• Tidak ada hasil yang ditemukan

Skaitmeninio skaičiavimo ir matematikos teorijos elementai

N/A
N/A
Yusuf Rismawan

Academic year: 2024

Membagikan "Skaitmeninio skaičiavimo ir matematikos teorijos elementai"

Copied!
8
0
0

Teks penuh

(1)

Kmsns knfmojmo mgmfme knfmojmo ymoj aiodmgn gmsmr tirkiotuboym knfmojmo fmno gmfma sumtu snstia Kmsns knfmojmo mgmfme knfmojmo ymoj aiodmgn gmsmr tirkiotuboym knfmojmo fmno gmfma sumtu snstia knfmojmo. \ifmam non bntm aiojiomf knfmojmo kmsns =8, ymntu =, ;, <, 7, 9, 0, :, 5, gmo >. Non knfmojmo. \ifmam non bntm aiojiomf knfmojmo kmsns =8, ymntu =, ;, <, 7, 9, 0, :, 5, gmo >. Non airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm mgmfme =8, ymntu 8, =, ;, <, 7, 9, 0, :, 5, airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm mgmfme =8, ymntu 8, =, ;, <, 7, 9, 0, :, 5, gmo >.

gmo >.

\itnmp knfmojmo gisnamf ntu aiapuoymn kiotub4

\itnmp knfmojmo gisnamf ntu aiapuoymn kiotub4

mo.=8_o + …. + m<.=8_< + m;.=8_; + m=.=8_= + m8.=8_8 mo.=8_o + …. + m<.=8_< + m;.=8_; + m=.=8_= + m8.=8_8 Giojmo ‖

Giojmo ‖momo‑ mgmfme knfmojmo lmlme ymoj burmoj gmrn =8.‑ mgmfme knfmojmo lmlme ymoj burmoj gmrn =8.

Ansmf, =; knsm gntufns 4 =; 1 (=.=8_=) + (;.=8_8) 1 (=.=8) + (;.=) 1 =8 + ; 1 =;

Ansmf, =; knsm gntufns 4 =; 1 (=.=8_=) + (;.=8_8) 1 (=.=8) + (;.=) 1 =8 + ; 1 =;

Kmjmnamom giojmo knfmojmo4 =, =8, ==, =88, ==8, …3 Kmjmnamom giojmo knfmojmo4 =, =8, ==, =88, ==8, …3

Non airupmbmo knfmojmo kmsns ; giojmo mojbm tirkismr mgmfme =. Xmgm knfmojmo kmsns ; kmoymboym Non airupmbmo knfmojmo kmsns ; giojmo mojbm tirkismr mgmfme =. Xmgm knfmojmo kmsns ; kmoymboym mojjctm mgmfme ;, ymntu 8 gmo =.

mojjctm mgmfme ;, ymntu 8 gmo =.

Bitirmojmo4 Bitirmojmo4

=gum 1 =

=gum 1 =

=8gum 1 ;

=8gum 1 ;

==gum 1 <

==gum 1 <

=88gum 1 7

=88gum 1 7

=8=gum 1 9

=8=gum 1 9

Aioufnsoym4 =8gum mrtnoym =8 gn gmfma kmsns ;. Dnbm tngmb gntufns ambm gnmojjmp kmsns =8. Kijntu Aioufnsoym4 =8gum mrtnoym =8 gn gmfma kmsns ;. Dnbm tngmb gntufns ambm gnmojjmp kmsns =8. Kijntu puf

pufm m uotuotub ub kmskmsns ns ymoymoj j fmnfmnooyooym, m, aiaioufoufnsonsoym ym =8g=8gum, um, =8t=8tnjmnjm, , =8i=8iapmapmt, t, =8f=8fnamnam, , =8i=8iomaoma, , =8t=8tudueudue,,

=8gifmpmo, =8siaknfmo, gst.

=8gifmpmo, =8siaknfmo, gst.

(Yotub aioufnsoym auojbno knsm giojmo lmrm ymoj fmno, sipirtn =8S;, =8(;), gff. Witmpn bmfn non ymoj (Yotub aioufnsoym auojbno knsm giojmo lmrm ymoj fmno, sipirtn =8S;, =8(;), gff. Witmpn bmfn non ymoj gnjuombmo mgmfme pioufnsmo sipirtn gn mtms).

gnjuombmo mgmfme pioufnsmo sipirtn gn mtms).

Yotub knfmojmo sifmno gisnamf (knfmojmo kmsns ; enojjm =0) bntm piremtnbmo urmnmo kirnbut4 Yotub knfmojmo sifmno gisnamf (knfmojmo kmsns ; enojjm =0) bntm piremtnbmo urmnmo kirnbut4 Knfmojmo Kmsns ; (Knoir)

Knfmojmo Kmsns ; (Knoir)

Knfmojmo kmsns ; airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm ;, ymntu 8 gmo =.

Knfmojmo kmsns ; airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm ;, ymntu 8 gmo =.

Lcotce 4 Lcotce 4

=gum 1 (=.;_8) 1 =

=gum 1 (=.;_8) 1 =

=8gum 1 (=.;_=) + (8.;_8) 1 ; + 8 1 ;

=8gum 1 (=.;_=) + (8.;_8) 1 ; + 8 1 ;

==gum 1 (=.;_=) + (=.;_8) 1 ; + = 1 <

==gum 1 (=.;_=) + (=.;_8) 1 ; + = 1 <

=88gum 1 (=.;_;) + (8.;_=) + (8.;_8) 1 7 + 8 + 8 1

=88gum 1 (=.;_;) + (8.;_=) + (8.;_8) 1 7 + 8 + 8 1 77

=8=gum 1 (=.;_;) + (8.;_=) + (=.;_8) 1 7 + 8 + = 1

=8=gum 1 (=.;_;) + (8.;_=) + (=.;_8) 1 7 + 8 + = 1 99 Knfmojmo Kmsns <

Knfmojmo Kmsns <

Knfmojmo kmsns < airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm <, ymntu 8, = gmo ;.

Knfmojmo kmsns < airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm <, ymntu 8, = gmo ;.

Lcotce 4 Lcotce 4

=tnjm 1 (=.<_8) 1 =

=tnjm 1 (=.<_8) 1 =

;tnjm 1 (;.<_8) 1 ;

;tnjm 1 (;.<_8) 1 ;

=8tnjm 1 (=.<_=) + (8.<_8) 1 < + 8 1 <

=8tnjm 1 (=.<_=) + (8.<_8) 1 < + 8 1 <

==tnjm 1 (=.<_=) + (=.<_8) 1 < + = 1 7

==tnjm 1 (=.<_=) + (=.<_8) 1 < + = 1 7

=;tnjm 1 (=.<_=) + (;.<_8) 1 < + ; 1 9

=;tnjm 1 (=.<_=) + (;.<_8) 1 < + ; 1 9

Knfmojmo Kmsns 7 Knfmojmo Kmsns 7

Knfmojmo kmsns 7 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm 7, ymntu 8, =, ; gmo <.

Knfmojmo kmsns 7 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm 7, ymntu 8, =, ; gmo <.

(2)

Lcotce 4 Lcotce 4

=iapmt 1 (=.7_8) 1 =

=iapmt 1 (=.7_8) 1 =

<iapmt 1 (<.7_8) 1 <

<iapmt 1 (<.7_8) 1 <

=8iapmt 1 (=.7_=) + (8.7_8) 1 7 + 8 1 7

=8iapmt 1 (=.7_=) + (8.7_8) 1 7 + 8 1 7

=;iapmt 1 (=.7_=) + (;.7_8) 1 7 + ; 1 0

=;iapmt 1 (=.7_=) + (;.7_8) 1 7 + ; 1 0

=<iapmt 1 (=.7_=) + (<.7_8) 1 7 + < 1 :

=<iapmt 1 (=.7_=) + (<.7_8) 1 7 + < 1 : Knfmojmo Kmsns 9

Knfmojmo Kmsns 9

Knfmojmo kmsns 9 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm 9, ymntu 8, =, ;, < gmo Knfmojmo kmsns 9 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm 9, ymntu 8, =, ;, < gmo 7.

7.

Lcotce 4 Lcotce 4

=fnam 1 (=.9_8) 1 =

=fnam 1 (=.9_8) 1 = 7fnam 1 (7.9_8) 1 7 7fnam 1 (7.9_8) 1 7

=8fnam 1 (=.9_=) + (8.9_8) 1 9 + 8 1 9

=8fnam 1 (=.9_=) + (8.9_8) 1 9 + 8 1 9

=;fnam 1 (=.9_=) + (;.9_8) 1 9 + ; 1 :

=;fnam 1 (=.9_=) + (;.9_8) 1 9 + ; 1 :

;<fnam 1 (;.9_=) + (<.9_8) 1 =8 + < 1 =<

;<fnam 1 (;.9_=) + (<.9_8) 1 =8 + < 1 =<

Knfmojmo Kmsns 0 Knfmojmo Kmsns 0

Knfmojmo kmsns 0 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm 0, ymntu 8, =, ;, < , 7 Knfmojmo kmsns 0 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm 0, ymntu 8, =, ;, < , 7 gmo 9.

gmo 9.

Lcotce 4 Lcotce 4

=ioma 1 (=.0_8) 1 =

=ioma 1 (=.0_8) 1 = 9ioma 1 (9.0_8) 1 9 9ioma 1 (9.0_8) 1 9

=8ioma 1 (=.0_=) + (8.0_8) 1 0 + 8 1 0

=8ioma 1 (=.0_=) + (8.0_8) 1 0 + 8 1 0

=9ioma 1 (=.0_=) + (9.0_8) 1 0 + 9 1 ==

=9ioma 1 (=.0_=) + (9.0_8) 1 0 + 9 1 ==

<9ioma 1 (<.0_=) + (9.0_8) 1 =5 + 9 1 ;<

<9ioma 1 (<.0_=) + (9.0_8) 1 =5 + 9 1 ;<

Knfmojmo Kmsns : Knfmojmo Kmsns :

Knfmojmo kmsns : airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm :, ymntu 8, =, ;, <, 7, 9 Knfmojmo kmsns : airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm :, ymntu 8, =, ;, <, 7, 9 gmo 0.

gmo 0.

Lcotce 4 Lcotce 4

=tudue 1 (=.:_8) 1 =

=tudue 1 (=.:_8) 1 = 0tudue 1 (0.:_8) 1 0 0tudue 1 (0.:_8) 1 0

=8tudue 1 (=.:_=) + (8.:_8) 1 : + 8 1 :

=8tudue 1 (=.:_=) + (8.:_8) 1 : + 8 1 :

=9tudue 1 (=.:_=) + (9.:_8) 1 : + 9 1 =;

=9tudue 1 (=.:_=) + (9.:_8) 1 : + 9 1 =;

;0tudue 1 (;.:_=) + (0.:_8) 1 =7 + 0 1 ;8

;0tudue 1 (;.:_=) + (0.:_8) 1 =7 + 0 1 ;8 Knfmojmo Kmsns 5

Knfmojmo Kmsns 5

Knfmojmo kmsns 5 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm 5, ymntu 8, =, ;, <, 7, 9, Knfmojmo kmsns 5 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm 5, ymntu 8, =, ;, <, 7, 9, 0 gmo :.

0 gmo :.

Lcotce 4 Lcotce 4

=gifmpmo 1 (=.5_8) 1 =

=gifmpmo 1 (=.5_8) 1 = :gifmpmo 1 (<.5_8) 1 : :gifmpmo 1 (<.5_8) 1 :

=8gifmpmo 1 (=.5_=) + (8.5_8) 1 5 + 8 1 5

=8gifmpmo 1 (=.5_=) + (8.5_8) 1 5 + 8 1 5

=0gifmpmo 1 (=.5_=) + (0.5_8) 1 5 + 0 1 =7

=0gifmpmo 1 (=.5_=) + (0.5_8) 1 5 + 0 1 =7 7;gifmpmo 1 (7.5_=) + (;.5_8) 1 <; + ; 1 <7 7;gifmpmo 1 (7.5_=) + (;.5_8) 1 <; + ; 1 <7 Knfmojmo Kmsns >

Knfmojmo Kmsns >

(3)

Knfmojmo kmsns > airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm >, ymntu 8, =, ;, <, 7, 9, Knfmojmo kmsns > airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm >, ymntu 8, =, ;, <, 7, 9, 0, :, gmo 5.

0, :, gmo 5.

Lcotce 4 Lcotce 4

=siaknfmo 1 (=.>_8) 1 >

=siaknfmo 1 (=.>_8) 1 >

5siaknfmo 1 (5.>_8) 1 5 5siaknfmo 1 (5.>_8) 1 5

=8siaknfmo 1 (=.>_=) + (8.>_8) 1 > + 8 1 >

=8siaknfmo 1 (=.>_=) + (8.>_8) 1 > + 8 1 >

;;siaknfmo 1 (;.>_=) + (;.>_8) 1 =5 + ; 1 ;8

;;siaknfmo 1 (;.>_=) + (;.>_8) 1 =5 + ; 1 ;8 9=siaknfmo 1 (9.>_=) + (=.>_8) 1 79 + = 1 70 9=siaknfmo 1 (9.>_=) + (=.>_8) 1 79 + = 1 70 Knfmojmo Kmsns ==

Knfmojmo Kmsns ==

Knfmojmo kmsns == airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm ==, ymntu 8, =, ;, <, 7, Knfmojmo kmsns == airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm ==, ymntu 8, =, ;, <, 7, 9, 0, :, 5, > gmo M. (euru` M 1 =8)

9, 0, :, 5, > gmo M. (euru` M 1 =8) Lcotce 4

Lcotce 4

=sikifms 1 (=.==_8) 1 =

=sikifms 1 (=.==_8) 1 =

>sikifms 1 (>.==_8) 1 >

>sikifms 1 (>.==_8) 1 >

 Msikifms 1 (M.==_8) 1 (=8.

 Msikifms 1 (M.==_8) 1 (=8.==_8) 1 =8 (nojmt! M 1 =8)==_8) 1 =8 (nojmt! M 1 =8)

=8sikifms 1 (=.==_=) + (8.==_8) 1 == + 8 1 ==

=8sikifms 1 (=.==_=) + (8.==_8) 1 == + 8 1 ==

=Msikifms 1 (=.==_=) + (M.==_8) 1 (=.==_=) + (=8.==_8) 1 == + =8 1 ;= (nojmt! M 1 =8)

=Msikifms 1 (=.==_=) + (M.==_8) 1 (=.==_=) + (=8.==_8) 1 == + =8 1 ;= (nojmt! M 1 =8) Knfmojmo Kmsns =;

Knfmojmo Kmsns =;

Knfmojmo kmsns =; airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =;, ymntu 8, =, ;, <, 7, Knfmojmo kmsns =; airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =;, ymntu 8, =, ;, <, 7, 9, 0, :, 5, >, M gmo K. (euru` M 1 =8, K 1 ==)

9, 0, :, 5, >, M gmo K. (euru` M 1 =8, K 1 ==) Lcotce 4

Lcotce 4

=gumkifms 1 (=.=;_8) 1 =

=gumkifms 1 (=.=;_8) 1 =

>gumkifms 1 (>.=;_8) 1 >

>gumkifms 1 (>.=;_8) 1 >

 Mgumkifms 1 (M.=;_8) 1 (=8.=;_8) 1 =8

 Mgumkifms 1 (M.=;_8) 1 (=8.=;_8) 1 =8 (nojmt! M 1 =8)(nojmt! M 1 =8) Kgumkifms 1 (K.=;_8) 1 (==.=;_8) 1 == (nojmt! K 1 ==) Kgumkifms 1 (K.=;_8) 1 (==.=;_8) 1 == (nojmt! K 1 ==)

=8gumkifms 1 (=.=;_=) + (8.=;_8) 1 =; + 8 1 =;

=8gumkifms 1 (=.=;_=) + (8.=;_8) 1 =; + 8 1 =;

=Mgumkifms 1 (=.=;_=) + (M.=;_8) 1 (=.=;_=) + (=8.=;_8) 1 =; + =8 1 ;; (nojmt! M 1 =8)

=Mgumkifms 1 (=.=;_=) + (M.=;_8) 1 (=.=;_=) + (=8.=;_8) 1 =; + =8 1 ;; (nojmt! M 1 =8)

;Kgumkifms 1 (;.=;_=) + (K.=;_8) 1 (;.=;_=) + (==.=;_8) 1 ;7 + == 1 <9 (nojmt! K 1 ==)

;Kgumkifms 1 (;.=;_=) + (K.=;_8) 1 (;.=;_=) + (==.=;_8) 1 ;7 + == 1 <9 (nojmt! K 1 ==) Knfmojmo Kmsns =<

Knfmojmo Kmsns =<

Knfmojmo kmsns =< airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =<, ymntu 8, =, ;, <, 7, Knfmojmo kmsns =< airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =<, ymntu 8, =, ;, <, 7, 9, 0, :, 5, >, M, K gmo L. (euru` M 1 =8, K 1 ==, L 1 =;)

9, 0, :, 5, >, M, K gmo L. (euru` M 1 =8, K 1 ==, L 1 =;) Lcotce 4

Lcotce 4

=tnjmkifms 1 (=.=<_8) 1 =

=tnjmkifms 1 (=.=<_8) 1 =

>tnjmkifms 1 (>.=<_8) 1 >

>tnjmkifms 1 (>.=<_8) 1 >

Ltnjmkifms 1 (L.=<_8) 1 (=;.=<_8) 1 =; (nojmt! L 1 =;) Ltnjmkifms 1 (L.=<_8) 1 (=;.=<_8) 1 =; (nojmt! L 1 =;)

=8tnjmkifms 1 (=.=<_=) + (8.=<_8) 1 =< + 8 1 =<

=8tnjmkifms 1 (=.=<_=) + (8.=<_8) 1 =< + 8 1 =<

=Mtnjmkifms 1 (=.=<_=) + (M.=<_8) 1 (=.=<_=) + (=8.=<_8) 1 =< + =8 1 ;< (nojmt! M 1 =8)

=Mtnjmkifms 1 (=.=<_=) + (M.=<_8) 1 (=.=<_=) + (=8.=<_8) 1 =< + =8 1 ;< (nojmt! M 1 =8)

KLtnjmkifms 1 (K.=<_=) + (L.=<_8) 1 (==.=<_=) + (=;.=<_8) 1 =7< + =; 1 =99 (nojmt! K 1 ==, L 1 =;) KLtnjmkifms 1 (K.=<_=) + (L.=<_8) 1 (==.=<_=) + (=;.=<_8) 1 =7< + =; 1 =99 (nojmt! K 1 ==, L 1 =;) Knfmojmo Kmsns =7

Knfmojmo Kmsns =7

Knfmojmo kmsns =7 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =7, ymntu 8, =, ;, <, 7, Knfmojmo kmsns =7 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =7, ymntu 8, =, ;, <, 7, 9, 0, :, 5, >, M, K, L gmo G. (euru` M 1 =8, K 1 ==, L 1 =;, G 1 =<)

9, 0, :, 5, >, M, K, L gmo G. (euru` M 1 =8, K 1 ==, L 1 =;, G 1 =<) Lcotce 4

Lcotce 4

=iapmtkifms 1 (=.=7_8) 1 =

=iapmtkifms 1 (=.=7_8) 1 =

>iapmtkifms 1 (>.=7_8) 1 >

>iapmtkifms 1 (>.=7_8) 1 >

(4)

Giapmtkifms 1 (G.=7_8) 1 (=<.=7_8) 1 =< (nojmt! G 1 =<) Giapmtkifms 1 (G.=7_8) 1 (=<.=7_8) 1 =< (nojmt! G 1 =<)

=8iapmtkifms 1 (=.=7_=) + (8.=7_8) 1 =7 + 8 1 =7

=8iapmtkifms 1 (=.=7_=) + (8.=7_8) 1 =7 + 8 1 =7

=Kiapmtkifms 1 (=.=7_=) + (K.=7_8) 1 (=.=7_=) + (==.=7_8) 1 =7 + == 1 ;9 (nojmt! K 1 ==)

=Kiapmtkifms 1 (=.=7_=) + (K.=7_8) 1 (=.=7_=) + (==.=7_8) 1 =7 + == 1 ;9 (nojmt! K 1 ==)  MGiapmtkifms 1

 MGiapmtkifms 1 (M.=7_=) + (M.=7_=) + (G.=7_8) 1 (G.=7_8) 1 (=8.=7_=) + (=8.=7_=) + (=<.=7_8) 1 (=<.=7_8) 1 =78 + =78 + =< 1 =< 1 =9< (nojmt! =9< (nojmt! M 1 M 1 =8, G =8, G 11

=<)

=<)

Knfmojmo Kmsns =9 Knfmojmo Kmsns =9

Knfmojmo kmsns =9 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =9, ymntu 8, =, ;, <, 7, Knfmojmo kmsns =9 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =9, ymntu 8, =, ;, <, 7, 9, 0, :, 5, >, M, K, L, G gmo I. (euru` M 1 =8, K 1 ==, L 1 =;, G 1 =<, I 1 =7)

9, 0, :, 5, >, M, K, L, G gmo I. (euru` M 1 =8, K 1 ==, L 1 =;, G 1 =<, I 1 =7) Lcotce 4

Lcotce 4

=fnamkifms 1 (=.=9_8) 1 =

=fnamkifms 1 (=.=9_8) 1 =

>fnamkifms 1 (>.=9_8) 1 >

>fnamkifms 1 (>.=9_8) 1 >

Ifnamkifms 1 (I.=9_8) 1 (=7.=9_8) 1 =7 (nojmt! I 1 =7) Ifnamkifms 1 (I.=9_8) 1 (=7.=9_8) 1 =7 (nojmt! I 1 =7)

=8fnamkifms 1 (=.=9_=) + (8.=9_8) 1 =9 + 8 1 =9

=8fnamkifms 1 (=.=9_=) + (8.=9_8) 1 =9 + 8 1 =9

=Gfnamkifms 1 (=.=9_=) + (G.=9_8) 1 (=.=9_=) + (=<.=9_8) 1 =9 + =< 1 ;5 (nojmt! G 1 =<)

=Gfnamkifms 1 (=.=9_=) + (G.=9_8) 1 (=.=9_=) + (=<.=9_8) 1 =9 + =< 1 ;5 (nojmt! G 1 =<)  MIfnamkifms 1 (M.=9_=) + (I.=

 MIfnamkifms 1 (M.=9_=) + (I.=9_8) 1 (=8.=9_=) + (=7.=9_8) 1 =98 + =7 1 =09_8) 1 (=8.=9_=) + (=7.=9_8) 1 =98 + =7 1 =07 (nojmt! M 1 =8, I 1 =7)7 (nojmt! M 1 =8, I 1 =7) Knfmojmo Kmsns =0 (Eixmgisnamf)

Knfmojmo Kmsns =0 (Eixmgisnamf)

Knfmojmo kmsns =0 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =0, ymntu 8, =, ;, <, 7, Knfmojmo kmsns =0 airupmbmo bifcapcb knfmojmo giojmo kmoymboym mojjctm =0, ymntu 8, =, ;, <, 7, 9, 0, :, 5, >, M, K, L, G, I gmo @. (euru` M 1 =8, K 1 ==, L 1 =;, G 1 =<, I 1 =7, @ 1 =0)

9, 0, :, 5, >, M, K, L, G, I gmo @. (euru` M 1 =8, K 1 ==, L 1 =;, G 1 =<, I 1 =7, @ 1 =0)

Lcotce 4 Lcotce 4

=iomakifms 1 (=.=0_8) 1 =

=iomakifms 1 (=.=0_8) 1 =

>iomakifms 1 (>.=0_8) 1 >

>iomakifms 1 (>.=0_8) 1 >

@iomakifms 1 (@.=0_8) 1 (=9.=0_8) 1 =9 (nojmt! @ 1 =9)

@iomakifms 1 (@.=0_8) 1 (=9.=0_8) 1 =9 (nojmt! @ 1 =9)

=8iomakifms 1 (=.=0_=) + (8.=0_8) 1 =0 + 8 1 =0

=8iomakifms 1 (=.=0_=) + (8.=0_8) 1 =0 + 8 1 =0

=@iomakifms 1 (=.=0_=) + (@.=0_8) 1 (=.=0_=) + (=9.=0_8) 1 =0 + =9 1 <= (nojmt! @ 1 =9)

=@iomakifms 1 (=.=0_=) + (@.=0_8) 1 (=.=0_=) + (=9.=0_8) 1 =0 + =9 1 <= (nojmt! @ 1 =9)  M@iomakifms 1 (M.=0_=) + (@.=0_8) 1 (=8

 M@iomakifms 1 (M.=0_=) + (@.=0_8) 1 (=8.=0_=) + (=9.=0_8) 1 =08 + =9 1 =:9 (nojm.=0_=) + (=9.=0_8) 1 =08 + =9 1 =:9 (nojmt! M 1 =8, @ 1 =9)t! M 1 =8, @ 1 =9)

AI[YKME KNFMOJMO BI KM\N\ =8

AI[YKME KNFMOJMO BI KM\N\ =8 (GI\NAMF)(GI\NAMF) Lmrm = 4 XIOJY[MNMO

Lmrm = 4 XIOJY[MNMO Lcotce 4

Lcotce 4

Ykme ;<7fnam bi kmsns =8.

Ykme ;<7fnam bi kmsns =8.

Dmwmk 4 Dmwmk 4

;<7fnam 1 (;.9_;) + (<.9_=) + (7.9_8) 1 98 + =9 + 7 1 0>

;<7fnam 1 (;.9_;) + (<.9_=) + (7.9_8) 1 98 + =9 + 7 1 0>

Lmrm ; 4 EC[OI[

Lmrm ; 4 EC[OI[

Lcotce 4 Lcotce 4

Ykme ;<7fnam bi kmsns =8.

Ykme ;<7fnam bi kmsns =8.

Dmwmk 4 Dmwmk 4  

  | | ; ; < < 77 9

9 | | =8 =8 0909  

  --- --- ++  

  ; ; =< 0>=< 0>

Dmgn dmwmkmooym 0>

Dmgn dmwmkmooym 0>

AIOJYKME KNFMOJMO KM\N\ =8 (GI\NAMF)

AIOJYKME KNFMOJMO KM\N\ =8 (GI\NAMF) BI KM\N\ FMNOO^MBI KM\N\ FMNOO^M

(5)

Lmrm =. CXI[M\N XIAKMJNMO Lmrm =. CXI[M\N XIAKMJNMO

Yotub aiojukme knfmojmo gisnamf aiodmgn knfmojmo kmsns fmnooym gnjuombmo cpirmsn piakmjnmo Yotub aiojukme knfmojmo gisnamf aiodmgn knfmojmo kmsns fmnooym gnjuombmo cpirmsn piakmjnmo giojmo kmsnsoym smaknf aiapiremtnbmo snsmoym.

giojmo kmsnsoym smaknf aiapiremtnbmo snsmoym.

Lcotce 4 Lcotce 4

Ykme =98 bi kmsns 5.

Ykme =98 bi kmsns 5.

Dmwmk 4 Dmwmk 4

=98 4 5 1 =5 snsm 0

=98 4 5 1 =5 snsm 0

=5 4 5 1 ; snsm ;

=5 4 5 1 ; snsm ;

; 4 5 1 8 snsm ;octi 4 uotub aioufnsbmo kmsns 5 oym, piakmlmmo gnfmbubmo gmrn kmwme. Dmgn

; 4 5 1 8 snsm ;octi 4 uotub aioufnsbmo kmsns 5 oym, piakmlmmo gnfmbubmo gmrn kmwme. Dmgn  dmwmkmooym ;;0gifmpmo

 dmwmkmooym ;;0gifmpmo Lmrm ; 4 AIOLM[N JLG Lmrm ; 4 AIOLM[N JLG Lcotce 4

Lcotce 4

Ykme =98 bi kmsns 5.

Ykme =98 bi kmsns 5.

Dmwmk 4 Dmwmk 4

=98 1 5 x =5 + 0

=98 1 5 x =5 + 0

=5 1 5 x ; + ;

=5 1 5 x ; + ;

Octi 4 uotub aioufnsbmo kmsns 5 oym, gnkmlm gmrn piakmjn tirbilnfoym ymntu ; fmfu bi snsm oym. Dmgn Octi 4 uotub aioufnsbmo kmsns 5 oym, gnkmlm gmrn piakmjn tirbilnfoym ymntu ; fmfu bi snsm oym. Dmgn  dmwmkmooym ;;0gifmpmo

 dmwmkmooym ;;0gifmpmo mtmu

mtmu

=98 1 5 x =5 + 0

=98 1 5 x =5 + 0

=5 1 5 x ; + ;

=5 1 5 x ; + ;

; 1 5 x 8 + ; octi 4 uotub aioufnsbmo kmsns 5 oym, piremtnbmo snsmoym, fmfu piakmlmmo gnfmbubmo

; 1 5 x 8 + ; octi 4 uotub aioufnsbmo kmsns 5 oym, piremtnbmo snsmoym, fmfu piakmlmmo gnfmbubmo gmrn kmwme. Dmgn dmwmkmooym ;;0gifmpmo

gmrn kmwme. Dmgn dmwmkmooym ;;0gifmpmo Lmrm < 4 XIOJY[MNMO

Lmrm < 4 XIOJY[MNMO Lcotce 4

Lcotce 4

Ykme =98 bi kmsns 5.

Ykme =98 bi kmsns 5.

Dmwmk 4 Dmwmk 4

=98 1 m.5_; + k.5 +l

=98 1 m.5_; + k.5 +l

=98 1 =5 x 5 + 0

=98 1 =5 x 5 + 0

=98 1 (5x; + ;)5 + 0

=98 1 (5x; + ;)5 + 0

=98 1 ;x5_; + ;x5 + 0

=98 1 ;x5_; + ;x5 + 0  dmgn gnkmlm ;;0gifmpmo  dmgn gnkmlm ;;0gifmpmo

FMWNEMO N FMWNEMO N

Ykme bi kmsns =8 Ykme bi kmsns =8

=. ;8==tnjm

=. ;8==tnjm Dmwmk 4 Dmwmk 4

Lmrm = 4 XIOJYM[MNMO Lmrm = 4 XIOJYM[MNMO

;8==tnjm

;8==tnjm

1 (;.<_<) + (8.<_;) + (=.<_=) + (=.<_8) 1 (;.<_<) + (8.<_;) + (=.<_=) + (=.<_8) 1 97 + 8 + < + =

1 97 + 8 + < + = 1 95

1 95

(6)

Lmrm ; 4 EC[OI[

Lmrm ; 4 EC[OI[

  |

  | ; ; 8 8 = = ==

<

< | | 0 0 =5 9:=5 9:

 

  --- -- ++  

  ; ; 0 0 => => 9595  dmgn dmwmkmooym 95  dmgn dmwmkmooym 95

;. <8;=iapmt

;. <8;=iapmt Dmwmk 4

Dmwmk 4

<8;=iapmt

<8;=iapmt

1 (<.7_<) + (8.7_;) + (;.7_=) + (=.7_8) 1 (<.7_<) + (8.7_;) + (;.7_=) + (=.7_8) 1 =>; + 8 + 5 + =

1 =>; + 8 + 5 + = 1 ;8=

1 ;8=

<. 7;;<fnam

<. 7;;<fnam Dmwmk 4 Dmwmk 4 7;;<fnam 7;;<fnam

1 (7.9_<) + (;.9_;) + (;.9_=) + (<.9_8) 1 (7.9_<) + (;.9_;) + (;.9_=) + (<.9_8) 1 988 + 98 + =8 + <

1 988 + 98 + =8 + <

1 90<

1 90<

7. 9;9<ioma 7. 9;9<ioma Dmwmk 4 Dmwmk 4 9;9<ioma 9;9<ioma

1 (9.0_<) + (;.0_;) + (9.0_=) + (<.0_8) 1 (9.0_<) + (;.0_;) + (9.0_=) + (<.0_8) 1 =858 + :; + <8 + <

1 =858 + :; + <8 + <

1 ==59 1 ==59

9. <=<0tudue 9. <=<0tudue Dmwmk 4 Dmwmk 4

<=<0tudue

<=<0tudue

1 (<.:_<) + (=.:_;) + (<.:_=) + (0.:_8) 1 (<.:_<) + (=.:_;) + (<.:_=) + (0.:_8) 1 =8;> + 7> + ;= + 0

1 =8;> + 7> + ;= + 0 1 ==89

1 ==89

0. ;0:9gifmpmo 0. ;0:9gifmpmo Dmwmk 4

Dmwmk 4

;0:9gifmpmo

;0:9gifmpmo

1 (;.5_<) + (0.5_;) + (:.5_=) + (9.5_8) 1 (;.5_<) + (0.5_;) + (:.5_=) + (9.5_8) 1 =8;7 + <57 + 90 + 9

1 =8;7 + <57 + 90 + 9 1 =70>

1 =70>

:. 9;7ioma :. 9;7ioma Dmwmk 4 Dmwmk 4 9;7ioma 9;7ioma

1 (9.0_;) + (;.0_=) + (7.0_8) 1 (9.0_;) + (;.0_=) + (7.0_8) 1 =58 + =; + 7

1 =58 + =; + 7 1 =>0

1 =>0

5. 7;<fnam 5. 7;<fnam Dmwmk 4 Dmwmk 4

(7)

7;<fnam 7;<fnam

1 (7.9_;) + (;.9_=) + (<.9_8) 1 (7.9_;) + (;.9_=) + (<.9_8) 1 =88 + =8 + <

1 =88 + =8 + <

1 ==<

1 ==<

>. =8;8<iapmt

>. =8;8<iapmt  Dmwmk 4

 Dmwmk 4

=8;8<iapmt1 (=.7_7) + (8.7_<) + (;.7_;) + ( 8.7_=) + (<.7_8)

=8;8<iapmt1 (=.7_7) + (8.7_<) + (;.7_;) + ( 8.7_=) + (<.7_8) 1 ;90 + 8 + <; + 8 + <

1 ;90 + 8 + <; + 8 + <

1 ;>=

1 ;>=

(Lmrm Ecroir knsm bmfnmo lckm siognrn gn ruame) (Lmrm Ecroir knsm bmfnmo lckm siognrn gn ruame) FMWNEMO NN

FMWNEMO NN

=. Ykme 9: bi kmsns ;.

=. Ykme 9: bi kmsns ;.

Dmwmk 4 Dmwmk 4

Lmrm =. CXI[M\N XIAKMJNMO Lmrm =. CXI[M\N XIAKMJNMO 9: 4 ; 1 ;5 snsm =

9: 4 ; 1 ;5 snsm =

;5 4 ; 1 =7 snsm 8

;5 4 ; 1 =7 snsm 8

=7 4 ; 1 : snsm 8

=7 4 ; 1 : snsm 8 : 4 ; 1 < snsm = : 4 ; 1 < snsm =

< 4 ; 1 = snsm =

< 4 ; 1 = snsm =

= 4 ; 1 8 snsm =

= 4 ; 1 8 snsm =

Kmlm snsmoym gmrn kmwme, dmgn dmwmkmooym ===88=gum Kmlm snsmoym gmrn kmwme, dmgn dmwmkmooym ===88=gum Lmrm ;. AIOLM[N JLG

Lmrm ;. AIOLM[N JLG 9: 1 ; x ;5 + =

9: 1 ; x ;5 + =

;5 1 ; x =7 + 8

;5 1 ; x =7 + 8

=7 1 ; x : + 8

=7 1 ; x : + 8 : 1 ; x < + = : 1 ; x < + =

< 1 ; x = + =

< 1 ; x = + =

= 1 ; x 8 + =

= 1 ; x 8 + =

Kmlm snsmoym gmrn kmwme, dmgn dmwmkmooym ===88=gum Kmlm snsmoym gmrn kmwme, dmgn dmwmkmooym ===88=gum

;. Ykme ;9: bi kmsns <.

;. Ykme ;9: bi kmsns <.

Dmwmk 4 Dmwmk 4

;9: 1 < x 59 + ;

;9: 1 < x 59 + ; 59 1 < x ;5 + = 59 1 < x ;5 + =

;5 1 < x > + =

;5 1 < x > + =

> 1 < x < + 8

> 1 < x < + 8

< 1 < x = + 8

< 1 < x = + 8

= 1 < x 8 + =

= 1 < x 8 + =

\ienojjm ;9: 1 =88==;tnjm

\ienojjm ;9: 1 =88==;tnjm

<. Ykme 7<; bi kmsns =;

<. Ykme 7<; bi kmsns =;

Dmwmk 4 Dmwmk 4

7;< 4 =; 1 <9 snsm <

7;< 4 =; 1 <9 snsm <

<9 4 =; 1 ; snsm == (Nojmt! K 1 ==)

<9 4 =; 1 ; snsm == (Nojmt! K 1 ==)

; 4 =; 1 8 snsm ;

; 4 =; 1 8 snsm ;

\ienojjm 7;< 1 ;K<gumkifms

\ienojjm 7;< 1 ;K<gumkifms

(8)

7. Ykme 0:5 bi eixmgisnamf 7. Ykme 0:5 bi eixmgisnamf Dmwmk 4

Dmwmk 4

0:5 4 =0 1 7; snsm 0 0:5 4 =0 1 7; snsm 0

7; 4 =0 1 ; snsm =8 (Nojmt! M 1 =8) 7; 4 =0 1 ; snsm =8 (Nojmt! M 1 =8)

; 4 =0 1 8 snsm ;

; 4 =0 1 8 snsm ;

\ienojjm 0:5 1 ;M0iomakifms

\ienojjm 0:5 1 ;M0iomakifms 9. Ykme =8==gum gmfma kmsns 9 9. Ykme =8==gum gmfma kmsns 9 Dmwmk 4

Dmwmk 4

Ykme bi kmsns =8 gufu, Ykme bi kmsns =8 gufu,

=8==gum

=8==gum

1 (=.;_<) + (8.;_;) + (=.;_=) + (=.;_8) 1 (=.;_<) + (8.;_;) + (=.;_=) + (=.;_8) 1 5 + 8 + ; + = 1 ==

1 5 + 8 + ; + = 1 ==

Ykme bi kmsns 9, Ykme bi kmsns 9,

== 1 9 x ; + =

== 1 9 x ; + =

; 1 9 x 8 + ;

; 1 9 x 8 + ;

== 1 ;=fnam, sienojjm =8==gum 1 ;=fnam

== 1 ;=fnam, sienojjm =8==gum 1 ;=fnam 0. Ykme ==88==88=gum gmfma kmsns =<

0. Ykme ==88==88=gum gmfma kmsns =<

Dmwmk 4 Dmwmk 4

Ykme bi kmsns =8 gufu, Ykme bi kmsns =8 gufu,

==88==88=gum

==88==88=gum

1 (=.;_5) + (=.;_:) + (8.;_0) + (8.;_9) + (=.;_7) + (=.;_<) + (8.;_;) + (8.;_=) + (=.;_8) 1 (=.;_5) + (=.;_:) + (8.;_0) + (8.;_9) + (=.;_7) + (=.;_<) + (8.;_;) + (8.;_=) + (=.;_8) 1 ;90 + =;5 + 8 + 8 + =0 + 5 + 8 + 8 + =

1 ;90 + =;5 + 8 + 8 + =0 + 5 + 8 + 8 + = 1 78>

1 78>

Ykme bi kmsns =<, Ykme bi kmsns =<, 78> 1 =< x <= + 0 78> 1 =< x <= + 0

<= 1 =< x ; + 9

<= 1 =< x ; + 9

; 1 =< x 8 + ;

; 1 =< x 8 + ;

sienojjm ==88==88=gum 1 ;90tnjmkifms sienojjm ==88==88=gum 1 ;90tnjmkifms

Referensi

Dokumen terkait

Nuo mokymosi kelio priklauso ir besusidaranti žinių struktūra. Jeigu, skaitydami tekstą, nežinome jo struktūros, nematome hierarchinių ryšių tarp dalių, tai galėsime pasakyti

Šiame straipsnyje apžvelgiama kaip keitėsi Kauno technologijos universiteto (KTU) taikomosios matematikos studijų programa nuo šios programos įsteigimo pradžios 1964 m.. iki

Taigi, siekiant pedagoginio proceso kokyb˙es, modulio tikslai(detalizuojant, k a reikia žinoti, mok˙eti taikyti, irodyti), ir mokymo metodai turi b ¯uti viešai prieinami ir

Atsižvelgiant į tai, Dublino kriterijus galima suskirstyti taip pat į tris lygmenis, kurie apibrėžia trijų lygmenų kompetencijas: instrumentinę kompeten- ciją (I) (turi

Penelitian ini merupakan penelitian lapangan (field research) dengan pendekatan kualitatif. Pengumpulan data dilakukan dengan metode observasi, wawancara, dan

I pusėje daugumą aritmetinės me­ džiagos elementoriuose pateikė (ir vadovėli bandė išspausdinti) dvasininkai, pirmojo arit­ metikos vadovėlio lietuviškai mokyklai

rezultatus: ar s ÷ kmingos matematikos dalyko studijos kolegijoje priklauso nuo pasirengimo lygio vidurin ÷ je mokykloje, kokie vidurini ų mokykl ų matematikos į vertinimai

Raktiniai žodžiai: Vilniaus universitetas, Lietuvių mokslo kursai, matematikos studijos, matema- tikos