• Tidak ada hasil yang ditemukan

DRILL PROBLEMS : CHAPTER 2

N/A
N/A
Ismail Ragi Alfarugi

Academic year: 2023

Membagikan "DRILL PROBLEMS : CHAPTER 2"

Copied!
45
0
0

Teks penuh

(1)

Made by Zaeem Ahmad Varaich

Please inform if you find any error in any solution!

E E 0 8 . S O L U T I O N S

DRILL PROBLEMS : CHAPTER 2

D2.1

(a) R

AB

= (5+6) a

x

+ (8-4) a

y

+ (-2-7) a

z

= 11a

x

+ 4a

y

- 9a

z

(b) R

AB

= 11

2

+ 4

2

+ 9

2

= 14.76 m

(c) F

BA

=

−20 × 10−6 50 × 10−6

4𝜋 10 −9 36 𝜋 (14.762)

𝑎

𝑏𝑎

= −0.0413

(−11𝑎𝑥− 4𝑎𝑦+ 9𝑎𝑧)

14.76

= 30.78𝑎

𝑥

+ 11.195𝑎

𝑦

− 25.18𝑎

𝑧

mN (d) F

BA

=

4𝜋 ×8.854×10 −20 × 10−6 50 × 10−12(14.76−62)

𝑎

𝑏𝑎

= −0.04125

(−11𝑎𝑥− 4𝑎𝑦+ 9𝑎𝑧)

14.76

= 30.74𝑎

𝑥

+ 11.18𝑎

𝑦

− 25.15𝑎

𝑧

mN

D2.2

(a) 𝒓 − 𝒓

𝑨

= −25𝑎

𝑥

+ 30𝑎

𝑦

− 15𝑎

𝑧

, |𝒓 − 𝒓

𝑨

| = 41.43 𝒓 − 𝒓

𝑩

= 10𝑎

𝑥

− 8𝑎

𝑦

− 12𝑎

𝑧

, |𝒓 − 𝒓

𝑩

| = 17.54

𝑬

𝑨

= −1.57

(−25𝑎𝑥+30𝑎41.43𝑦−15𝑎𝑧)

= 9480𝑎

𝑥

− 11300𝑎

𝑦

+ 5600𝑎

𝑧

𝑬

𝑩

= 14.61

(10𝑎𝑥−8𝑎𝑦−12𝑎𝑧)

17.54

= 83300𝑎

𝑥

− 66600𝑎

𝑦

− 99900𝑎

𝑧

𝑬

𝑻

= 𝑬

𝑨

+ 𝑬

𝑩

= 92.48𝑎

𝑥

− 77.9𝑎

𝑦

− 94.3𝑎

𝑧 𝑘𝑉

𝑚

(b) 𝒓 − 𝒓

𝑨

= −10𝑎

𝑥

+ 50𝑎

𝑦

+ 35𝑎

𝑧

, |𝒓 − 𝒓

𝑨

| = 61.84

𝒓 − 𝒓

𝑩

= 25𝑎

𝑥

+ 12𝑎

𝑦

+ 38𝑎

𝑧

, |𝒓 − 𝒓

𝑩

| = 47.04 𝑬

𝑨

= −7050

(−10𝑎𝑥+50𝑎𝑦+35𝑎𝑧)

61.84

= 1140𝑎

𝑥

− 5700𝑎

𝑦

− 3990𝑎

𝑧

𝑬

𝑩

= 20300

(25𝑎𝑥+12𝑎47.04𝑦+38𝑎𝑧)

= 10700𝑎

𝑥

+ 5180𝑎

𝑦

+ 16400𝑎

𝑧

𝑬

𝑻

= 𝑬

𝑨

+ 𝑬

𝑩

= 11.84𝑎

𝑥

− 0.52𝑎

𝑦

+ 12.41𝑎

𝑧 𝑘𝑉

𝑚

D2.3

(a) Sum = 2 + 0 +

2

5

+ 0 +

2

17

+ 0 = 2.517 (b) Sum =

1.1

11.18

+

1.01

22.62

+

1.001

46.87

+

1.0001

89.44

= 0.1755

(2)

Made by Zaeem Ahmad Varaich

Please inform if you find any error in any solution!

E E 0 8 . S O L U T I O N S

D2.4

(a) 𝑄 =

𝑣𝑜𝑙

𝜌

𝑣

𝑑𝑣 =

−0.2−0.1 −0.2−0.1 −0.2−0.1𝑥3𝑦13𝑧3

𝑑𝑥𝑑𝑦𝑑𝑧 +

1

𝑥3𝑦3𝑧3

𝑑𝑥𝑑𝑦𝑑𝑧

0.2 0.1 0.2 0.1 0.2 0.1

= −

8 𝑥2 1

−02−0.1 𝑦2−02−0.1 𝑧2−02−0.1

− −

1

8 𝑥20.10.2 𝑦20.10.2 𝑧20.10.2

=

8×(0.03) 1

1

8×(0.03)

= 0 (b)

0𝜋 00.1

𝜌

24 3

𝑧

2

sin 0.6𝜑 𝑑𝑧𝑑𝜌𝑑𝜑 = (−

cos 0.6𝜑0.6

)

0 𝜋

(

𝜌4

4

)

0 0.1

(

𝑧3

3

)

2

4

= 1.018 𝑚𝐶

(c)

0 02𝜋 02𝜋

𝑒

−2𝑟

sin 𝜃 𝑑𝜑 𝑑𝜃𝑑𝑟 = (−

𝑒−2𝑟2

)

0

(cos 𝜃)

02𝜋

(𝜑)

02𝜋

= −6.28 𝐶

D2.5

(a) E = 2 ×

2𝜋𝜀5×10−9

𝑜(4)

𝒂

𝒛

= 44.95

𝑉

𝑚

(b) E

x

=

5×10−9

2𝜋𝜀𝑜(5)

(3𝒂𝒚+4𝒂𝒛)

5

= 10.788𝒂

𝒚

+ 14.384𝒂

𝒛 𝑉

𝑚

, E

y

=

5×10−9

2𝜋𝜀𝑜(4)

𝒂

𝒛

= 22.4775 𝒂

𝒛 𝑉

𝑚

E = E

x

+ E

y

= 10.788𝒂

𝒚

+ 36.86𝒂

𝒛 𝑉

𝑚

D2.6

i) Electric field due to 3 nC/m

2

: E

1

=

3×102𝜀 −9

𝑜

𝒂

𝑵

= 169.5 𝒂

𝒛

ii) Electric field due to 6 nC/m

2

: E

2

=

6×102𝜀 −9

𝑜

𝒂

𝑵

= 338.8 𝒂

𝒛

iii) Electric field due to -8 nC/m

2

: E

3

=

−8×10−9

2𝜀𝑜

𝒂

𝑵

= −451.76 𝒂

𝒛

According to the direction of point relative to normal:

(a) E = - E

1

- E

2

- E

3

= −56.6 𝒂

𝒛 𝑉

𝑚

(a) E = E

1

- E

2

- E

3

= 283 𝒂

𝒛 𝑉

𝑚

(a) E = E

1

+ E

2

- E

3

= 961 𝒂

𝒛 𝑉

𝑚

(a) E = E

1

+ E

2

+ E

3

= 56.6 𝒂

𝒛 𝑉

𝑚

(3)

Made by Zaeem Ahmad Varaich

Please inform if you find any error in any solution!

E E 0 8 . S O L U T I O N S

D2.7

(a)

𝐸𝑦

𝐸𝑥

=

𝑑𝑦

𝑑𝑥

4𝑥2

𝑦2

×

𝑦

8𝑥

=

𝑑𝑦

𝑑𝑥

→ 𝑥𝑑𝑥 = − 2𝑦𝑑𝑦 → 𝑥

2

+ 2𝑦

2

= 𝑐 Put x = 1 and y = 2 to get 𝑐 = 33 giving: 𝒙

𝟐

+ 𝟐𝒚

𝟐

= 𝟑𝟑

(b)

𝐸𝐸𝑦

𝑥

=

𝑑𝑦

𝑑𝑥

𝑦 (5𝑥+1)

𝑥

=

𝑑𝑦

𝑑𝑥

1

5

×

5𝑥+1−1

5𝑥+1

𝑑𝑥 = 𝑦𝑑𝑦 → 0.4𝑥 − 0.08 ln 5𝑥 + 1 + 𝑐 = 𝑦

2

Put x = 1 and y = 2 to get 𝑐 = 15.74 giving: 𝟎. 𝟒𝒙 − 𝟎. 𝟎𝟖 𝐥𝐧 𝟓𝒙 + 𝟏 + 𝟏𝟓. 𝟕𝟒 = 𝒚

𝟐

(4)

Solved by Saad & Zaeem. Please report if you find any mistake!

E E 0 8 . S O L U T I O N S

DRILL PROBLEMS 3

D3.1

(a) Evaluate the triple volume integral to find the total volume enclosed by the portion of sphere / surface and then just multiply it with the given charge to find the total change within it:

𝑟 2 𝑠𝑖𝑛𝜃 𝑑𝜃𝑑𝜙𝑑𝑟 ×

𝜋 2

0 𝜋 2

0 0.26

0

𝑞 = 1

8 × 𝑞 = 7.5𝜇𝐶

(b) This surface encloses the whole charge q, so answer is 60 µC

(c) Only the upper half of the flux lines pass through the plane at z = 26 cm, so D = 0.5 x 60 = 30 µC

D3.2

(a) 𝐸 = 𝑘𝑄

𝑟

2

4𝑎

𝑥

−6𝑎

𝑦

+12𝑎

𝑧

16+36+144 = 0.72𝑎 𝑥 − 1.08𝑎 𝑦 + 2.16𝑎 𝑧 𝑀𝑉

𝑚

𝑠𝑜, 𝐷 = 𝜀 𝑜 𝐸 = 6.38𝑎 𝑥 − 9.56𝑎 𝑦 + 19.125𝑎 𝑧 𝜇𝐶 𝑚 2

(b) 𝐸 = 20

2𝜋𝜀

𝑜

.45

−3𝑎

𝑦

+6𝑎

𝑧

45 = −23.97𝑎 𝑦 + 47.94𝑎 𝑧 𝑀𝑉

𝑚

𝑠𝑜, 𝐷 = 𝜀 𝑜 𝐸 = −212𝑎 𝑦 + 424𝑎 𝑧 𝜇𝐶 𝑚 2

(c) 𝐸 = 120

2𝜀

𝑜

𝑎 𝑧 = 60

𝜀

𝑜

𝑎 𝑧 𝜇 𝑉

𝑚 , 𝑠𝑜 𝐷 = 𝜀 𝑜 𝐸 = 60𝑎 𝑧 𝜇𝐶

𝑚

2

D3.3

(a) 𝐸 = 𝐷

𝜀

𝑜

= 33.88𝑟 2 𝑎 𝑟 , so at P: 𝐸 = 33.88(2) 2 𝑎 𝑟 =135.5𝑎 𝑟

(5)

Solved by Saad & Zaeem. Please report if you find any mistake!

E E 0 8 . S O L U T I O N S

(b) 𝑄 =

𝐷. 𝑑𝑠 = 0 2𝜋 𝑎 0 𝜋 2 𝑠𝑖𝑛𝜃 𝑑𝜃𝑑𝜙𝑎 𝑟 × 0.3𝑟 2 𝑎 𝑟 = 24.3 −𝑐𝑜𝑠𝜃| 0 2𝜋 0 𝜋 𝑑𝜙 = 48.6 0 2𝜋 𝑑𝜙 = 305 . 208 𝑛𝐶

(c) On same steps: 𝑄 = 76.8 0 2𝜋 −𝑐𝑜𝑠𝜃| 0 𝜋 𝑑𝜙 = 964.608 μC

D3.4

(a) 𝑄 = 𝑄 1 + 𝑄 2 = 0.243 𝜇𝐶

(b) 𝑄 = 𝑙𝑒𝑛𝑔𝑡𝑕 × 𝜌 𝐿 = 31.4 𝜇𝐶

(c) Area = 𝑙𝑒𝑛𝑔𝑡𝑕 𝑜𝑓 𝑙𝑖𝑛𝑒 (𝑕𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒) × 𝑤𝑖𝑑𝑡𝑕 𝑎𝑐𝑟𝑜𝑠𝑠 𝑧 = 10.53 × 10 So, 𝑄 = 𝑎𝑟𝑒𝑎 × 𝜌 𝐴 = 10.53 𝜇𝐶

D3.5

(a) 𝐷 = 0.25

4𝜋(0.005)

2

= 795.77 𝜇𝐶

(b) 𝑄 2 = 4𝜋 0.01 2 × 𝜌 𝑠2 = 2.51 𝜇𝐶, 𝑠𝑜, 𝐷 = 0.25+2.51

4𝜋(0.015)

2

= 977 𝜇𝐶

(c) 𝑄 3 = 4𝜋 0.018 2 × 𝜌 𝑠3 = −2.44 𝜇𝐶, 𝑠𝑜, 𝐷 = 0.25+2.51−2.44

4𝜋 (0.025)

2

= 40.74 𝜇𝐶

(d) 𝐷 = 0.25+2.51−2.44+4𝜋 0.03

2

×𝜌

𝑠

4𝜋(0.035)

2

= 0 , so 𝜌 𝑠4 = -28.29 𝜇𝐶

D3.6

(a) 𝜓 = 𝐷. 𝑑𝑠 = 16𝑥 1 3 0 2 2 𝑦𝑧 3 𝑑𝑥𝑑𝑦 = 16𝑥 1 3 0 2 2 𝑦. 8𝑑𝑥𝑑𝑦 = 1365 𝑝𝐶

10 10

10 3

𝑦 = 3𝑥

𝜌 𝑠2

𝜌 𝑠3

(6)

Solved by Saad & Zaeem. Please report if you find any mistake!

E E 0 8 . S O L U T I O N S

(b) 𝐸 = 𝐷

𝜀

𝑜

𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑖𝑡 𝑎𝑡 𝑃

(c) 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡𝑕𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 8 𝑎𝑡 𝑃 𝑎𝑛𝑑 ∆𝑉 = 10 −12 𝑚 3

D3.7

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡𝑕𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑒 𝑓𝑜𝑟 div 𝐃 𝑖. 𝑒. 15, 16 & 17 𝑎𝑡 𝑡𝑕𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑃

D3.7

𝑇𝑎𝑘𝑒 div 𝐃 𝑎𝑠 𝑠𝑡𝑎𝑡𝑒𝑑 𝑏𝑦 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 𝑠1𝑠𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑔𝑒𝑡 𝑡𝑕𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝜌 𝑣 , 𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑝𝑒𝑟 𝑡𝑟𝑖𝑔𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

D3.8 R.H.S:

∇. D = 12𝑠𝑖𝑛 𝜑

2 − 0.75𝑠𝑖𝑛 𝜑

2 = 11.25 𝑠𝑖𝑛 𝜑 2

11.25 𝑠𝑖𝑛 𝜑

2 𝜌𝑑𝑧𝑑𝜙𝑑𝜌 = 11.25 × 20 = 225

5

0 𝜋

0 2

0

L.H.S:

𝐷. 𝑑𝑠 = (𝑫) 𝜌=2 𝜌𝑑𝑧𝑑𝜑𝑎 𝜌

5

0 𝜋

0

+ (𝑫) 𝜑 =0 𝑑𝑧𝑑𝜌𝑎 𝜑

5

0 2

0

+ (𝑫) 𝜑 =𝜋 𝑑𝑧𝑑𝜌(−𝑎 𝜑 )

5

0 2

0

Now,

(𝑫) 𝜌=2 = 12𝑠𝑖𝑛 𝜑

2 𝑎 𝜌

(7)

Solved by Saad & Zaeem. Please report if you find any mistake!

E E 0 8 . S O L U T I O N S

𝑫 𝜑 =𝜋 𝑑𝑧𝑑𝜌𝑎 𝜑

5

0 2

0

= 0

𝑠𝑜, 𝐷. 𝑑𝑠 = 24 𝑠𝑖𝑛 𝜑

2 𝑑𝑧𝑑𝜑 + (𝑫) 𝜑 =0 𝑑𝑧𝑑𝜌𝑎 𝜑

5

0 2

0 5

0 𝜋

0

= 24 −2𝑐𝑜𝑠 𝜑

2 | 0 𝜋 × 𝑧 | 0 5 − 1.5

𝜌 2

2 | 0 2 × 𝑧 | 0 5

= −48 0 − 1 5 − 15

= 225

(8)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(9)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(10)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(11)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(12)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(13)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(14)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(15)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(16)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(17)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(18)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(19)

Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)

(20)

Solved by Zaeem. Please report if you find any mistake!

E E 0 8 . S O L U T I O N S

DRILL PROBLEMS 5

D5.1

(a) At P:

ܬ= 10ሺ 3ሻ 2 ሺ 2ሻ ܽ ߩ െ4ሺ 3ሻ ܿ ݋ݏ 2 ሺ 30ሻ ܽ ߮ = 180ܽ ߩ െ9ܽ ߮

(b) Using formula (2):

ܫ= න න 10ߩ 3 ݖ ܽ ߩ .݀ݖ ݀߶

2.8

2 2ߨ

0

ܽ ߩ = 27 න න 10ݖ ݀ݖ ݀߶

2.8

2 2ߨ

0

= 27 ቆ ݖ 2

2 ቇ| 2 2.8 ሺ ߶ሻ | 0

= 325.72 ݉ܣ ࢕࢘ 3.25 ܣ

D5.2

(a) Using formula (2):

ܫ= െන න 10 6 ݖ 1.5 ܽ ݖ .ߩ݀ߩ݀߶

20ߤ

0 2ߨ

0

ܽ ݖ = െන න 10 6 ሺ 0.1ሻ 1.5 ߩ݀ߩ݀߶

20ߤ

0 2ߨ

0

= െ10 6 ሺ 0.1ሻ 1.5 ቆ ߩ 2

2 ቇ| 0 20ߤ ሺ ߶ሻ | 0 = െ39.7ߤܣ

(b) Using formula (3):

ߩ ݒ = ܬ ݖ

ݒ ݖ = െ10 6 ሺ 0.1ሻ 1.5

2 × 10 6 = െ15.81 ݉ܥ

݉ 3

(c) Same formula:

ݒ ݖ = ܬ ݖ

ߩ ݒ = െ10 6 ሺ 0.15ሻ 1.5

െ2000 = 29.04 ݉

ݏ

(21)
(22)

Solved by Zaeem. Please report if you find any mistake!

E E 0 8 . S O L U T I O N S

D5.5

(a) Putting point P in given V, while evaluating trigonome tric functions using radians:

ܸ= 48.848 ܸ

(b) Using formula:

ࡱ= െ݃ݎ ܽ݀ ܸ= െ100 coshሺ 5ݔሻ.5 sinሺ 5ݕሻܽ

ݔ

െ100 sinhሺ 5ݔሻ5 cosሺ 5ݕሻܽ

ݕ

At P: E = െ474.43ܽ

ݔ

െ140.77ܽ

ݕ

ܸ

݉

(c) ȁ E ȁ= ඥ 474.43

2

+ 140.77

2

= 494.87 ݉ ܸ

(d) ɏ

s

= ܦ

ܰ

= ȁ ࡰ

ȁ , so as ࡰ

= ߝ

݋

E= െ4.2ܽ

ݔ

െ1.246ܽ

ݕ

݉ ݊ܥ

2

, so ɏ

s

= ȁ ࡰ

ȁ = 4.38 ݉ ݊ܥ

2

D5.6

(a) For original line charge, with ߩ

ܮ

= 40

݊ܥ

݉

ܸ= െනܧ.݈݀ ,

ܽݏ ܧ= ߩ

ܮ

2ߨߝ

݋

ߩ ܽ

ߩ

, ݏ ݋ ܸ= െ ߩ

ܮ

2ߨߝ

݋

න ܽ

ߩ

ߩ ݈݀

(7,െ1,5)

4

ܽ

ߩ

ߩ = ሺ ݔെ6ሻ ܽ

ݔ

+ (ݕെ3)ܽ

ݕ

(ݔെ6)

2

+ (ݕെ3)

2

ܽݏ , ݈݀= ݀ݔ ܽ݊݀ ݕ= െ1,ݏ ݋:

ܸ= െ720 න ሺ ݔെ6ሻ

(ݔെ6)

2

+ 16 ݀ݔ= െ360 ݈ ݊ȁ (ݔെ6)

2

+ 16ȁ

47

7

4

= 58.50 ܸ

For mirror line charge, with ߩ

ܮ

= െ40

݊ܥ

݉

ܸ= െනܧ.݈݀ ,

ܽݏ ܧ= ߩ

ܮ

2ߨߝ

݋

ߩ ܽ

ߩ

, ݏ ݋ ܸ= െ ߩ

ܮ

2ߨߝ

݋

න ܽ

ߩ

ߩ ݈݀

(7,െ1,5)

4

(23)
(24)

1

CHAPTER 7 DRILLS

Solved by

Zaeem A. Varaich

www.ee08.net.tc

D7.1

(a)V|P(1,2,3)

=

4(2)(3)(1)2+1

= 12

V

As,

ρv

=

2V,

so we first calculate

2V

:

V

=

−8(xyzx2+1)2

+

x24z+1

+

x24y+1

⇒ ∇2V

= 32

(xyzx2+1)23

8

(x2yz+1)2

⇒ ∇2V|P(1,2,3)

= 12;

so,

ρv

=

2V

=

o

(12) =

−106.25mpC3

(b)V|P(3,π

3,2)

=

−22.5V

As,

ρv

=

2V,

so we first calculate

2V

:

2V

= 20 cos (2

φ)−

20 cos (2

φ)

⇒ ∇2V|P(3,π3,2)

= 0;

so,

ρv

=

2V

=

o

(0) = 0

pCm3

(c) V|P(0.5,45o,60o)

= 4

V

As,

ρv

=

2V,

so we first calculate

2V

:

2V

= 4

cos(φ)r4

2

r4(sin(θ))cos(φ) 2

⇒ ∇2V|P(0.5,45o,60o)

= 0;

so,

ρv

=

2V

=

o

(0) = 0

pCm3

D7.2

Apply the formulae & concepts to find the answers!

(25)

2

D7.3

(a)

The solution to Laplace’s equation

1ρ∂ρ ρ∂ρ

= 0 is:

V

=

A

ln

ρ

+

B

Putting the given values of

V

&

ρ

and solving the simultaneous equations, we get:

A

=

−73.9 &B

= 101.28

so,

V

=

−73.9 lnρ

+ 101.28

Now,

E

=

−∇V

=

1ρ

(73.9)

aρ

=

1

10

(73.9)

aρ

= 23.36

aφ

(

ρ

=

3

2

+ 1

2

)

so,

|E|

= 23.36

mV

(b)

The solution to Laplace’s equation

ρ12

2V

∂φ2

= 0 is:

V

=

+

B

Putting the given values of

V

&

φ

and solving the simultaneous equations, we get:

A

=

−85.9 &B

= 64.9

so,

V

=

−85.9φ

+ 64.9

Now,

E

=

−∇V

=

1ρ

(85.9)

aφ

=

1

10

(85.9)

aφ

= 27.16

aφ

(

ρ

=

3

2

+ 1

2

) so,

|E|

= 27.16

mV

D7.4 & D7.5

Not included in the course!

(26)

3

D7.6

The solution to this problem depends on how you proceed in each iteration and on your initial estimate.

The dotted lines show how the initial estimate was found.

(a)

20.8

V

(b)

44.47

V

(c)

89.8

V

(27)

4

Please report to the following e-mail, if you find any mistake:

[email protected]

(28)

1

CHAPTER 8 DRILLS

(Upto D8.3)

Solved by

Zaeem A. Varaich

www.ee08.net.tc

D8.1

(a)

Using ∆- form of equation (2), i.e.

H

2

=

I1L4πR1×a2R12 12

Here,

aR12

=

(4−0)ax+(2−0)a42+22+2y+(0−2)a2 z

= 0.816a

x

+ 0.408a

y

0.408a

z

R212

= 4

2

+ 2

2

+ 2

2

= 24 so, ∆H

2

=

I1L4πR1×a2R12

12

=

2πaz×(0.816ax301.59+0.408ay−0.408az)µ

=

5.12a301.59y−2.56axµ

=

−8.5ax

+ 17.0a

ynA m

(b)

As, ∆H

2

=

I1L4πR1×a2 R12 12

Here,

aR12

=

(4−0)ax+(2−2)ay+(3−0)az

42+02+32

= 0.8a

x

+ 0.6a

z R212

= 4

2

+ 0

2

+ 3

2

= 25

so, ∆H

2

=

I1L4πR1×a2R12

12

=

2πaz×(0.8a100πx+0.6az)µ

=

5.02a100πyµ

= 16a

ynAm

(c)

As, ∆H

2

=

I1L4πR1×a2 R12 12

Here,

aR12

=

(−3−1)ax+(−1−2)ay+(2−3)az

42+32+12

=

−0.78ax

0.58a

z

0.19a

z

R212

= 4

2

+ 3

2

+ 1

2

= 26 so, ∆H

2

=

I1L4πR1×a2R12

12

=

2π(−ax+ay+2az)×(−0.78a104π x−0.58az−0.19az)µ

=

(1.96ax−3.53104πay+2.74az)πµ

H

2

= 18.85

ax

33.94

ay

+ 26.40

aznA m

(29)

2

D8.2

Using,

H2

=

2πρI aφ (a)

For

PA

(

20, 0, 4), we have

ρ

=

20 + 0 = 4.47, so:

H2

=

2π(415.47)aφ

=

0.533aφ

= (0.533

× −

sin

φ)ax

+ (0

.533×

cos

φ)ay

, where

φ

= tan

−1 yx

= tan

−1

0 20

= 0

o

, so

H2

= 0.533a

y A

m

(b)

For

PB

(2,

−4,

4), we have

ρ

=

2

2

+ 4

2

= 4.47, so:

H2

=

2π(415.47)aφ

=

0.533aφ

= (0.533

× −

sin

φ)ax

+ (0

.533×

cos

φ)ay

, where

φ

= tan

−1 yx

= tan

−1 −42

=

−63.43o

, so

H2

= (0

.533×0.89)ax

+ (0

.533×0.44)ay

= 0.474a

x

+ 0.238a

y

D8.3

(a)

For infinitely long filament;

H

=

2πρI aφ

Here,

ρ

=

p

(0.1)

2

+ (0.1)

2

=

2 10

H

=

2πρI aφ

=

(2.5)

2π(

2

10)aφ

= 2.8134a

φ

= (2

.8134× −

sin

φ)ax

+ (2

.8134×

cos

φ)ay

Now,

φ

= 270

oθ

= 270

o

tan

−1 0.10.1

= 270

o

45

o

= 225

o

,

so,

H

= (2

.8134×0.707)ax

+ (2

.8134× −

0.707)a

y

= 1.989a

x

1.989a

y A m

(30)

3

(b)

For

ρ < a,

H

=

2πa2aφ

=

(2.5)(0.2)2π(0.3)2aφ

= 0.884a

φ

= (0.884× − sin

φ)ax

+ (0

.884×

cos

φ)ay

Now,

φ

= tan

−1 xy

= tan

−1 0.20

= 90

o

,

so,

H

=

−0.884ax A m

(c)

Now,

H1

=

12K1×aN

=

12

(2.7)a

x×ay

= 1.35a

z

H2

=

12K2×aN

=

12

(−1.4)a

x×ay

=

−0.7az

H3

=

12K3×aN

=

12

(−1.3)a

x× −ay

= 0.65a

z

so,

H

=

H1

+

H2

+

H3

= 1.300a

zmA

(31)

4

Please report to the following e-mail, if you find any mistake:

[email protected]

(32)

CHAPTER 8 DRILLS

CHAPTER 8 DRILLS

(D8.4

onwards)

Solved by

Zaeem A. Varaich www.ee08.net.tc

D8.4

(a) For path 1:

´

(3za

x

2x

3

a

z

).(dxa

x

+ dya

y

+dza

z

) =

´4

2

(3zdx) = 3(4)(4

2) = 24 A For path 2:

´

(3za

x

2x

3

a

z

).(dxa

x

+ dya

y

+dza

z

) =

´1

4

(−2x

3

dz) =

−2(43

)(1

4) = 384 A For path 3:

´

(3za

x

2x

3

a

z

).(dxa

x

+ dya

y

+dza

z

) =

´2

4

(3zdx) = 3(1)(2

4) =

−6

A For path 4:

´

(3za

x

2x

3

a

z

).(dxa

x

+ dya

y

+dza

z

) =

´4

1

(−2x

3

dz) =

−2(23

)(4

1) =

−48

A So,

¸

H.dL = 24 + 384

6

48 = 354 A

(b)

4SN

= 3

×

2 = 6 m

2

, so (∇ × H)

y

=

¸H.dL

4SN

=

3546

= 59

mA2

(c) (∇ × H) =

a

x

a

y

a

z

∂x

∂y

∂z

H

x

H

y

H

z

=

a

x

a

y

a

z

∂x

∂y

∂z

3z 0

−2x3

= (0

0)a

x−(−6x2

3)a

y

+(0

0)a

z

= (6x

2

+ 3)a

y

At the center, x = 3, z = 2.5, so (∇ × H)

y

= [6(3)

2

+ 3]=57

mA2

1

ee08.net.tc

(33)

CHAPTER 8 DRILLS

D8.5

(a) J =

∇ ×

H =

a

x

a

y

a

z

∂x

∂y

∂z

H

x

H

y

H

z

=

a

x

a

y

a

z

∂x

∂y

∂z

0 x

2

z

y2

x

= (−2yx

x

2

)a

x−(−y2

0)a

y

+(2xz

0)a

z

At P: J =

−16ax

+9a

y

+16a

z A m

(b) J =

∇ ×

H =

1 ρ

∂Hz

∂φ∂H∂zφ

a

ρ

+

∂H

ρ

∂z∂H∂ρz

a

φ

+

1 ρ

(ρHφ)

∂ρ1ρ∂H∂φρ

a

z

=

1 ρ

.0

0

a

ρ

+ (0

0) a

φ

+

1

ρ

.(2 cos 0.2φ)

1ρ2ρ

(−0.2) sin 0.2φ a

z

At P: J =0.055a

zmA2

(c) Using equation (26):

=

rsin1 θ

(0

0) a

r

+

1r

(0

0) a

θ

+

1r ∂r sinθr

0

a

φ

=

rsinθ1

a

φ

At P: J =a

φ mA2

D8.6

(a)

¸

H.dL : For path 1:

´

(6xya

x

3y

2

a

y

).(dxa

x

+ dya

y

+dza

z

) =

´5

2

(6xydx) = 6(−1)

(52−22 2)

=

−63

A For path 2:

´

(6xya

x

3y

2

a

y

).(dxa

x

+ dya

y

+dza

z

) =

´1

−1

(−3y

2

dy) =

−3(13+13 3)

=

−2

A For path 3:

´

(6xya

x

3y

2

a

y

).(dxa

x

+ dya

y

+dza

z

) =

´2

5

(6xydx) = 6(1)

(22−52 2)

=

−63

A For path 4:

´

(6xya

x

3y

2

a

y

).(dxa

x

+ dya

y

+dza

z

) =

´−1

1

(−3y

2

dy) =

−3(−133−13)

= 2 A So,

¸

H.dL =

−63−

2

63 + 2 =

−126

A (b) Now,

´

S

(∇ × H).dS :

(∇ × H) =

a

x

a

y

a

z

∂x

∂y

∂z

H

x

H

y

H

z

=

a

x

a

y

a

z

∂x

∂y

∂z

6xy

−3y2

0

= (0

0)a

x

(0

0)a

y

+ (0

6x)a

z

=

−6xaz

(∇ × H).dS =(−6xa

z

)(dydza

x

+ dxdza

y

+ dxdya

z

) =

−6x dxdy,

´

(∇ × H).dS =

−6´ ´

x dxdy =

−6

x2 2

5 2

y|

1−1

=

−6(25−4)2

(1 + 1) =

−126

A

D8.7

(a) H

φ

=

2πa2

=

(20)(0.5m)2π(1m)2

= 1592

mA

(b) B

φ

= µ

o

H

φ

= 4π

×

10

−7 (20)(02π(1m).8m)2

= 3.2 mT

2

ee08.net.tc

(34)

CHAPTER 8 DRILLS

(c) φ =

´

S

B.dS =

´d 0

´a 0

2πa2

dρdz =

2πaO2

d

ρ22

a 0

, so

φ

d

= 4π

×

10

−7 (20)4π

= 2 µ

W bm

(d) φ =

´

S

B.dS =

´d 0

´0.5m 0

2πa2

dρdz =

2π(1m)o 2

d

ρ22

0.5m 0

, so φ = 4π

×

10

−7 (20)4π(1m)d(0.5m)2 2

= 0.5d µ

W bm

(e) φ =

´

S

B.dS =

´d 0

´ 0

2πa2

dρdz =

2π(1m)od2

ρ2 2

0

, so φ = 4π

×

10

−7 (20)4π(1m)d(∞)22

=

W bm

D8.8

(a) H =

2πρI

a

φ

, so first we find I:

I =

´

KdN =

´2π

0

(2.4)(ρdφ) = 18.09 A H =

18.092πρ

a

φ

=

2.88ρ

a

φ

(b) H =

−∇Vm

, so

Vm

=

(1.5)2.88

a

φ

=

−1.92aφ

1 ρ

∂Vm

∂φ

=

−1.92⇒

V

m

=

−2.88´0.6π

0

=

−5.43V

(c) Proceeding similar as above:

V

m

=

−2.88´0.6π

2π

=

−2.88(0.6−

2)π = 12.66V (d) Similarly,

V

m

=

−2.88´0.6π

π

=

−2.88(0.6−

1)π = 3.62V (e) Similarly,

V

m

=

h

−2.88´π

−0.6π

i

+ 5 =

−14.47 + 5 =−9.47V

D8.9

We know that, B = µ

o

H

For solid conductor along z-axis:

H =

2πa2

a

φ

, so B = µ

o Iρ

2πa2

a

φ

Also, B =

∇ ×

A

Comparing both sides’ a

φ

components:

µ

o Iρ

2πa2

=

A∂ρz

A

z

=

−´

µ

o Iρ

2πa2

dρ +

C

From given conditions, at ρ = a for A

z

:

3

ee08.net.tc

(35)

CHAPTER 8 DRILLS

C =

´

µ

o Iρ

2πa2

dρ + µ

oIln5

2πa2

= µ

o Iρ2 4πa2

a

0

+ µ

oIln5

2πa2

= 4.218

×

10

−7

Now,

A

z

=

µo Iρ2

4πa2

+ (4.39

×

10

−7

) =

h

−10−7ρa22

+ (4.218

×

10

−7

)

i

I

(a) At ρ = 0 A = 0.4218I a

z

µ

Wbm

(b) At ρ = 0.25a A = 0.415I a

z

µ

Wbm

(c) At ρ = 0.75a A = 0.365I a

z

µ

Wbm

(d) At ρ = a A = 0.3217I a

z

µ

Wbm

D8.10

Using Eq. (66) with b = 4cm:

A

z

=

µ2πoI

ln

bρ

For red conductor:

A

zr

= 2.4 ln

4cmρ

1

µ

W bm

For black conductor:

A

zb

=

−2.4 ln4cmρ

2

µ

W bm

Also,

A = A

zr

+ A

zb

(a) ρ

1

= 4cm = ρ

2

, so A

zr

=

Azb

A = 0

W bm

(b) ρ

1

= 4cm and ρ

2

= 12cm , so A

zb

= 2.63µ

W bm

and A

zr

= 0µ

W bm

4

ee08.net.tc

(36)

CHAPTER 8 DRILLS

A = 2.63µ

W bm

(c) ρ

1

= 4cm and ρ

2

=

8

2

+ 4

2

= 8.94cm , so A

zr

= 0µ

W bm

and A

zb

= 1.93µ

W bm

A = 1.93µ

W bm

(d) ρ

1

= 2cm and ρ

2

=

8

2

+ 2

2

= 8.24cm , so A

zr

= 1.66µ

W bm

and A

zb

= 1.734µ

W bm

A = 3.39µ

W bm

5

ee08.net.tc

(37)

CHAPTER 8 DRILLS

Please report to the following e-mail, if you find any mistake:

[email protected]

6

ee08.net.tc

Referensi

Dokumen terkait

It’s well and good to encrypt your data, but you also have to make sure that you really know who you are working with on the other end of the Internet... Chapter 8: Securing

New Equilibrium Following Shift in Demand When the demand curve shifts to the right, the market clears at a higher price P3 and a larger quantity Q3.. Figure 2.5 Chapter 2 The

8 Заместитель директора по воспитательной работе Алик Асель Рысбековна сениор-лектор +7 777 055 2552 e-mail: [email protected] кабинет: 2503 Заведующий кафедрой «Организация

Waters 2007 ‐ 2016 Chapter 2 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Cairns SD, Stone RP, Berntson EA, Pomponi SA 2017

Identitas Diri 1 Nama Lengkap dengan gelar 2 Jenis Kelamin 3 Jabatan Fungsional 4 NIP/NIK/Identitas lainnya 5 NIDN 6 Tempat dan Tanggal Lahir 7 E-mail 8 Nomor Telepon/HP 9 Alamat