Made by Zaeem Ahmad Varaich
Please inform if you find any error in any solution!
E E 0 8 . S O L U T I O N S
DRILL PROBLEMS : CHAPTER 2
D2.1
(a) R
AB= (5+6) a
x+ (8-4) a
y+ (-2-7) a
z= 11a
x+ 4a
y- 9a
z(b) R
AB= 11
2+ 4
2+ 9
2= 14.76 m
(c) F
BA=
−20 × 10−6 50 × 10−64𝜋 10 −9 36 𝜋 (14.762)
𝑎
𝑏𝑎= −0.0413
(−11𝑎𝑥− 4𝑎𝑦+ 9𝑎𝑧)14.76
= 30.78𝑎
𝑥+ 11.195𝑎
𝑦− 25.18𝑎
𝑧mN (d) F
BA=
4𝜋 ×8.854×10 −20 × 10−6 50 × 10−12(14.76−62)𝑎
𝑏𝑎= −0.04125
(−11𝑎𝑥− 4𝑎𝑦+ 9𝑎𝑧)14.76
= 30.74𝑎
𝑥+ 11.18𝑎
𝑦− 25.15𝑎
𝑧mN
D2.2
(a) 𝒓 − 𝒓
𝑨= −25𝑎
𝑥+ 30𝑎
𝑦− 15𝑎
𝑧, |𝒓 − 𝒓
𝑨| = 41.43 𝒓 − 𝒓
𝑩= 10𝑎
𝑥− 8𝑎
𝑦− 12𝑎
𝑧, |𝒓 − 𝒓
𝑩| = 17.54
𝑬
𝑨= −1.57
(−25𝑎𝑥+30𝑎41.43𝑦−15𝑎𝑧)= 9480𝑎
𝑥− 11300𝑎
𝑦+ 5600𝑎
𝑧𝑬
𝑩= 14.61
(10𝑎𝑥−8𝑎𝑦−12𝑎𝑧)17.54
= 83300𝑎
𝑥− 66600𝑎
𝑦− 99900𝑎
𝑧𝑬
𝑻= 𝑬
𝑨+ 𝑬
𝑩= 92.48𝑎
𝑥− 77.9𝑎
𝑦− 94.3𝑎
𝑧 𝑘𝑉𝑚
(b) 𝒓 − 𝒓
𝑨= −10𝑎
𝑥+ 50𝑎
𝑦+ 35𝑎
𝑧, |𝒓 − 𝒓
𝑨| = 61.84
𝒓 − 𝒓
𝑩= 25𝑎
𝑥+ 12𝑎
𝑦+ 38𝑎
𝑧, |𝒓 − 𝒓
𝑩| = 47.04 𝑬
𝑨= −7050
(−10𝑎𝑥+50𝑎𝑦+35𝑎𝑧)61.84
= 1140𝑎
𝑥− 5700𝑎
𝑦− 3990𝑎
𝑧𝑬
𝑩= 20300
(25𝑎𝑥+12𝑎47.04𝑦+38𝑎𝑧)= 10700𝑎
𝑥+ 5180𝑎
𝑦+ 16400𝑎
𝑧𝑬
𝑻= 𝑬
𝑨+ 𝑬
𝑩= 11.84𝑎
𝑥− 0.52𝑎
𝑦+ 12.41𝑎
𝑧 𝑘𝑉𝑚
D2.3
(a) Sum = 2 + 0 +
25
+ 0 +
217
+ 0 = 2.517 (b) Sum =
1.111.18
+
1.0122.62
+
1.00146.87
+
1.000189.44
= 0.1755
Made by Zaeem Ahmad Varaich
Please inform if you find any error in any solution!
E E 0 8 . S O L U T I O N S
D2.4
(a) 𝑄 =
𝑣𝑜𝑙𝜌
𝑣𝑑𝑣 =
−0.2−0.1 −0.2−0.1 −0.2−0.1𝑥3𝑦13𝑧3𝑑𝑥𝑑𝑦𝑑𝑧 +
1𝑥3𝑦3𝑧3
𝑑𝑥𝑑𝑦𝑑𝑧
0.2 0.1 0.2 0.1 0.2 0.1
= −
8 𝑥2 1−02−0.1 𝑦2−02−0.1 𝑧2−02−0.1
− −
18 𝑥20.10.2 𝑦20.10.2 𝑧20.10.2
=
8×(0.03) 1−
18×(0.03)
= 0 (b)
0𝜋 00.1𝜌
24 3𝑧
2sin 0.6𝜑 𝑑𝑧𝑑𝜌𝑑𝜑 = (−
cos 0.6𝜑0.6)
0 𝜋
(
𝜌44
)
0 0.1
(
𝑧33
)
2
4
= 1.018 𝑚𝐶
(c)
0∞ 02𝜋 02𝜋𝑒
−2𝑟sin 𝜃 𝑑𝜑 𝑑𝜃𝑑𝑟 = (−
𝑒−2𝑟2)
0
∞
(cos 𝜃)
02𝜋(𝜑)
02𝜋= −6.28 𝐶
D2.5
(a) E = 2 ×
2𝜋𝜀5×10−9𝑜(4)
𝒂
𝒛= 44.95
𝑉𝑚
(b) E
x=
5×10−92𝜋𝜀𝑜(5)
(3𝒂𝒚+4𝒂𝒛)
5
= 10.788𝒂
𝒚+ 14.384𝒂
𝒛 𝑉𝑚
, E
y=
5×10−92𝜋𝜀𝑜(4)
𝒂
𝒛= 22.4775 𝒂
𝒛 𝑉𝑚
E = E
x+ E
y= 10.788𝒂
𝒚+ 36.86𝒂
𝒛 𝑉𝑚
D2.6
i) Electric field due to 3 nC/m
2: E
1=
3×102𝜀 −9𝑜
𝒂
𝑵= 169.5 𝒂
𝒛ii) Electric field due to 6 nC/m
2: E
2=
6×102𝜀 −9𝑜
𝒂
𝑵= 338.8 𝒂
𝒛iii) Electric field due to -8 nC/m
2: E
3=
−8×10−92𝜀𝑜
𝒂
𝑵= −451.76 𝒂
𝒛According to the direction of point relative to normal:
(a) E = - E
1- E
2- E
3= −56.6 𝒂
𝒛 𝑉𝑚
(a) E = E
1- E
2- E
3= 283 𝒂
𝒛 𝑉𝑚
(a) E = E
1+ E
2- E
3= 961 𝒂
𝒛 𝑉𝑚
(a) E = E
1+ E
2+ E
3= 56.6 𝒂
𝒛 𝑉𝑚
Made by Zaeem Ahmad Varaich
Please inform if you find any error in any solution!
E E 0 8 . S O L U T I O N S
D2.7
(a)
𝐸𝑦𝐸𝑥
=
𝑑𝑦𝑑𝑥
→
4𝑥2𝑦2
×
𝑦8𝑥
=
𝑑𝑦𝑑𝑥
→ 𝑥𝑑𝑥 = − 2𝑦𝑑𝑦 → 𝑥
2+ 2𝑦
2= 𝑐 Put x = 1 and y = 2 to get 𝑐 = 33 giving: 𝒙
𝟐+ 𝟐𝒚
𝟐= 𝟑𝟑
(b)
𝐸𝐸𝑦𝑥
=
𝑑𝑦𝑑𝑥
→
𝑦 (5𝑥+1)𝑥
=
𝑑𝑦𝑑𝑥
→
15
×
5𝑥+1−15𝑥+1
𝑑𝑥 = 𝑦𝑑𝑦 → 0.4𝑥 − 0.08 ln 5𝑥 + 1 + 𝑐 = 𝑦
2Put x = 1 and y = 2 to get 𝑐 = 15.74 giving: 𝟎. 𝟒𝒙 − 𝟎. 𝟎𝟖 𝐥𝐧 𝟓𝒙 + 𝟏 + 𝟏𝟓. 𝟕𝟒 = 𝒚
𝟐Solved by Saad & Zaeem. Please report if you find any mistake!
E E 0 8 . S O L U T I O N S
DRILL PROBLEMS 3
D3.1
(a) Evaluate the triple volume integral to find the total volume enclosed by the portion of sphere / surface and then just multiply it with the given charge to find the total change within it:
𝑟 2 𝑠𝑖𝑛𝜃 𝑑𝜃𝑑𝜙𝑑𝑟 ×
𝜋 2
0 𝜋 2
0 0.26
0
𝑞 = 1
8 × 𝑞 = 7.5𝜇𝐶
(b) This surface encloses the whole charge q, so answer is 60 µC
(c) Only the upper half of the flux lines pass through the plane at z = 26 cm, so D = 0.5 x 60 = 30 µC
D3.2
(a) 𝐸 = 𝑘𝑄
𝑟
24𝑎
𝑥−6𝑎
𝑦+12𝑎
𝑧16+36+144 = 0.72𝑎 𝑥 − 1.08𝑎 𝑦 + 2.16𝑎 𝑧 𝑀𝑉
𝑚
𝑠𝑜, 𝐷 = 𝜀 𝑜 𝐸 = 6.38𝑎 𝑥 − 9.56𝑎 𝑦 + 19.125𝑎 𝑧 𝜇𝐶 𝑚 2
(b) 𝐸 = 20
2𝜋𝜀
𝑜.45
−3𝑎
𝑦+6𝑎
𝑧45 = −23.97𝑎 𝑦 + 47.94𝑎 𝑧 𝑀𝑉
𝑚
𝑠𝑜, 𝐷 = 𝜀 𝑜 𝐸 = −212𝑎 𝑦 + 424𝑎 𝑧 𝜇𝐶 𝑚 2
(c) 𝐸 = 120
2𝜀
𝑜𝑎 𝑧 = 60
𝜀
𝑜𝑎 𝑧 𝜇 𝑉
𝑚 , 𝑠𝑜 𝐷 = 𝜀 𝑜 𝐸 = 60𝑎 𝑧 𝜇𝐶
𝑚
2D3.3
(a) 𝐸 = 𝐷
𝜀
𝑜= 33.88𝑟 2 𝑎 𝑟 , so at P: 𝐸 = 33.88(2) 2 𝑎 𝑟 =135.5𝑎 𝑟
Solved by Saad & Zaeem. Please report if you find any mistake!
E E 0 8 . S O L U T I O N S
(b) 𝑄 =
𝐷. 𝑑𝑠 = 0 2𝜋 𝑎 0 𝜋 2 𝑠𝑖𝑛𝜃 𝑑𝜃𝑑𝜙𝑎 𝑟 × 0.3𝑟 2 𝑎 𝑟 = 24.3 −𝑐𝑜𝑠𝜃| 0 2𝜋 0 𝜋 𝑑𝜙 = 48.6 0 2𝜋 𝑑𝜙 = 305 . 208 𝑛𝐶
(c) On same steps: 𝑄 = 76.8 0 2𝜋 −𝑐𝑜𝑠𝜃| 0 𝜋 𝑑𝜙 = 964.608 μC
D3.4
(a) 𝑄 = 𝑄 1 + 𝑄 2 = 0.243 𝜇𝐶
(b) 𝑄 = 𝑙𝑒𝑛𝑔𝑡 × 𝜌 𝐿 = 31.4 𝜇𝐶
(c) Area = 𝑙𝑒𝑛𝑔𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒 (𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒) × 𝑤𝑖𝑑𝑡 𝑎𝑐𝑟𝑜𝑠𝑠 𝑧 = 10.53 × 10 So, 𝑄 = 𝑎𝑟𝑒𝑎 × 𝜌 𝐴 = 10.53 𝜇𝐶
D3.5
(a) 𝐷 = 0.25
4𝜋(0.005)
2= 795.77 𝜇𝐶
(b) 𝑄 2 = 4𝜋 0.01 2 × 𝜌 𝑠2 = 2.51 𝜇𝐶, 𝑠𝑜, 𝐷 = 0.25+2.51
4𝜋(0.015)
2= 977 𝜇𝐶
(c) 𝑄 3 = 4𝜋 0.018 2 × 𝜌 𝑠3 = −2.44 𝜇𝐶, 𝑠𝑜, 𝐷 = 0.25+2.51−2.44
4𝜋 (0.025)
2= 40.74 𝜇𝐶
(d) 𝐷 = 0.25+2.51−2.44+4𝜋 0.03
2×𝜌
𝑠4𝜋(0.035)
2= 0 , so 𝜌 𝑠4 = -28.29 𝜇𝐶
D3.6
(a) 𝜓 = 𝐷. 𝑑𝑠 = 16𝑥 1 3 0 2 2 𝑦𝑧 3 𝑑𝑥𝑑𝑦 = 16𝑥 1 3 0 2 2 𝑦. 8𝑑𝑥𝑑𝑦 = 1365 𝑝𝐶
10 10
10 3
𝑦 = 3𝑥
𝜌 𝑠2
𝜌 𝑠3
Solved by Saad & Zaeem. Please report if you find any mistake!
E E 0 8 . S O L U T I O N S
(b) 𝐸 = 𝐷
𝜀
𝑜𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑖𝑡 𝑎𝑡 𝑃
(c) 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 8 𝑎𝑡 𝑃 𝑎𝑛𝑑 ∆𝑉 = 10 −12 𝑚 3
D3.7
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑒 𝑓𝑜𝑟 div 𝐃 𝑖. 𝑒. 15, 16 & 17 𝑎𝑡 𝑡𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑃
D3.7
𝑇𝑎𝑘𝑒 div 𝐃 𝑎𝑠 𝑠𝑡𝑎𝑡𝑒𝑑 𝑏𝑦 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 ′ 𝑠1𝑠𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑔𝑒𝑡 𝑡𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝜌 𝑣 , 𝑤𝑖𝑡 𝑝𝑟𝑜𝑝𝑒𝑟 𝑡𝑟𝑖𝑔𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
D3.8 R.H.S:
∇. D = 12𝑠𝑖𝑛 𝜑
2 − 0.75𝑠𝑖𝑛 𝜑
2 = 11.25 𝑠𝑖𝑛 𝜑 2
11.25 𝑠𝑖𝑛 𝜑
2 𝜌𝑑𝑧𝑑𝜙𝑑𝜌 = 11.25 × 20 = 225
5
0 𝜋
0 2
0
L.H.S:
𝐷. 𝑑𝑠 = (𝑫) 𝜌=2 𝜌𝑑𝑧𝑑𝜑𝑎 𝜌
5
0 𝜋
0
+ (𝑫) 𝜑 =0 𝑑𝑧𝑑𝜌𝑎 𝜑
5
0 2
0
+ (𝑫) 𝜑 =𝜋 𝑑𝑧𝑑𝜌(−𝑎 𝜑 )
5
0 2
0
Now,
(𝑫) 𝜌=2 = 12𝑠𝑖𝑛 𝜑
2 𝑎 𝜌
Solved by Saad & Zaeem. Please report if you find any mistake!
E E 0 8 . S O L U T I O N S
𝑫 𝜑 =𝜋 𝑑𝑧𝑑𝜌𝑎 𝜑
5
0 2
0
= 0
𝑠𝑜, 𝐷. 𝑑𝑠 = 24 𝑠𝑖𝑛 𝜑
2 𝑑𝑧𝑑𝜑 + (𝑫) 𝜑 =0 𝑑𝑧𝑑𝜌𝑎 𝜑
5
0 2
0 5
0 𝜋
0
= 24 −2𝑐𝑜𝑠 𝜑
2 | 0 𝜋 × 𝑧 | 0 5 − 1.5
𝜌 2
2 | 0 2 × 𝑧 | 0 5
= −48 0 − 1 5 − 15
= 225
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Aqeel Anwar (aqeelanwar.co.cc) Digitized by Zaeem (ee08.net.tc)
Solved by Zaeem. Please report if you find any mistake!
E E 0 8 . S O L U T I O N S
DRILL PROBLEMS 5
D5.1
(a) At P:
ܬ= 10ሺ 3ሻ 2 ሺ 2ሻ ܽ ߩ െ4ሺ 3ሻ ܿ ݏ 2 ሺ 30ሻ ܽ ߮ = 180ܽ ߩ െ9ܽ ߮
(b) Using formula (2):
ܫ= න න 10ߩ 3 ݖ ܽ ߩ .݀ݖ ݀߶
2.8
2 2ߨ
0
ܽ ߩ = 27 න න 10ݖ ݀ݖ ݀߶
2.8
2 2ߨ
0
= 27 ቆ ݖ 2
2 ቇ| 2 2.8 ሺ ߶ሻ | 0 2ߨ
= 325.72 ݉ܣ ࢘ 3.25 ܣ
D5.2
(a) Using formula (2):
ܫ= െන න 10 6 ݖ 1.5 ܽ ݖ .ߩ݀ߩ݀߶
20ߤ
0 2ߨ
0
ܽ ݖ = െන න 10 6 ሺ 0.1ሻ 1.5 ߩ݀ߩ݀߶
20ߤ
0 2ߨ
0
= െ10 6 ሺ 0.1ሻ 1.5 ቆ ߩ 2
2 ቇ| 0 20ߤ ሺ ߶ሻ | 0 2ߨ = െ39.7ߤܣ
(b) Using formula (3):
ߩ ݒ = ܬ ݖ
ݒ ݖ = െ10 6 ሺ 0.1ሻ 1.5
2 × 10 6 = െ15.81 ݉ܥ
݉ 3
(c) Same formula:
ݒ ݖ = ܬ ݖ
ߩ ݒ = െ10 6 ሺ 0.15ሻ 1.5
െ2000 = 29.04 ݉
ݏ
Solved by Zaeem. Please report if you find any mistake!
E E 0 8 . S O L U T I O N S
D5.5
(a) Putting point P in given V, while evaluating trigonome tric functions using radians:
ܸ= 48.848 ܸ
(b) Using formula:
ࡱ= െ݃ݎ ܽ݀ ܸ= െ100 coshሺ 5ݔሻ.5 sinሺ 5ݕሻܽ
ݔെ100 sinhሺ 5ݔሻ5 cosሺ 5ݕሻܽ
ݕAt P: E = െ474.43ܽ
ݔെ140.77ܽ
ݕܸ
݉
(c) ȁ E ȁ= ඥ 474.43
2+ 140.77
2= 494.87 ݉ ܸ
(d) ɏ
s= ܦ
ܰ= ȁ ࡰ
ࡼȁ , so as ࡰ
ࡼ= ߝ
E= െ4.2ܽ
ݔെ1.246ܽ
ݕ݉ ݊ܥ
2, so ɏ
s= ȁ ࡰ
ࡼȁ = 4.38 ݉ ݊ܥ
2D5.6
(a) For original line charge, with ߩ
ܮ= 40
݊ܥ݉
ܸ= െනܧ.݈݀ ,
ܽݏ ܧ= ߩ
ܮ2ߨߝ
ߩ ܽ
ߩ, ݏ ܸ= െ ߩ
ܮ2ߨߝ
න ܽ
ߩߩ ݈݀
(7,െ1,5)
4
ܽ
ߩߩ = ሺ ݔെ6ሻ ܽ
ݔ+ (ݕെ3)ܽ
ݕ(ݔെ6)
2+ (ݕെ3)
2ܽݏ , ݈݀= ݀ݔ ܽ݊݀ ݕ= െ1,ݏ :
ܸ= െ720 න ሺ ݔെ6ሻ
(ݔെ6)
2+ 16 ݀ݔ= െ360 ݈ ݊ȁ (ݔെ6)
2+ 16ȁ
477
4
= 58.50 ܸ
For mirror line charge, with ߩ
ܮ= െ40
݊ܥ݉
ܸ= െනܧ.݈݀ ,
ܽݏ ܧ= ߩ
ܮ2ߨߝ
ߩ ܽ
ߩ, ݏ ܸ= െ ߩ
ܮ2ߨߝ
න ܽ
ߩߩ ݈݀
(7,െ1,5)
4
1
CHAPTER 7 DRILLS
Solved by
Zaeem A. Varaich
www.ee08.net.tcD7.1
(a)V|P(1,2,3)
=
4(2)(3)(1)2+1= 12
VAs,
ρv=
−∇2V,so we first calculate
∇2V:
∇V
=
−8(xyzx2+1)2+
x24z+1+
x24y+1⇒ ∇2V
= 32
(xyzx2+1)23 −8
(x2yz+1)2⇒ ∇2V|P(1,2,3)
= 12;
so,
ρv=
−∇2V=
−o(12) =
−106.25mpC3(b)V|P(3,π
3,2)
=
−22.5VAs,
ρv=
−∇2V,so we first calculate
∇2V:
∇2V
= 20 cos (2
φ)−20 cos (2
φ)⇒ ∇2V|P(3,π3,2)
= 0;
so,
ρv=
−∇2V=
−o(0) = 0
pCm3(c) V|P(0.5,45o,60o)
= 4
VAs,
ρv=
−∇2V,so we first calculate
∇2V:
∇2V
= 4
cos(φ)r4 −2
r4(sin(θ))cos(φ) 2⇒ ∇2V|P(0.5,45o,60o)
= 0;
so,
ρv=
−∇2V=
−o(0) = 0
pCm3D7.2
Apply the formulae & concepts to find the answers!
2
D7.3
(a)
The solution to Laplace’s equation
1ρ∂ρ∂ ρ∂ρ∂= 0 is:
V
=
Aln
ρ+
BPutting the given values of
V&
ρand solving the simultaneous equations, we get:
A
=
−73.9 &B= 101.28
so,
V=
−73.9 lnρ+ 101.28
Now,
E=
−∇V=
1ρ(73.9)
aρ=
√110
(73.9)
aρ= 23.36
aφ(
∵ρ=
√3
2+ 1
2)
so,
|E|= 23.36
mV(b)
The solution to Laplace’s equation
ρ12∂2V
∂φ2
= 0 is:
V
=
Aφ+
BPutting the given values of
V&
φand solving the simultaneous equations, we get:
A
=
−85.9 &B= 64.9
so,
V=
−85.9φ+ 64.9
Now,
E=
−∇V=
1ρ(85.9)
aφ=
√110
(85.9)
aφ= 27.16
aφ(
∵ρ=
√3
2+ 1
2) so,
|E|= 27.16
mVD7.4 & D7.5
Not included in the course!
3
D7.6
The solution to this problem depends on how you proceed in each iteration and on your initial estimate.
The dotted lines show how the initial estimate was found.
(a)
20.8
V(b)
44.47
V(c)
89.8
V1
CHAPTER 8 DRILLS
(Upto D8.3)
Solved by
Zaeem A. Varaich
www.ee08.net.tcD8.1
(a)
Using ∆- form of equation (2), i.e.
∆H
2=
I1∆L4πR1×a2R12 12Here,
aR12=
(4−0)ax√+(2−0)a42+22+2y+(0−2)a2 z= 0.816a
x+ 0.408a
y−0.408a
zR212
= 4
2+ 2
2+ 2
2= 24 so, ∆H
2=
I1∆L4πR1×a2R1212
=
2πaz×(0.816ax301.59+0.408ay−0.408az)µ=
5.12a301.59y−2.56axµ=
−8.5ax+ 17.0a
ynA m(b)
As, ∆H
2=
I1∆L4πR1×a2 R12 12Here,
aR12=
(4−0)ax√+(2−2)ay+(3−0)az42+02+32
= 0.8a
x+ 0.6a
z R212= 4
2+ 0
2+ 3
2= 25
so, ∆H
2=
I1∆L4πR1×a2R1212
=
2πaz×(0.8a100πx+0.6az)µ=
5.02a100πyµ= 16a
ynAm(c)
As, ∆H
2=
I1∆L4πR1×a2 R12 12Here,
aR12=
(−3−1)ax√+(−1−2)ay+(2−3)az42+32+12
=
−0.78ax−0.58a
z−0.19a
zR212
= 4
2+ 3
2+ 1
2= 26 so, ∆H
2=
I1∆L4πR1×a2R1212
=
2π(−ax+ay+2az)×(−0.78a104π x−0.58az−0.19az)µ=
(1.96ax−3.53104πay+2.74az)πµ⇒
∆H
2= 18.85
ax−33.94
ay+ 26.40
aznA m2
D8.2
Using,
H2
=
2πρI aφ (a)For
PA(
√20, 0, 4), we have
ρ=
√20 + 0 = 4.47, so:
H2
=
2π(415.47)aφ=
0.533aφ= (0.533
× −sin
φ)ax+ (0
.533×cos
φ)ay, where
φ= tan
−1 yx= tan
−1√0 20
= 0
o, so
H2= 0.533a
y Am
(b)
For
PB(2,
−4,4), we have
ρ=
√2
2+ 4
2= 4.47, so:
H2
=
2π(415.47)aφ=
0.533aφ= (0.533
× −sin
φ)ax+ (0
.533×cos
φ)ay, where
φ= tan
−1 yx= tan
−1 −42=
−63.43o, so
H2
= (0
.533×0.89)ax+ (0
.533×0.44)ay= 0.474a
x+ 0.238a
yD8.3
(a)
For infinitely long filament;
H
=
2πρI aφHere,
ρ=
p(0.1)
2+ (0.1)
2=
√2 10
H
=
2πρI aφ=
(2.5)2π(
√ 2
10)aφ
= 2.8134a
φ= (2
.8134× −sin
φ)ax+ (2
.8134×cos
φ)ayNow,
φ= 270
o−θ= 270
o−tan
−1 0.10.1= 270
o−45
o= 225
o,
so,
H= (2
.8134×0.707)ax+ (2
.8134× −0.707)a
y= 1.989a
x−1.989a
y A m3
(b)
For
ρ < a,H
=
2πaIρ2aφ=
(2.5)(0.2)2π(0.3)2aφ= 0.884a
φ= (0.884× − sin
φ)ax+ (0
.884×cos
φ)ayNow,
φ= tan
−1 xy= tan
−1 0.20= 90
o,
so,
H=
−0.884ax A m(c)
Now,
H1
=
12K1×aN=
12(2.7)a
x×ay= 1.35a
zH2
=
12K2×aN=
12(−1.4)a
x×ay=
−0.7azH3
=
12K3×aN=
12(−1.3)a
x× −ay= 0.65a
zso,
H=
H1+
H2+
H3= 1.300a
zmACHAPTER 8 DRILLS
CHAPTER 8 DRILLS
(D8.4
onwards)Solved by
Zaeem A. Varaich www.ee08.net.tc
D8.4
(a) For path 1:
´
(3za
x−2x
3a
z).(dxa
x+ dya
y+dza
z) =
´42
(3zdx) = 3(4)(4
−2) = 24 A For path 2:
´
(3za
x−2x
3a
z).(dxa
x+ dya
y+dza
z) =
´14
(−2x
3dz) =
−2(43)(1
−4) = 384 A For path 3:
´
(3za
x−2x
3a
z).(dxa
x+ dya
y+dza
z) =
´24
(3zdx) = 3(1)(2
−4) =
−6A For path 4:
´
(3za
x−2x
3a
z).(dxa
x+ dya
y+dza
z) =
´41
(−2x
3dz) =
−2(23)(4
−1) =
−48A So,
¸H.dL = 24 + 384
−6
−48 = 354 A
(b)
4SN= 3
×2 = 6 m
2, so (∇ × H)
y=
¸H.dL
4SN
=
3546= 59
mA2(c) (∇ × H) =
a
xa
ya
z∂
∂x
∂
∂y
∂
∂z
H
xH
yH
z
=
a
xa
ya
z∂
∂x
∂
∂y
∂
∂z
3z 0
−2x3= (0
−0)a
x−(−6x2−3)a
y+(0
−0)a
z= (6x
2+ 3)a
yAt the center, x = 3, z = 2.5, so (∇ × H)
y= [6(3)
2+ 3]=57
mA21
ee08.net.tcCHAPTER 8 DRILLS
D8.5
(a) J =
∇ ×H =
a
xa
ya
z∂
∂x
∂
∂y
∂
∂z
H
xH
yH
z=
a
xa
ya
z∂
∂x
∂
∂y
∂
∂z
0 x
2z
−y2x
= (−2yx
−x
2)a
x−(−y2−0)a
y+(2xz
−0)a
zAt P: J =
−16ax+9a
y+16a
z A m(b) J =
∇ ×H =
1 ρ
∂Hz
∂φ −∂H∂zφ
a
ρ+
∂Hρ
∂z −∂H∂ρz
a
φ+
1 ρ
∂(ρHφ)
∂ρ −1ρ∂H∂φρ
a
z=
1 ρ
.0
−0
a
ρ+ (0
−0) a
φ+
1
ρ
.(2 cos 0.2φ)
−1ρ2ρ(−0.2) sin 0.2φ a
zAt P: J =0.055a
zmA2(c) Using equation (26):
=
rsin1 θ(0
−0) a
r+
1r(0
−0) a
θ+
1r ∂r∂ sinθr −0
a
φ=
rsinθ1a
φAt P: J =a
φ mA2D8.6
(a)
¸H.dL : For path 1:
´
(6xya
x−3y
2a
y).(dxa
x+ dya
y+dza
z) =
´52
(6xydx) = 6(−1)
(52−22 2)=
−63A For path 2:
´
(6xya
x−3y
2a
y).(dxa
x+ dya
y+dza
z) =
´1−1
(−3y
2dy) =
−3(13+13 3)=
−2A For path 3:
´
(6xya
x−3y
2a
y).(dxa
x+ dya
y+dza
z) =
´25
(6xydx) = 6(1)
(22−52 2)=
−63A For path 4:
´
(6xya
x−3y
2a
y).(dxa
x+ dya
y+dza
z) =
´−11
(−3y
2dy) =
−3(−133−13)= 2 A So,
¸H.dL =
−63−2
−63 + 2 =
−126A (b) Now,
´S
(∇ × H).dS :
(∇ × H) =
a
xa
ya
z∂
∂x
∂
∂y
∂
∂z
H
xH
yH
z=
a
xa
ya
z∂
∂x
∂
∂y
∂
∂z
6xy
−3y20
= (0
−0)a
x−(0
−0)a
y+ (0
−6x)a
z=
−6xaz(∇ × H).dS =(−6xa
z)(dydza
x+ dxdza
y+ dxdya
z) =
−6x dxdy,´
(∇ × H).dS =
−6´ ´x dxdy =
−6x2 2
5 2
y|
1−1=
−6(25−4)2(1 + 1) =
−126A
D8.7
(a) H
φ=
2πaIρ2=
(20)(0.5m)2π(1m)2= 1592
mA(b) B
φ= µ
oH
φ= 4π
×10
−7 (20)(02π(1m).8m)2= 3.2 mT
2
ee08.net.tcCHAPTER 8 DRILLS
(c) φ =
´S
B.dS =
´d 0´a 0
Iρ
2πa2
dρdz =
2πaIµO2d
ρ22a 0
, so
φ
d
= 4π
×10
−7 (20)4π= 2 µ
W bm(d) φ =
´S
B.dS =
´d 0´0.5m 0
Iρ
2πa2
dρdz =
2π(1m)Iµo 2d
ρ220.5m 0
, so φ = 4π
×10
−7 (20)4π(1m)d(0.5m)2 2= 0.5d µ
W bm(e) φ =
´S
B.dS =
´d 0´∞ 0
Iρ
2πa2
dρdz =
2π(1m)Iµod2ρ2 2
∞ 0
, so φ = 4π
×10
−7 (20)4π(1m)d(∞)22=
∞W bmD8.8
(a) H =
2πρIa
φ, so first we find I:
I =
´KdN =
´2π0
(2.4)(ρdφ) = 18.09 A H =
18.092πρa
φ=
2.88ρa
φ(b) H =
−∇Vm, so
∇Vm
=
−(1.5)2.88a
φ=
−1.92aφ1 ρ
∂Vm
∂φ
=
−1.92⇒V
m=
−2.88´0.6π0
dφ =
−5.43V(c) Proceeding similar as above:
⇒
V
m=
−2.88´0.6π2π
dφ =
−2.88(0.6−2)π = 12.66V (d) Similarly,
⇒
V
m=
−2.88´0.6ππ
dφ =
−2.88(0.6−1)π = 3.62V (e) Similarly,
⇒
V
m=
h−2.88´π
−0.6π
dφ
i+ 5 =
−14.47 + 5 =−9.47VD8.9
We know that, B = µ
oH
For solid conductor along z-axis:
H =
2πaIρ2a
φ, so B = µ
o Iρ2πa2
a
φAlso, B =
∇ ×A
Comparing both sides’ a
φcomponents:
µ
o Iρ2πa2
=
−∂A∂ρz⇒A
z=
−´µ
o Iρ2πa2
dρ +
CFrom given conditions, at ρ = a for A
z:
3
ee08.net.tcCHAPTER 8 DRILLS
C =
´µ
o Iρ2πa2
dρ + µ
oIln52πa2
= µ
o Iρ2 4πa2
a
0
+ µ
oIln52πa2
= 4.218
×10
−7Now,
A
z=
−µo Iρ24πa2
+ (4.39
×10
−7) =
h−10−7ρa22
+ (4.218
×10
−7)
iI
(a) At ρ = 0 A = 0.4218I a
zµ
Wbm(b) At ρ = 0.25a A = 0.415I a
zµ
Wbm(c) At ρ = 0.75a A = 0.365I a
zµ
Wbm(d) At ρ = a A = 0.3217I a
zµ
WbmD8.10
Using Eq. (66) with b = 4cm:
A
z=
µ2πoIln
bρFor red conductor:
A
zr= 2.4 ln
4cmρ1
µ
W bmFor black conductor:
A
zb=
−2.4 ln4cmρ2
µ
W bmAlso,
A = A
zr+ A
zb(a) ρ
1= 4cm = ρ
2, so A
zr=
−AzbA = 0
W bm(b) ρ
1= 4cm and ρ
2= 12cm , so A
zb= 2.63µ
W bmand A
zr= 0µ
W bm4
ee08.net.tcCHAPTER 8 DRILLS
A = 2.63µ
W bm(c) ρ
1= 4cm and ρ
2=
√8
2+ 4
2= 8.94cm , so A
zr= 0µ
W bmand A
zb= 1.93µ
W bmA = 1.93µ
W bm(d) ρ
1= 2cm and ρ
2=
√8
2+ 2
2= 8.24cm , so A
zr= 1.66µ
W bmand A
zb= 1.734µ
W bmA = 3.39µ
W bm5
ee08.net.tcCHAPTER 8 DRILLS
Please report to the following e-mail, if you find any mistake: