Pembuatan karbon aktif dengan menggunakan kendaga dan cangkang biji karet merupakan salah satu pemanfaatan limbah pertanian yang ramah lingkungan. Untuk mengetahui efektivitas karbon aktif dari kendaga dan cangkang biji karet sebagai bahan amelioratif organik dalam pengendalian residu pestisida di bidang hortikultura.
Urgensi (Keutamaan) Penelitian
STUDI PUSTAKA
- Penggunaan Pestisida di Lahan Pertanian
- Biochar Manfaat dan Potensinya Sebagai Pembenah Tanah
- Pemanfaatan Biochar Dari Kendaga Dan Cangkang Biji Karet dan Penggunaannya Sebagai Pengendali Residu (Amelioran) Penggunaannya Sebagai Pengendali Residu (Amelioran)
- Pembuatan Biochar
Pemanfaatan Biochar dari Kendaga dan Sekam Biji Karet Serta Kegunaannya Sebagai Pengontrol Residu (Pelumas). Pembuatan biochar dengan menggunakan kendaga dan polong biji karet merupakan salah satu pemanfaatan limbah pertanian yang ramah lingkungan.
METODOLOGI PENELITIAN
- Waktu dan Lokasi Penleitian
- Bahan dan Alat
- Metode Penelitian
- Tahap Pengujian Efektivitas Biochar Sebagai Bahan Ameliorasi Organik Terhadap Residu Pestisida Pada Beberapa Jenis Tanah
- Tahap Pembuatan Biochar Kendaga dan Cangkang Biji Karet yang Ekonomois Ekonomois
- Pelaksanaan Kegiatan
Proses serapan dan kelarutan karbofuran dan klorpirifos dalam tanah didekati dengan menggunakan model serapan isotermal Langmuir. Pembuatan biochar dari Kendaga dan Cangkang Biji Karet mengikuti pengerjaan penelitian tahun pertama (Hutapea, dkk., 2015).
HASIL DAN PEMBAHASAN
Pembuatan Biochar Teraktivasi
Karakteristik Tanah
Kandungan bahan C-organiknya tinggi yaitu 4,22%, sedangkan kandungan bahan N-organiknya sangat tinggi yaitu 0,82%.
Pengujian dan Analisis Residu Pestisida dalam Tanah
- Adsorbsi Klorpyrifos dalam Tanah
Secara umum, adsorpsi residu pestisida pada sampel tanah Korpri lebih tinggi dibandingkan sampel tanah Sukanalu. Keadaan ini terjadi karena sampel tanah dari Korpri mempunyai struktur liat yang lebih besar dibandingkan dengan sampel tanah dari Sukanalu, sehingga adsorpsi residu pestisida juga dipengaruhi oleh struktur liat yang ada di dalam tanah (Tu, 2001). Pada konsentrasi penambahan pestisida klorpirifos sebesar 3 ppm, massa pestisida yang teradsorpsi sebesar 0,59 mg/gram biochar pada sampel tanah Sukanalu dan 0,49 mg/gram biochar pada sampel tanah Korpri.
Pada konsentrasi 6 ppm yang ditambahkan pestisida klorpirifos, massa pestisida yang teradsorpsi sebesar 1,47 mg/gram biochar pada sampel tanah Sukanalu dan 1,29 mg/gram biochar pada sampel tanah Korpri. Pada konsentrasi 12 ppm yang ditambahkan pestisida klorpirifos, massa pestisida yang teradsorpsi sebesar 2,35 mg/gram biochar pada sampel tanah Sukanalu dan 2,72 mg/gram biochar pada sampel tanah Korpri. Secara umum daya serap residu pestisida pada sampel tanah Korpri lebih besar dibandingkan sampel tanah Sukanalu.
Hal ini disebabkan karena sampel tanah Korpri mempunyai struktur liat yang lebih tinggi dibandingkan dengan sampel tanah Sukanalu, sehingga penyerapan residu pestisida juga dipengaruhi oleh struktur tanah liat (Tu, 2001).
Sementara itu, kombinasi pengolahan tanah dilakukan oleh tanaman hortikultura dari Desa Korpri dan Sukanalu serta biochar kendaga dan cangkang biji karet. Terkait tinggi tanaman, kombinasi perlakuan biochar kendaga dan cangkang biji karet pada tanah berbeda yang digunakan tanaman hortikultura juga tidak memberikan pengaruh nyata terhadap tinggi tanaman cabai merah. Demikian pula kombinasi perlakuan biochar kendaga dan cangkang biji karet pada tanah berbeda yang digunakan tanaman hortikultura tidak memberikan pengaruh nyata terhadap diameter batang tanaman cabai merah.
Kombinasi biochar kendaga dan polong biji karet pada berbagai jenis tanah yang digunakan tanaman hortikultura juga memberikan pengaruh yang tidak signifikan terhadap jumlah cabang cabai merah produktif. Respon produksi tanaman bawang merah dan cabai merah terhadap aplikasi kendaga dan polong biji karet pada tanah bekas. Kombinasi perlakuan biochar kendaga dan polong biji karet pada berbagai jenis tanah yang digunakan tanaman hortikultura juga tidak memberikan pengaruh nyata terhadap jumlah buah cabai merah.
Seperti halnya kombinasi perlakuan biochar kendag dan sekam biji karet pada tanah berbeda yang digunakan tanaman hortikultura, memberikan pengaruh tidak nyata terhadap bobot segar buah cabai merah.
KESIMPULAN PENELITIAN
Hasil Pengujian Karakteristik Biochar Dari Kendaga dan Cangkang Biji Karet Hasil pengujian karakteristik biochar kendaga dan cangkang biji karet yang
- Kadar Air
- kadar Abu
- Kadar Zat Menguap
- Kadar Karbon Terikat
- Daya Serap Iodine
- Daya serap benzene
Dalam parameter analisis kandungan air, nilai terendah didapati pada perlakuan K0S2 sebanyak 1.92% manakala nilai tertinggi didapati pada perlakuan K2S3 sebanyak 26.88%. Nilai terendah parameter kandungan abu didapati pada perlakuan K4S3 sebanyak 1.28% manakala nilai tertinggi terdapat pada perlakuan K0S2 sebanyak 31.55%. Bagi darjah bahan meruap, nilai terendah didapati pada perlakuan K0S2 sebanyak 36.10% manakala nilai tertinggi didapati pada perlakuan K2S3 sebanyak 55.64%.
Nilai terendah untuk parameter kandungan karbon terikat terdapat pada perlakuan K2S3 sebesar 30,86%, sedangkan nilai tertinggi terdapat pada perlakuan K1S3 sebesar 59,90%. Nilai serapan benzena terendah terdapat pada perlakuan K0S2 sebesar 2,24%, sedangkan nilai tertinggi terdapat pada perlakuan K2S2 sebesar 5,19%. Kadar zat volatil yang diperoleh dari aktivasi biofuel tersebut berada di atas standar SNI dan tidak menunjukkan perbedaan nyata antar kombinasi perlakuan, namun angka terendah terdapat pada kombinasi perendaman tanpa HCl dan waktu pemanasan 60 menit.
Penentuan daya serap arang aktif/biochar terhadap iodium bertujuan untuk mengetahui kemampuan biochar dalam menyerap larutan berwarna/kotor.
INTRODUCTION
This study aimed to determine the adsorption capacity in soil using activated biochar from epicarp and rubber seed shells (Hevea brasiliensis). In soil, biochar increases the soil's capacity to retain water and nutrients, reducing the need for fertilizers. Many small and field tests reported an increase in plant growth and crop productivity after mixing biochar with the soil (Jeffery et al., 2011).
Since the addition of charcoal to the soil improves the properties of the soil and increases the concentration of soil microorganisms, it is also expected to accelerate the growth of plants on agricultural land. Soil consolidation on agricultural land has been developed using biochar and composts. It was suggested that the soil was aggregated by microorganisms that proliferated on the surface of the aggregate in the soil (Shuji, et al., 2013).
The experiment on the effectiveness of activated biochar from rubber seed husks and epicarp residues (Hevea brasiliensis) as a reclamation material against pesticide residues in soil was aimed at determining the adsorption capacity of cypermethrin and chlorpyrifos residues using Langmuir and Freundlich isotherm models.
MATERIALS AND METHODS
- Preparation and manufacturing activated biochar
- Test and analysis adsorption of pesticide residues in the soil
- Freundlich isotherm model
Biochar also reduces the emission of other greenhouse gases from the soil, such as N2O and CH4 (Van Zweiten et al., 2009). More importantly, biochar can directly store carbon for quite a long time due to its strong resistance to biological decomposition (Preston and Schmidt, 2006; Liang et al., 2008). By using biochar carbonized with biomass materials such as wood waste, bamboo and agricultural materials in agricultural lands, carbon storage in the soil is expected for a long period.
We observed the stimulation of spinach growth on agricultural land using charcoal and composts. Bridging science and policy is at the core of the work of both regulatory bodies and industry. The speed with which pesticides move and disperse is closely related to the physicochemical parameters of the chemical itself and the surrounding environmental conditions.
Analysis of pesticide residues in soil used the QuEChERS (quick, easy, cheap, robust, and safe) method by a single-step buffered acetonitrile (MeCN) extraction and salting out liquid-liquid partitioning of the water in the sample with MgSO4.
RESULTS AND DISCUSSION
- Soil properties
- Cypermethrin adsorption isotherms
- Chlorpyrifos adsorption isotherms
Factors affecting the absorption process, i.e. type of adsorbent, type of substance to be adsorbed, surface area of the adsorbent, concentration of the substance and temperature. At a concentration of 6 ppm, the pesticide was absorbed by biochar about 1.96 mg/gram for Sukanalu and 2.20 mg/gram for Korpri. At a concentration of 9 ppm, the pesticide was absorbed by biochar about 2.92 mg/gram for Sukanalu and 3.41 mg/gram for Korpri.
At a concentration of 3 ppm chlorpyrifos, pesticide was adsorbed by biochar about 0.59 mg/gram for Sukanalu and 0.49 mg/gram for Korpri. At a concentration of 6 ppm, pesticide was adsorbed by biochar about 1.47 mg/gram for Sukanalu and 1.29 mg/gram for Korpri. At a concentration of 9 ppm, pesticide was adsorbed by biochar about 1.85 mg/gram for Sukanalu and 2.32 mg/gram for Korpri.
At a concentration of 12 ppm, the pesticide was adsorbed by biochar about 2.35 mg/gram for Sukanalu and 2.72 mg/gram for Korpri.
CONCLUSION
The Langmuir adsorption isotherms showed that it is not a linear relationship on the present results shown in Fig. Larger value of n implies stronger interaction between the soil and the pesticides (Öztürk and Bektas, 2004). The multilayey capacity factor for both pesticides (k) is higher than one, which shows the good interaction between the soil and the pesticides with more interaction in Korpri than Sukanalu.
In general, the effect of soil organic matter content on the adsorptive residue is similar to that of soil clay content. The half-life of this will affect the resistance properties of the residues in the soil. The longer the half-life, the longer it stays in the soil and the harder it is to break down.
Activated biochar that is incorporated into the soil will have different absorption power compared to the initial state.
REFRENCES
R2 of the Freundlich adsorption isotherms is greater than that in Langmuir adsorption isotherms and close to 1. This means that this Freundlich model is obeyed by adsorption of chlorpyrifos as shown in Fig. The n-values were respectively 1.066 and 0.653 for Sukanalu and Korpri in Freundlich isotherm model, which shows that adsorption process was unfavorable and it has to do with low percentage of the clay (3.72 and 7.46) and due to the organic matter available in the horticultural soil.
This isotherm is mainly applied when strong adsorption is not expected and when the adsorption surface is uniform. A quantitative overview of the effects of land application of biofuel on crop productivity using meta-analysis.
Characteristics of Activated Biochar From Rubber Seed Shell and Epicarp With Chemical Activation (HCl)
RESULT AND DISCUSSION
Determination of moisture content in biochar aims to determine the hygroscopic properties of activated carbon. Sudrajat (1985) said that the high ash content can reduce the ability of activated carbon to absorb the gas and solution. Sudrajat (1985) said that the high ash content can reduce the ability of activated carbon to absorb gases and solutions for the minerals contained in the ash dispersed in the grid of activated carbon.
High volatile matter content will reduce absorbency because there are pores in the activated carbon which are still covered with volatile matter such as carbon, sulfur and nitrogen. The fixed carbon content using high-grade solutions allowed under the activated carbon dust standards according to SNI is a minimum of 65%. The lowest iodine absorbance value of activated carbon obtained from samples treated with HCl solution (high and low grade).
Only activated biochar using high quality solution allowed for SNI standard activated carbon where it had a minimum benzene count of 25%.
Theoretically, increasing the activation temperature can increase the absorption of activated carbon on benzene. This is because the higher temperature will cause the carbon plates to move and push hydrocarbons and other organic compounds to come out upon activation. The low value of benzene absorption due to the pores of the activated carbon is covered by non-carbon compounds that are not pushed out of the surface of the activated carbon upon activation (Pari, 1996).
Activation solution in HCl and activation temperature were important parameters affecting the activated carbon produced. Increasing temperature and concentration of HCl increased iodine number which subsequently increased the adsorption capacity of the activated carbon. This suggests that rubber seed coat and epicarp have the potential to be a promising precursor for the production of activated carbon.