FINITE ELEMENT METHOD
Kartika yulianti
Jurusan Pendidikan Matematika
FPMIPA – UPI
Pendahuluan
Mencari sehingga u ( u ) 0 , : operator differensial Tujuan :
1 N
j j j=
u(x) u(x) = a Alat :
Finite Element Method ??
Aproksimasi
crit £
u { u u M & u S }, S M
1 N
j j
j
u( x ) a
1
) (
j
j
aj
x u
crit
u £ u u M , M = u(x) x a,b
1
xj xj xj 1
j x
y
Basis:
) , ( ,
1
) , ( ,
0 )
(
1 1
1 1
j j j
j j
j x x x
h x x
x x x x
u
x y
a b
u1 u2 u3
N N
j
j j
N a a a
S 1,...,
1
N
N
u
a
u a
u a
2 2
1 1
Cara 1.
1
1 2
£
£ £
£
£ crit
N
j j j
b
x a
N
u crit{ u u M }
u x u x a x
u u
u F u, u, x dx
u L( a ) L( a ,a ,...,a ) L a
0 u
Review
u u
u
0
£
?
£
crit
1
crit
0
0
0
j
N
L( a ) L( a )
a
L( a ) a
L( a ) a
a
L 0
a
u
£ £ £
j0
j j j
u( a )
L( a ) u
u , u ,
a a a
Cara 2: Ritz-galerkin
1
1
0
0
0 1
N
j j j
N
j j k
j
( u )
( u ) a
a , , k ,...,N
Contoh
a Q a
a P a
L jk k
.
) (
2x
u x, u' 0 0 , u 1 1
N
j j j=1
u = a
Misal
2
2
2
1 2 1 2
x
1 0 x
N N
1
x j j j j
0 j=1 j=1
u + x = 0
£(u) = - u + xu dx
£(u) = - ∂ a + x a dx
Cara 1
1
0 1
0
dx x
Q
dx P
k k
k x j x jk
0 0
)
( a P
jka Q
kL
Cara 2
2 1
, 0
N
x j j k
j
a x
1 2 0 1
0
N
x j j k k
j
a x dx
1 1
1 0 1
0 0
N N
j x k k j x j x k k
j j
a a x dx
xu 0( ) 0 dan j( )1 0 untuk j, 0 1, ,...,N 1
1 N
j x j x k k
0 j 1
a x dx 0 , k = 1, 2, …, N-1 dan u
~ ( 1 ) 1
k
0
jk
a Q
P
0 0.2 0.4 0.6 0.8 1 x
1
y
0
1 X 0 X 1
0
1 (1 )
)
~(X Xa X a
u
a h a x
xu
)1 (
)
~(
0 1
x h X X
x
) 1 (
1 ) (
1
) 0
1 ( )
~(X X a Xa
u
a h a x
xu
)1 (
)
~(
1 0
x h X X
x
) 1 (
1 ) (
V-1 V1
j h 0
(j+1)h 1 (j-1)h
-1
V2 V-2
x:
X:
V-1= 1 + X V1= 1 –X V-2= -X V2= X
h k X x
Basis :
) , ( ,
1
) , ( ,
0 ) (
1 1
1 1
j j j
j j
j x x x
h x x
x x x x
1
1
1
0 1
1
1
1 1
( ) ( )
( )
1 ( )
1 2
j
j
N x
j x j x k x x k
j x
j
j j j
a dx u x x dx
d X
du X dX
h dX dX
a a a
h
j h dX
j X X dX
j X X h
dx x x
j
j j
j j
2 1
1 2 1
0
) )(
1 ( )
)(
1 ( )
(
untuk
j = 1, 2, …, N-10 untuk 6 ,
1
1 2
1 a h j
h aj j
2 1
1 2
1 ) 1 (
6
1 0 0 0
0 0
1 2
1 0
0 0
0 0 0 1 2
1
0 0 0 0
1 1
1
h h N
h h
a a
a a
h
N N
o
Matriks discretisasi:
Solusi eksak 6 7 6
) 1
(x x3 u
TERIMA KASIH