Teacher Training and Education Faculty 6/18/24 M. Masykuri_Phisical Chemistry 21
Hukum RAOULT &
Hukum HENRY
Dr. M. Masykuri, M.Si.
Chemistry Education Study Program Teacher Training and Education Faculty Sebelas Maret University (UNS)
Website: http://masykuri.staff.fkip.uns.ac.id,
Kimia Fisika 2
Salah satu tempat terdingin di dunia di Vostok,
Antartika, suhu bisa
mencapai -60
oC
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Larutan Ideal
Larutan ideal adalah larutan dimana interaksi antara
molekul individual kedua komponen sama dengan interaksi antara molekul dalam tiap komponen. Contohnya:
1. hexana dan heptana
2. benzena dan methylbenzena 3. Propan-1-ol dan propan-2-ol
Dua hukum yang dipakai untuk larutan ideal:
Hukum Raoult
Hukum Henry
Hukum Raoult
Francois M. Raoult (1830-1901)
Hukum Raoult adalah hukum yang dicetuskan oleh Francois M. van Raoult untuk mempelajari sifat-sifat tekanan uap larutan.
Raoult lahir di Fournes, Perancis pada 10 Mei 1830. Ia menjadi guru kimia di Sens-lycée pada tahun 1862. Di sana ia menyiapkan tesis tentang gaya gerak listrik membuatnya mendapat gelar doktor di Paris pada tahun berikutnya.
Hukum Raoult didefinisikan:
Pada kesetimbangan, tekanan uap dari satu komponen adalah berbanding lurus dengan fraksi mol komponen tersebut dalam fasa cair
Hukum Raoult didefinisikan:
Pada kesetimbangan, tekanan uap dari satu komponen adalah berbanding lurus dengan fraksi mol komponen tersebut dalam
fasa cair *
A A A
p x p
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Hukum Raoult
• Ideal solutions
Let’s consider vapour (treated as perfect gas) above the solution. At equilibrium the chemical potential of a substance in vapour phase must be equal to its potential in the liquid phase
For pure substance:
In solution:
Raoult’s law:
Mixtures obeying Raoult’s law called ideal solutions Francouis Raoult experimentally found that:
P = P
A+ P
BP
B= X
BP
*BP
A= X
AP
*A* 0
ln
*A A
RT p
A
0
ln
A A
RT p
A
*
ln
AA A
RT p
p
*
A A A
p x p
*
ln
A A
RT x
A
Hukum Raoult
rate of condensation
rate of evaporation
• Molecular interpretation of Raoult’s law
' A A
k p kx
*
'
and in case of pure liquid ( 1):
'
A A
A A
p k x k
x p k
k
*
A A A
p x p
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Hukum Raoult
Similar liquid Dissimilar liquid often
show strong deviation
Hukum Henry
• Ideal-dilute solutions: Henry’s law
empirical constant
In a dilute solution the molecule of solvent are in an environment similar to a pure liquid while molecules of solute are not!
A A A
p x K
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Chemical potential of liquid
• Using Henry’s law
Example: Estimate molar solubility of oxygen in water at 25
0C at a partial pressure of 21 kPa.
molality
A A A
p x K
4 -1
4 -1
21kPa
2.9 10 mol kg 7.9 10 kPa kg mol
A A
A
x p
K
2 H O
2[O ] x A 0.29 mM
Liquid mixtures
• Ideal solutions
If Raoult’s law applied to we have:
From molecular prospective it means that interactions of A-A, A-B, and B-B are the same.
( ln ln )
mix
G nRT
Ap
A
Bp
B
( ln ln )
( ln ln )
0
mix A A B B
mix A A B B
mix mix mix
G nRT x x x x S nR x x x x
H G T S
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Colligative properties
• Elevation of boiling point
• Depression of freezing point
• Osmotic pressure phenomenon
All stem from lowering of the chemical potential of the solvent due to presence of solute (even in ideal solution!)
Larger
Colligative properties
• Elevation of boiling point
For pure liquid:
(Here we neglect temperature dependence)
*
( )
*( ) ln
A
g
Al RT
A
*
( )
*( )
ln(1
B)
Al
Ag G
vapRT RT
vap vap vap
G H T S
ln1 H
vap*S
vapRT R
1 1
( )
vap vap
H H T
* *
1 1
ln(1
B) H
vap( ) RT T T
RT
*2T
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Colligative properties
• Depression of freezing point
Cryoscopic constant
Can be used to measure molar mass of a solute
*
( )
*( ) ln
A
s
Al RT
A
*2 B vap
T RT
H
f B
T K
Colligative properties
• Solubility
*
( )
*( ) ln
B
s
Bl RT
B
*
( )
*( )
ln
B Bs
Bl G
fusRT RT
fus fus fus
G H T S
*
1 1
ln
BH
fus( ) R T T
( )
** 0
fus fus fus
G T H T S
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Colligative properties: Osmosis
• Osmosis – spontaneous passage of pure solvent into solution separated by semipermeable membrane
Van’t Hoff equation: [ ] B RT , [ ] B n V B /
Osmosis
For dilute solution:
More generally:
Van’t Hoff equation:
*
( )
*( ) ln
A
p
Ap RT
A
*
( )
*( )
p
A A m
p
p p V dp
RT
B V
m B/
An n V n /
A[ ] B RT (1 b B [ ] ...)
[ ] B RT , [ ] B n V B /
dG SdT Vdp
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Osmosis: Examples
• Calculate osmotic pressure exhibited by 0.1M solutions of mannitol and NaCl.
Mannitol (C
6H
8(OH)
6) [ ] B RT , [ ] B n V
B/
Osmosis: Examples
Isotonic conditions
Hypotonic conditions:
cells burst and dye haemolysis (for blood)
Internal osmotic pressure keeps the cell “inflated”
Hypertonic conditions:
cells dry and dye De cre asi ng sa lt
co nc en tra tio n
Incre asin
g salt
conc entra tion
Teacher Training and Education Faculty M. Masykuri_Phisical Chemistry 2
Application of Osmosis
• Using osmometry to determine molar mass of a macromolecule
Osmotic pressure is measured at a series of mass concentrations c and a plot of vs. c is used to determine molar mass.
/ c
[ ] B RT (1 b B [ ] ...)
gh c M /
2 ...
h RT bRT
c gM gM c
Sekian