Technol. 2017;15(5):413–422. Available from: http://dx.doi.org/10.1016/j.jart.2017.03.010.

60. Khader SZA, Syed Zameer Ahmed S, Sathyan J, Mahboob MR, P.

Venkatesh K, Ramesh K. A comparative study on larvicidal potential of selected medicinal plants over green synthesized silver nano particles.

(10)

83 Egypt J Basic Appl Sci. 2018;5(1):54–62. Available from:

https://doi.org/10.1016/j.ejbas.2018.01.002.

61. Chandrasekaran R, Seetharaman P, Krishnan M, Gnanasekar S, Sivaperumal S. Carica papaya (Papaya) latex: a new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). 3 Biotech. 2018;8(2):1–10.

Available from: https://doi.org/10.1007/s13205-018-1105-6.

62. Koes Irianto. Epidemiologi Penyakit Menular & Tidak Menular (Panduam Klinis). Edisi Pert. Bandung: Penerbit Alfabeta; 2014.

63. Soedarto. Demam Berdarah Dengue. Jakarta: CV Sagung Seto; 2012.

64. Sembel DT. Entomologi Kedokteran. I. Widiyatmoko J, editor.

Yogyakarta: Andi Offset; 2009. 52 p. Available from:

http://perpustakaan.litbang.depkes.go.id/lokaciamis/index.php?p=show_det ail&id=1218

65. Hasdianah H. R Dr, Prima Dewi MK. Virologi : Mengenal Virus Penyakit, dan Pencehgahannya. Edisi Kesa. Yogyakarta: Nuha Medika; 2014.

66. WHO. Global Vector Control Response 2017 - 2030. France; 2017.

Available from: www.who.int/vector-control/en).

67. WHO. Dengue Haemorrhagic Fever, Diagnosis Treatment, Prevention and Control. 2nd editio. Geneva: Wold Health Organization; 1997.

68. S. Soegijanto. Demam Berdarah Dengue. Surabaya: Airlangga University Press; 2006.

69. A. Arsunan Arsin. Epidemiologi Demam Berdarah Dengue (DBD) Di

(11)

84 Indonesia. Sade A, editor. Makasar: Masagena Press; 2013.

70. Zettel. C kaufman P. Entomology And Nematology Aedes aegepty. 2013.

71. Sembiring. Entomologi Kesehatan Arthopoda Pengganggu Kesehatan Dan Parasitnya. 1st ed. Jakarta: UIRPRESS; 2011.

72. Kementerian Kesehatan RI. Pencegahan dan Pemberantasan Demam Berdarah Dengue. 2nd edition. Jakarta: Depkes RI; 2012.

73. WHO T. Dengue Guidelines For Diagnosis, Treatment, Prevention And Control New Edition. I. France: Wold Health Organization; 2009.

74. Cecep D sucipto. Vektor Penyakit Teropis. Yogyakarta: Gosyen Publishing; 2011.

75. Panut Djojosumarto. Pestisida dan Aplikasinya. Jakarta Selatan: PT Agromedia Pustaka; 2008.

76. Suharmiati HL. Tanaman Obat Dan Rumah Tradisional Untuk Mengatasi Demam Berdarah dengue. Edisi Pert. Jakarta Selatan: PT Agromedia Pustaka; 2007.

77. Hasibuan R. Insektisida Pertanian. Bandar Lampung: Lembaga Penelitian Universitas Lampung; 2013.

78. Pertanian K. Pestisida Pertanian dan Kehutanan Terdaftar 2014. Jakarta:

Direktorat Jendral Prasarana Dan Sarana Pertanian; 2014.

79. Ware GW, Whitacre DM. An introduction to insecticides. The Pesticide Book. Willoughby, Ohio: Meister Pub. 2004. Available from:

http://www.farmlandbirds.net/sites/default/files/2016- 11/Ware2002IntroductionInsecticides.pdf.

(12)

85 80. Kazachkova NI. Genotype analysis and studies of pyrethroid resistance of the oilseed rape (Brassica napus) insect pest - pollen beetle (Meligethes aeneus). Uppsala; 2007. Available from: http://diss- epsilon.slu.se/archive/00001329/01/NadiyaKazachkova_200711.pdf.

81. McCaffery A, Nauren R. Prevention and Management of Insecticide Resistance in Vectors of Public Health Importance. Vol. 14, Insecticide Resistance Action Committee. Seattle: Bill & Melinda Gates Foundation;

2011. 72 p.

82. Hemingway J, Ranson H. Insecticide Resistance In Insect Vectors Of Human Disease. Annu Rev Entomol. 2000;45:371–391.

83. Gandahusada S, Henry I, Wita P. Parasitologi Kedokteran. edisi keti.

Jakarta: FKUI; 1998.

84. Taxonomic Integrated Information System (ITIS). ITIS Standart Report carica Papaya. ITIS GOV US. 2011. Available from:

https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&sear ch_value=22324&print_version=PRT&source=to_print#null.

85. Putri DD, Ashari S. Keragaman Dua Varietas Pepaya (Carica papaya L.) Berdasarkan Karakter Kuantitatif Dan Kualitatif. J Produksi Tanam.

2018;6(7):1282–1287.

86. Blancke R. Tropical fruits And Other Edible Plants Of The World. London:

Cornell University Press; 2016. 52 p. Available from:

www.cornellpress.cornell.edu.

87. Ni Luh PI, Affandi, Sunarwati D. Pengelolaan Kebun Pepaya Sehat. Solok:

(13)

86 Balai Penelitian Tanaman Buah Tropika; 2008. 1–2 p.

88. Duke J. Dr Duke’s Phytochemical And Enthobotanical Database. 2009.

89. Fauzi L, Wakidah M. Extraction of Papaya Leaves ( Carica papaya L .) Using Ultrasonic Cleaner. Eksakta J Ilmu-ilmu MIPA. 2019;19(1):35–45.

90. Dwi Ningsih ESR. Uji Aktivitas Antiseptik dan Kandungan Flavonoid Total Ekstrak Daun Pepaya. J Farm Indones. 2018;15(2):101–108.

Available from: http://ejurnal.setiabudi.ac.id/ojs/index.php/farmasi- indonesia.

91. Prihatman K. Saponin Untuk Pembasmi Hama Udang. Bandung; 2001.

92. S. Utami, Syaufina L, Haneda N. Daya Racun Ekstrak Kasar Daun Bintaro (Cerbea odollam gaertn) Teradap Larva Spodoptera Litura Fabricius. J Ilmu Pertan Indones. 2010;15(2):96–100.

93. Sastrodihardjo S. Pengantar Entomologi Terapan. Bandung: ITB; 1984.

94. Puspita F, Lc S, Muktiana S. Ekstraksi Zat Aktif Antimikroba Dari Tanaman Yodium (Jatropha Multifida Linn) Sebagai Bahan Baku Alternatif Antibiotik Alami. Diponegoro Univ | Institutional Repos.

2011;2–8.

95. Aseptianova. Pemanfaatan Tanaman Sebagai Larvasida Alami Terhadap Nyamuk Penyebab Demam Berdarah (Aedes aegypti.L). Palembang:

Universitas Muhammadiyah Palembang; 2015.

96. E. Yunita, Suprapti N HJ. Pengaruh ekstrak Daun Teklan (Eupatorium riparium) Terhadap Mortalitas dan Perkembangan Larva Aedes aegypti.

BIOMA. 2009;11(1):11–17.

(14)

87 97. Ernesto Fatturosso OTS, editor. Modern Alkaloids Structure, Isolation, Sybthesis and Biology. Jerman: Wiley-VCH Verlag GmbH & Co. KgaA;

2007.

98. Soemirat J. Toksikologi Lingkungan. Yogyakarta: UGM Press; 2003.

99. Badan Pengawas Obat dan Makanan Republik Indonesia. Pembentukan Tim Pelaksana Penyusunan Farmakope Indonesia Edisi V. No HK.04.1.32.10.12.0008 Indoneisa: BPOM; 2012 p. 42.

100. Warren I, McCabe, Julian C Smith PH. Unit Operations Of Chemical Engineering. 6th Editio. Singapore: McGraw-Hill; 2001.

101. Seader J., J E, Henley. Separation Process Principles. USA: John WIll and Sons; 1980.

102. Treybal RE. Mass Transfer Operation. McGraw Hil. Singapore: McGraw Hill; 1980.

103. M.R Wingard R. P. Solvent Extraction IV. The Effect Of temperature on extraction Rate. J Am Oil Chem Soc. 1951;28(4):149–152. Available from:

https://link.springer.com/article/10.1007/BF02612062

104. Harbone J. Metode Fitokimia. Penuntun Cara Modern Menganalisis Tumbuhan. Bandung: ITB; 1987.

105. Amir J, ISM Z, MM R, KM S, A M, F S, et al. Technique For Extraction Of Bioactive Compounds From Plant Materials. J Food Eng.

2013;117:426–436.

106. V, Seidel, Sarker SD, Latif Z GA. Natural Product Isolation. 2nd Editio.

Totowa (New Jersey): Humana Press.Inc; 2006. 31–35 p.

(15)

88 107. Agoes. Teknologi Bahan Alam. Bandung: ITB Press; 2007.

108. International Centre For Science And High Technology. Extraction Technologies For Medical And Aromatic Plants. Trieste, Italy: United Nations Industrial Development Sciences and Technolgies International for Science and High Technology; 2008.

109. Goudarz M, Mehdi MK, Masoud SN. Zinc oxide nanoparticles: solvent- free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase. J Mater Sci

Mater Electron. 2017;(12). Available from:

https://www.springerprofessional.de/en/zinc-oxide-nanoparticles-solvent- free-synthesis-characterization/12091378.

110. Goudarzi Mojgan, Salavati-Niasari Masoud, Ghanbari Davood AA.

Synthesis and characterization of Al(OH) nanoparticles and polymeric nanocomposites. J Clust Sci. 2016;27(1):25–38. Available from:

https://www.researchgate.net/publication/292462867_Synthesis_and_Chara cterization_of_AlOH3_Al2O3_Nanoparticles_and_Polymeric_Nanocompo sites.

111. Masuo Hosokawa, Kiyoshi Nogi, Makio Naito TY. Nanoparticle Technology Handbook. First Edit. Dr.Kiyoshi Nogi, editor. Amsterdam:

Elsevier B.V; 2007. Available from: http://www.elsevier.com

112. Mohanraj V., Chen Y. Nanoparticles A Review. Trop J Pharm Res.

2006;5(1):561–573.

113. N. Kaushik, Thakkar MS, Snehit S.Mhatre MRYPM. Biological Synthesis

(16)

89 Of Metalic Nanoparticles. Nanomedicine Nanotechnology, Biol Med.

2010;6(2):257–262. Available from:

https://www.sciencedirect.com/science/article/pii/S1549963409001154?via

%3Dihub.

114. Prevale, V. B, Date A.A, Kulkarni R. Nanosuspensions : a Promising Drug Delivery Strategy. J Pharm Pharmacol. 2004;56(7):827–840.

115. Vajtai R. Springer handbook of nanomaterials. Springer Handbook of Nanomaterials. London: Springer Dordrecht Heidelberg; 2013. 1–1221 p.

116. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2(4):MR17–71.

117. Coulter B. Delsa Nano Series. 2008.

118. Perdana D. Pengembangan Awal Sistem Pembawa Polimerik Berbasis Nanopartikel. Bandung: Institut Teknologi Bandung; 2007.

119. Haskel JR. Physical Characterization of Nanoparticles, in : Nanoparticles Technology for Drugs Delivery. New York: Taylor & Francis Group; 2006.

120. Vaughn J., William R. Nanoparticle Engineering. In Swarbrick. James.

Encyclopedia of Pharmaceutical Technology. 3rd Editio. New York: Nova Science Publisher; 2007. 48 p.

121. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM.

Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci.

2008;101(2):239–253.

122. WHO. Guidelines for Efficacy Testing of Household Insecticide Products.

(17)

90 World Heal Organ. 2009;3:1–32.

123. WHO. Guidelines for laboratory and field testing of mosquito larvicides.

World Heal Organ. 2005;1–41. Available from:

http://whqlibdoc.who.int/hq/2005/WHO_CDS_WHOPES_GCDPP_2005.1 3.pdf?ua=1.

124. Susana; D, Sembiring; JT. Diptera : Entomologi Kesehatan (Arthopoda Pengganggu Kesehatan dan Parasit yang Dikandungnya). 1st ed. Jakarta:

Universitas Indonesia Press; 2011. 34–44 p.

125. Gafur A, Jastam MS. Faktor yang Berhubungan dengan Keberadaan Jentik Nyamuk Aedes aegypti di Kelurahan Batua Kota Makassar Tahun 2015. J Public Heal Sci. 2015;7(1):50–62.

126. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res.

2015;114(9):3315–3325.

127. Nugroho A, Heryani H, Choi JS, Park HJ. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity.

Asian Pac J Trop Biomed. 2017;7(3):208–213. Available from:

http://dx.doi.org/10.1016/j.apjtb.2016.12.009.

128. Anwar C, Lavita RA, Handayani D. Identifikasi dan distribusi nyamuk Aedes Sp. sebagai vektor penyakit. Mks. 2014;46(2):111–117. Available from: https://ejournal.unsri.ac.id/index.php/mks/article/view/2691

129. Sodipo; OA, Akinniyi; JA, Ogunbameru; J V. Studies On Certain

(18)

91 Characteristics of Extract of Bark of Pausinystalia Johimbe And Pausinystalia Macroceras (K.schum) Pierre Ex Beille. Glob J Pure Appl Sci. 2000;6(1):83–87.

130. Zhu J, Zeng X, Yanma, Liu T, Qian K, Han Y, et al. Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J Am Mosq Control Assoc. 2006;22(3):515–522.

131. Youdeowei; A, Service MW. management of Vectors In Pest and Vectors Management in Tropics. New York: Service MW; 1983. 265–280 p.

Available from: https://www.worldcat.org/title/pest-and-vector- management-in-the-tropics-with-particular-reference-to-insects-ticks-mites- and-snails/oclc/757161550.

132. Sv TL, T PN. Larvicidal activity of Syzygium polyanthum W. leaf extract against Aedes aegypti L larvae. Prog Heal Sci. 2015;5(1):102–106.

Available from:

http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.ceon.element- 22f0ebad-3a73-3cb2-86ff-65883b70865d.

133. Dinata A. Pemberantas Penyakit Bersumber Binatang. 2008.

134. Al-Janabi AAHS. Comparison of fresh with dry extracts for antibacterial activity of Vigna radiate L. on pathogenic bacteria. Pharmacogn J.

2010;2(16):39–42. Available from:

http://phcogfirst.com/sites/default/files/Comparison of Fresh with Dry Extracts for Antibacterial.pdf.

135. Shaalan EA, Canyon DV, Bowden B, Wagdy M, Younes F. Efficacy of

(19)

92 botanical extracts from Callitris glaucophylla , against Aedes aegypti and Culex annulirostris mosquitoes. 2006;23(2):180–185. Available from:

https://researchonline.jcu.edu.au/4066/1/4066_Shaalan_et_al...2006.pdf.

136. Benelli G, Caselli A, Canale A. Nanoparticles for mosquito control : Challenges and constraints. J King Saud Univ - Sci. 2017;29(4):424–435.

Available from: https://doi.org/10.1016/j.jksus.2016.08.006.

137. Borase HP, D Patil C. Phyto-Synthesized Silver Nanoparticles: A Potent Mosquito Biolarvicidal Agent. J Nanomedine Biotherapeutic Discov.

2013;03(01):1–7.

138. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, et al. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. 2011;108(3):693–702.

139. Kumar S, Lather V, Pandita D. Green synthesis of therapeutic nanoparticles: An expanding horizon. Nanomedicine. 2015;10(15):2451–

2471.

140. Rajan R, Chandran K, Harper SL, Yun S Il, Kalaichelvan PT. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind Crops Prod. 2015;70:356–373. Available from:

http://dx.doi.org/10.1016/j.indcrop.2015.03.015.

141. Ga’al H, Fouad H, Mao G, Tian J, Jianchu M. Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector

(20)

93 Aedes albopictus mosquito and its histopathological analysis. Artif Cells, Nanomedicine Biotechnol. 2018;46(6):1171–1179. Available from:

https://doi.org/10.1080/21691401.2017.1365723

142. Aniket; S, Kuntal; B, Anushree; RS, Chandra; G. Larvacidal Efficacy Of Mature Leaf Extract Of Nicotiana Lummbaginifolia VIV. (Solanaceae) Against Southern House Mosquito. Int J Pharm Bio Sci [Internet].

2016;7(2):162–167. Available from:

https://ijpbs.net/abstract.php?article=NTA0Mw==.

143. Widawati M. Efektivitas Ekstrak Buah Beta Vulgaris L . ( Buah Bit ) Dengan Berbagai Fraksi Pelarut Terhadap Mortalitas Larva Aedes aegypti Effectivity of Beta vulgaris L . Extract with Various Solvent Fractions to Aedes aegypti Larval Mortality. 2013;5(1):23–29.

144. Syamsul E, Purwanto E. Uji Aktivitas Perasan Buah Mentimun (Cucumis Sativus L) Sebagai Biolarvasida Terhadap Larva Nyamuk Aedes aegypti L.

J Kim Mulawarman. 2014;11(2).

145. Nikmah F, Sulistyani S, Hestiningsih R. Potensi Ekstrak Bunga Kluwih (Artocarpus Altilis Linn) Sebagai Insektisida Terhadap Kematian Nyamuk Aedes Aegypti Linn Dengan Metode Elektrik Cair. J Kesehat Masy .

2016;4(1):380–389. Available from:

https://ejournal3.undip.ac.id/index.php/jkm/article/view/11838.

146. WHO. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009. Stuttgart: WHO Press; 2010.

Available from: https://apps.who.int/iris/handle/10665/44271

(21)

94 147. BPOM. Transflutrin 1.. 2016. Available from: http://ik.pom.go.id/v2016/.

148. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes Second edition.

Referensi

Dokumen terkait

Hamidy, 2014, Efek Larvasida Ekstrak Etanol Daun Pepaya (Carica papaya) Terhadap Larva Aedes Aegypti, Karya Tulis Akhir, Fakultas Kedokteran Universitas Riau, Riau..

 Mengetahui apakah ekstrak etanol daun pepaya ( Carica papaya L.) memiliki efek sebagai larvisida terhadap Aedes sp.. Universitas

Berdasarkan penelitian yang berjudul Efek Infusa Biji Buah Pepaya (Carica papaya L.) Terhadap Kematian Larva Aedes aegypti Tahun 2016, saran yang dapat diajukan

Kesimpulan penelitian ini adalah serbuk biji pepaya (carica papaya) dan tawas efektif dalam mematikan jentik nyamuk Aedes aegypti dimana LD50 telah tercapai sehingga serbuk

Uji Aktivitas Analgetik Ekstrak Etanol daun Pepaya ( Carica papaya L.) pada mencit putih jantan yang.. diinduksi Asam Asetat 1%: Jurnal Farmasi

Berdasarkan hal-hal tersebut, peneliti tertarik melakukan penelitian untuk menguji potensi ekstrak etanol daun pepaya (Carica papaya L.) sebagai larvasida terhadap larva nyamuk

Uji aktivitas Antibakteri Ekstrak Etanol Daun Pepaya Carica papaya L Terhadap Pertumbuhan Bakteri Escherichia coli Secara In Vitro.. Cendana Medical

Hasil dari uji pendahuluan terkait efektivitas ekstrak biji pepaya Carica papaya L terhadap jumlah kematian larva Aedes aegypti instar III adalah konsentrasi 0,2% sudah dapat membunuh