Materi 2: Program S-1 Statistika, ITS, Surabaya
P ERTEMUAN 3:
E KONOMETRIKA
P ROGRAM S TUDI S -1 S TATISTIKA ITS S URABAYA
A NALISIS
“ R EGRESI”
ITS, Surabaya, 15 September 2015
B AHASAN
2
Materi 2: Program S-1 Statistika, ITS, Surabaya
1. K ORELASI
2. A NALISIS R EGRESI
3. E STIMASI R EGRESI (OLS, ML, MM)
4. S TANDAR E RROR OLS
5. A SUMSI DALAM R EGRESI
6. K OEFISIEN D ETERMINASI
K ORELASI
3
Materi 2: Program S-1 Statistika, ITS, Surabaya
1. H UBUN GAN 1 A RAH (X Y), Y X
BBM naik Inflasi naik;
Anggaran kes. N aik orang sakit naik 2. H UBUN GAN DUA ARAH (X Y), Y X
Jumlah barang naik harga turun H arga naik jumlah barang turun 3. H UB. T AK LAN GSUN G (X Y)
Z
harga BBM Investasi (ada perantara biaya produksi)
4. T IM E S ERIES ( Y T- Y T-1)
K ORELASI
4
Materi 2: Program S-1 Statistika, ITS, Surabaya
1 r 0
r r 0.1
0.5 r
0.3 r
0.85 r
13 23
12 13 23
12.3 2 2
.
1 1
r r r
r r r
Materi 2: Program S-1 Statistika, ITS, Surabaya
K ORELASI
Department of Statistics, ITS Surabaya Slide-6
Types of Relationships
Y
X Y
X
Y Y
X
X Linear relationships Curvilinear relationships
Department of Statistics, ITS Surabaya Slide-7
Types of Relationships
Y
X Y
X
Y Y
X
X Strong relationships Weak relationships
(continued)
n
i i n
i i
n
i i i xy
n xy
i i n
i i n
i
i i
xy
y n y x
n x
y x n y x r
r y
y x
x
y y x x r
1
2 2 1
2 2
1
1
2 1
2
1 ; -1 1
Materi 2: Program S-1 Statistika, ITS, Surabaya
R EGRESI P OPULASI DAN S AMPEL
0 1
i i i
Y X
Model Jumlah Permintaan dan Harga Populasi
- Y
- 0 X
( ) ? i
E Y Y i E Y ( ) i i
0 1
( )
i iE Y X
0
1Materi 2: Program S-1 Statistika, ITS, Surabaya
R EGRESI P OPULASI DAN S AMPEL
0 1
ˆ ˆ
ˆ i i
Y X
Model Jumlah Permintaan dan Harga
-
Sampel
-
Y
-
0 Xi
X
( ) ? i
E Y Y i Y ˆ i ˆ i
0 1
( )
i iE Y X A
( )
iE Y
0 1ˆ ˆ
ˆ
i iY X
ˆ
iY ˆ
ie e
iY i
Sampel populasi
Hasil estimasi Sampel sebelah kiri A
overestimate,
Sebelah kanan A under
estimate
Materi 2: Program S-1 Statistika, ITS, Surabaya
E STIMASI R EGRESI OLS
Y
10 1
ˆ ˆ
ˆ
i iY X
ˆ
1e
Y
0 X1 X2 X3 X4 X5
Y
2 3Y
Y
5Y
4ˆ
2e
ˆ
3e
ˆ
4e
ˆ
5e
Materi 2: Program S-1 Statistika, ITS, Surabaya
E STIMASI R EGRESI OLS
0 1
ˆ ˆ
ˆ
i iY X
Y
0 Xi
var iasi Total=( Y Y
i )
Y
iˆ
ivar residual e iasi
var iasi regresi=( Y Y ˆ
i )
Y
E STIMASI OLS
Bentuk matriks
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 1
ˆ ?
n i i
e
ˆ 0 ??
ˆ 1 ??
2 1
1
ˆ
0
2 2 0
( )
n i i
e
T TT T T T T T
T T
T T
T T
S ε ε (Y - Xβ) (Y - Xβ) S = 0
β
Y Y Y Xβ β X Y β X Xβ β
X Y X Xβ
X Xβ X Y
β X X X Y
E STIMATOR OLS BLUE
Catatan :
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 2 2 2
2 2 2 2 2
1. 1 ;
2. ( ) 0
3. ( ) 2
2
4. ( )( )
5. ( )
6. ( )
i i
i i i
i i i i
i i
i i i i i i
i i i i i i i i i
i i i i i i i i i
X X X nX
n
x X X X nX nX nX
x X X X X X nX
X nX nX X nX
x y X X Y Y X Y nXY
x y x Y Y x Y Y x x Y
x y y X X y X X y y X
E STIMATOR OLS BLUE
BLUE= Best Linear Unbiased Estimator
1. Linear , b1 linear terhadap var Y
Materi 2: Program S-1 Statistika, ITS, Surabaya
1 2 2
2
ˆ
; ( )
i i i i
i i
i
i i
i
x y x Y
x x
w Y w x
x
0 1
ˆ ˆ (1/ )
[(1/ ) ]
i i i
i i i i
Y X n Y X wY n Xw Y k Y
E STIMATOR OLS BLUE
2. Unbiased, nilai harapan sama dengan nilai sebenarnya
Materi 2: Program S-1 Statistika, ITS, Surabaya
1 2 0 1
0 1
1
ˆ ( )
? ( ˆ ) ?
i i
i i i i i
i
i i i i i
x Y w Y w X
x
w w X w
E
0 0 1
0 1
0 0
ˆ [(1/ ) ] [(1/ ) ]( )
[(1/ ) ] [(1/ ) ] [(1/ ) ]
[(1/ ) ] ( ) ˆ
i i i i i
i i i i i
i i
n Xw Y n Xw X
n Xw n Xw X n Xw
n Xw E
ˆ
1E
=
= 1
0
E STIMATOR OLS BLUE
3. Best (Var Minimum)
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 2
1 1 1 1 1
1 1 1 1
2 1
2 2 2 2 2 2
1 1 2 2 1 2 1 2 1 1
2 2
1 1 1
2 2
1
ˆ ˆ ˆ ˆ
var( ) [ ( )] [ ]
ˆ ˆ
var( ˆ ) [ ]
[ ... 2 ... 2 ]
[ 2 ],
[ ] 2
i i i i
i i
n n n n n n
n n n
i i i j i j
i i j
n
i i i j
i
E E E
ingat w e w e
E w e
E w e w e w e w w e e w w e e
E w e w w e e i j
w E e w w
1 12
2
2 2 2 2 1 2
2 2 2
1 1 1 1
1 1
2 2
0 2
[ ]
2 (0)
( )
var( ˆ )
n n
i j
i j
n
n n n n i
i
i i j i n n
i i j i
i i
i i
i i
E e e
x
w w w w
x x
X
n x
E STIMATOR OLS BLUE
3. Best (Var Minimum)
Materi 2: Program S-1 Statistika, ITS, Surabaya 1
1
1
* 1
*
0 1
0 1
*
1
ˆ vs ˆ ; =
ˆ = ( )
( )( )
( ) ( )
( )
?, 0, 1
( ˆ )
i i i i i i i
i i i i i
i i i i
i i i i i
i i i
i i i
w Y c Y c w k
c Y w k Y
w k X e
w k w k X
w k e
ingat w w X
E
E STIMATOR OLS BLUE
3. Best (Var Minimum)
Materi 2: Program S-1 Statistika, ITS, Surabaya
1 1 1 1
1
1
* * * 2 * 2
1
*
1
* 2
2 2
2 2
2 2 2 2 2
2 2
1
ˆ ˆ ˆ ˆ
var( ) [ ( )] [ ] ,
ˆ ( )
var( ˆ ) [ ( ) ]
( ) [ ]
( )
2 var( ˆ )
i i
i
i i i
i i i
i i i
i i
i i
E E E
ingat w k e
E w k e
w k E e w k
w w k k
k
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 2
1 1 1 1 1
1 1 1 1
2 1
2 2 2 2 2 2
1 1 2 2 1 2 1 2 1 1
2 2
1 1 1
2 2
1
ˆ ˆ ˆ ˆ
var( ) [ ( )] [ ]
ˆ ˆ
var( ˆ ) [ ]
[ ... 2 ... 2 ]
[ 2 ],
[ ] 2
i i i i
i i
n n n n n n
n n n
i i i j i j
i i j
n
i i i j
i
E E E
ingat w e w e
E w e
E w e w e w e w w e e w w e e
E w e w w e e i j
w E e w w
1 12 2
1 1 1
2
2
2 2 1 2
2 2 2
1
1 1
[ ]
2 (0)
( )
n n
i j
i j
n n n
i i j
i i j
n n i
i
i n n
i
i i
i i
E e e
w w w
x w
x x
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 2
0 0 0 0 0
2
2 2
2 2 2
2 2
2 2
2 2
2 2 2 2
2 2
2
2 2
ˆ ˆ ˆ ˆ
var( ) [ ( )] [ ]
[ 1 ) ]
( 1 ) ( )
( )
( )
(2 )
( )
( )
i i
i
i i
i
i
i
i
i i
E E E
E Xw e
n
x nX nX
n x n x
X X nX
n x
X nX nX nX
n x X
n x
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
0 1 0 0 1 1
0 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
2
1 1 1
2 2
ˆ ˆ ˆ ˆ ˆ ˆ
cov( , ) [( ( ))( ( ))]
ˆ ˆ
[( )( )]
ˆ ˆ
[( ( )( )]
ˆ ˆ
[( )( )]
ˆ ˆ
[( )( )]
ˆ ˆ
[ ( )( )]
ˆ ˆ
( ) var( )
( i )
E E E
E
E Y X Y X
E Y X Y X
E X X
E X
XE X
X X X
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
1
1
1
* 1
*
0 1
0 1
0 0 1 1
*
1
ˆ vs ˆ ; =
ˆ = ( )
( )( )
( ) ( ) ( )
( )
tak bias maka 0
( ˆ ) [ ( )
i i i i i i i
i i i i i
i i i i
i i i i i i i i
i i i i i i i i i
i i i
i i
wY c Y c w k
c Y w k Y
w k X e
w k w k X w k e
w k w X k X w k e
agar
k k X
E E w k
1 1
]
( ) ( )
i
i i i
e w k E e
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
1 1 1 1
1
1
* * * 2 * 2
1
*
1
* 2
2 2
2 2 2 2 2 2 2
2 2 2 2
2 2
2 2
1
ˆ ˆ ˆ ˆ
var( ) [ ( )] [ ] ,
ˆ ( )
var( ˆ ) [ ( ) ]
( ) [ ]
( ) 2
( )
2 ( )
var( ) ˆ
i i
i i
i
i i i
i i i
i i i
i i i i
i i
i
E E E
ingat
w k e E w k e
w k E e
w k w w k k
X X
k k
x X X
k
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
0 1
0 1
0 1
0 1 0 1
1
1 1
1 1
2 2
1 1
2 2
1 1 1 1 1
var( )
( )
( ) ( )
ˆ ˆ
( );
ˆ ( ) ˆ
ˆ ( ( ˆ ) ( ))
ˆ ˆ
( ) 2( ) (
i
i
i
i i i
i i i i i
i i i
i i i
i i i i i i
i i i i
i i
i
Y X
Y X
w w X w
Y Y X X
Y Y X X
y x y x
x x
x
x x
) ( i )
2
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 2 2
1 1 1 1 1
2
2
1 1
2
2 2
1 1
2 2
1 1
2 2
1 1
ˆ ˆ
( ˆ ) ( ) 2 ( ) ( )
( )
var( ˆ ) 2 ( ) ( )
( 1)
2 ( ) ( 1)
2 ( ) ( 1)
2 ( ) ( 1)
i i
i
i
i
i i i
i i i i i
i i i i i
i i i i i
E x E E x
E
x E w x
n
E w x w x n
E w x w x n
E w x w x n
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 2
2 2
2 2
2
2 2
2 2 2
( ) ( )
( )
( )
1 )
1 ( 1)
i
i i
i i
i i
E E
E n
E n
n
E n
n n
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
1
2
1 1
1 2 2 1
2 2
2 2 2 2
2 2 2
( )
( )
( )
( ˆ ) 2 ( 1)
2 ( 2)
i
i
i
i
i i i i
E w x E w x
E x x
x E
E n
n n
E STIMATOR OLS BLUE
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 2
2 2
2 2
2 2
( ˆ ) ( 2)
ˆ ˆ
( 2)
( ˆ ) ( 2)
( ˆ )
( 2) ( 2)
i
i
i
E n
n
E n
E n n
E STIMASI M AXIMUM L IKELIHOOD
Materi 2: Program S-1 Statistika, ITS, Surabaya
0 1
2
0 1
2 2
2
1 2 0 1 1 2
2
0 1
2 2 1
2
0 1
2 /2 2
2
2
,
1 1
( ) exp[ ( ( ) ]
2 2
( , ,..., , , , ) ( ) ( )... ( )
1 1
exp[ ( ( )) ]
2 2
1 1
exp[ ( ( )) ]
(2 ) 2
ln ln ln(2 ) 1 (
2 2 2
i i i i
i i i
n n
n
i i
i
i i
n
Y X Y IIDN
p Y Y X
LF Y Y Y p Y p Y p Y
Y X
Y X
n n
LF
2
0 1
2
0 1
) pertama terhadap , dan
i i
Y X
diturunkan
ˆ
0??
ˆ
1??
ˆ
2??
E STIMASI M ETHOD OF M OMENT ( MM )
Materi 2: Program S-1 Statistika, ITS, Surabaya
0 1
0 1
0 1
0 1
0 1
0 1
[ ] 0,
[ ( )] 0
[ ] 0
[ ( ( )] 0,
1 ( ˆ ˆ ) 0
1 ( ˆ ˆ ) 0
ˆ ??; ˆ ??
i i i
i
i i
i i
i i i
i i
i i i
Y X
E moment
E Y X
E X
E X Y X population moment sample moment
Y X
n
X Y X
n
S TANDAR E RROR DAN A SUMSI OLS
Asusmsi
1.
Hub Y dan X linear
2.
X var fix, bukan var random, antar var X independen
3.
Nilai rata-rata ekpekstasi ei=0
4.
Varians error sama (homoskedasitas)
5.
Antar error pengamatan independen
6.
Variabel error berdistribusi normal
Materi 2: Program S-1 Statistika, ITS, Surabaya
2 2
2 2
0 2 2 0
2 2
1 2 2 1
2
2 1
ˆ ˆ
var( ) , ( ) ?
( )
1 1
ˆ ˆ
var( ) , ( ) ?
( )
ˆ
i i
i
i i
i i
n
i
X X
n x n X X se
x X X se
n k
KOEFISIEN DETERMINASI
2 2 2
2 2
2
2 2
ˆ ˆ; ˆ ˆ
ˆ ˆ
( ) ( )
ˆ ˆ
( ) ( ) ( )
ˆ ˆ
( ) ( ) ( )
ˆ ˆ
( ) ( )
1 1
( ) ( )
i i i i i i
i i i
i i i i
i i i i
i i i
i i
Y Y Y Y Y Y
Y Y Y Y
Y Y Y Y Y Y
Y Y Y Y Y Y
SST SSR SSE
Y Y SSR Y Y SSE
R Y Y SST Y Y SST
Materi 2: Program S-1 Statistika, ITS, Surabaya
P ERTEMUAN 3:
E KONOMETRIKA
P ROGRAM S TUDI S -1 S TATISTIKA ITS S URABAYA
A NALISIS
“ R EGRESI”
ITS, Surabaya, 15 September 2015