• Tidak ada hasil yang ditemukan

PDF Mobile Radio Communications

N/A
N/A
Nguyễn Gia Hào

Academic year: 2023

Membagikan "PDF Mobile Radio Communications"

Copied!
71
0
0

Teks penuh

(1)

Session 4: Modulation & transmission

Mobile Radio Communications

Mobile Radio Communications

(2)

Why modulation ? Why modulation ?

RF carrier as transmission medium

spectral efficiency

robustness on radio path

analog versus digital information

(3)

Carrier modulation Carrier modulation

amplitude/phase

phasor / complex baseband representation

I and Q modulation:

cos and sin

in-phase and quadrature component

AM PM

I Q

I

Q real complex

AM

(4)

Constant-envelope modulation Constant-envelope modulation

RF amplitude constant

class C amplification (efficiency)

limiting receiver

non-linear TX-RX operations

information in phase only (but be careful …)

PA

s(t) VCO

(5)

Analog modulation Analog modulation

Information is analog

AM, PM, and FM

( ) t A [ m ( ) t ] f t

s

AM

=

c

1 + cos 2 π

c

f c -f c

S

( ) f t

A t A

m A if

k A

c

c m c

m

= cos 2 π

=

AM

(6)

SSB modulation SSB modulation

AM: redundant information (two side bands)

Remove one side band Single Side Band

Complex !

( ) t A ( m ( ) t f t m ( ) t f t )

s

SSB

=

c

cos 2 π

c

m ˆ sin 2 π

c

f c -f c

S SSB

( ) t

m ˆ Hilbert transform

(7)

SSB generation SSB generation

HS m S m

H j

HS m

j

f c -f c

Q

j

-j

* -f c f c

I

S m

f c -f c

I

* -f c f c

I

(8)

SSB generation SSB generation

f c -f c

I

( ) t f t

m

A

c

cos 2 π

c

f c -f c

I

( ) t f t

m

A

c

ˆ sin 2 π

c

• Addition: lower side bands

• Subtraction: upper side bands

(9)

SSB features SSB features

Amplitude and phase modulation

Bandwidth efficient but poor performance in radio channel

Needs accurate frequency tuning

Pilot tone required

(10)

Angle modulation Angle modulation

Frequency or phase

Constant envelope

( ) ( )

 

 +

= ∫

t f c

c

FM

t A f t k m d

s cos 2 π 2 π τ τ

( ) t A f t

m

if =

m

cos 2 π

m

FM

( )

 

 +

= f t

f A t k

f A

t

s

m

m m f c

c

FM

cos 2 π sin 2 π

k

f

frequency deviation in V/Hz

W f W

A k

f m

f

= ∆

β =

(11)

Angle modulation Angle modulation

( ) t A [ f t k m ( ) t ]

s

FM

=

c

cos 2 π

c

+ θ PM

k

θ

phase deviation in rad/Hz

/t

m(t)

PM

FM

m(t)

FM

PM

θ

β

p

= k θ A

m

= ∆

(12)

FM modulation FM modulation

f c -f c

I

m f

T

f

B = 2 ( β + 1 ) β

f

< 1 f

B

T

= 2 ∆ β

f

>> 1

Carson’s rule:

(13)

FM SNR performance FM SNR performance

FM

detector LPF

( ) W

N SNR A

f c

in

2 1

2

0 2

= +

β ( ) ( )

in

p f

f

out

SNR

V t SNR m

2

1

2

6  

 

 + 

= β β

(

f

1 ) W

2 β + 2 W

(14)

FM SNR performance FM SNR performance

W N

SNR out f P carrier

0

3 β 2

=

2

2 c carrier

P = A

(15)

Digital modulation Digital modulation

Information is digital

binary modulation: bit b i symbol s k

m-ary modulation: {b i ,b i+1 …b i+N-1 } s k log 2 m bits/symbol

m → η b ( η b = R b /W)

E b energy per bit: P carrier × T b

E s energy per symbol: P carrier × T s

N 0 noise spectral density: P noise /W

(16)

Digital modulation Digital modulation

symbol duration T s ; symbol rate R s = 1/T s symbol rate = baud rate

bit duration T b ; bit rate R b = 1/T b

R b = R s log 2 m

(17)

Shannon’s channel capacity Shannon’s channel capacity

) 1

(

log 2 SNR W

C = +

W R N

E W

N

T E

P

SNR P b b b b

N

s = ⋅

= ⋅

=

0 0

R b

C =

Maximum capacity:

(18)

Shannon’s channel capacity Shannon’s channel capacity

) 1

( log

0

2 W

R N

E W

R b b b

⋅ +

=

b b

W R b

b b

W R

N E

η

η 1

2 1

2

0

= −

= −

η spectral efficiency b/s/Hz

(19)

Power-bandwidth trade-off Power-bandwidth trade-off

η b [dB]

-25 -20 -15 -10 -5 0 5 10

0

-5

E b /N 0 [dB]

5 10 15 20 25

BW limited

power limited

GSM

IS-95

DECT Bluetooth

(20)

Power spectral density Power spectral density

( ) v ( ) τ

v f R

GF

( ) τ = E ( v ( ) ( ) t v t + τ )

R v

autocorrelation:

Wiener-Kinchine theorem:

(21)

Bandwidth definitions Bandwidth definitions

-60 -50 -40 -30 -20 -10 0

-3dB BW

null-to-null BW

G(f)

f

absolute BW: freq. range for which G(f) > 0

99% BW: freq. range where 99% of power is

(22)

Digital transmission chain Digital transmission chain

Information bits Symbol mapping I/Q mapping

Line coding Pulse Shaping RF upconversion

011000110001101101110010 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8

} } } } } } } }

(23)

Constellation diagram Constellation diagram

I Q

E s

E s

Normalize by 2 T s d ij

Orthogonal:

( ) ( ) 0

0

t j t dt =

T

i φ

φ

j

i

(24)

Error probability Error probability

0 d ij /2 d ij

) ( )

2 2 exp(

) 1

Pr(

0 2 0

0

z Q dz

z z

z P

z

e

= ≥ = ∫

π − =

(25)

Error probability Error probability

 

 

= 

 

 

=

=

2 0

2 )

Pr( N

Q d Q A

z d

P ij

norm ij norm

e σ

σ z = A

s

s

E

T

A = 2 ⋅ A

norm

= E

s

B N

0

σ = σ

norm

= N

0

2

(26)

BPSK BPSK

I Q

E b

E b

b

ij E

d = 2

 

 

=

0 ,

2 N Q E

P e BPSK b 2

A 2

E

E s = b =

(27)

QPSK QPSK

I Q

E b

2

b

ij E

d = 2

 

 

=

0 ,

2 N Q E

P e QPSK b 4

2

A 2

E b = E s =

(28)

Offset-QPSK Offset-QPSK

QPSK

OQPSK

(29)

π π /4 QPSK /4 QPSK

I Q

I

Q

(30)

π π /4 QPSK /4 QPSK

I Q

11 01 00 10

π/4 3π/4

−3π/4

−π/4

b k , b k-1 φ k

(31)

Minimum Shift Keying Minimum Shift Keying

I

Q

I

Q

1 1 0 1 0 0 0 1 1 0

0 0 1 0 1 0 1 1 1

1 1 0 1 0 0 0 1 1 0

0 0 1 0 1 0 1 1 1

MSK is

MSK is cos cos -shaped OQPSK -shaped OQPSK

(32)

Minimum Shift Keying Minimum Shift Keying

( )   ( ) +

= f t

T t t

m

S c

b I

MSK π π

2 2 cos

cos

( ) ( f t )

T t t

m c

b

Q π π

2 2 sin

sin  

 

[ ( ) ]

( f m t f t )

S MSK = cos 2 π c + ∆ FSK with f=1/4T b

Continuous phase FSK (CPFSK) Continuous phase FSK (CPFSK)

Continuous phase modulation (CPM)

Continuous phase modulation (CPM)

(33)

Minimum Shift Keying Minimum Shift Keying

Orthogonal frequency keying Orthogonal frequency keying

s

c T

f

f 4

: 1

1 = +

s

c T

f

f 4

: 1

0 = −

T s

0

(34)

Minimum Shift Keying Minimum Shift Keying

90

o

-90

o

-270

o

270

o

360

o

-360

o

1

1 0 1 0

0

0 1 0 1

PHASE TRELLIS PHASE TRELLIS

s

c

T

f

f 4

: 1

1 = +

s

c

T

f

f 4

: 1

0 = −

FSK:

T 2T 3T 4T

(35)

Symbol

Symbol transistions transistions

I Q

OQPSK MSK

QPSK

A

φ

0 Ts

π 2Ts

A

φ

0 Ts/2

π Ts A

φ

0 Ts

π 2Ts

(36)

Power spectral densities Power spectral densities

-40 -30 -20 -10 0 10

-50

f

c

-70

-60

f

c

+R

b

f

c

-R

b

f

c

-2R

b

f

c

+2R

b

BPSK QPSK

MSK

(37)

GMSK GMSK

Gaussian shaping of phase signal

PA

b(t) LPF VCO

 

 

=

0 ,

2 N Q E

P e GMSK α b =

a 0 . 68 85 . 0

25 .

= 0 BT

{ BT

(38)

FSK FSK

logical “1”: positive frequency shift

logical “0”: negative frequency shift

PA

b(t) LPF VCO

 

 

=

0

, N

Q E

P e FSK b

0 1

f

c

-f f

c

+f

( f R )

B T = 2 ∆ +

(39)

Other modulation schemes Other modulation schemes

M-ary PSK:

I Q

η M

b

E

b

/N0

2 0.5 10.5

4 1 10.5

8 1.5

14

16 2 18.5

32 2.5 23.4

64

3

28.5

(40)

Other modulation schemes Other modulation schemes

M-ary QAM:

I Q

η M

b

E

b

/N0

4 1 10.5

16 2 15

64 3 18.5

256 4 24

1024 5 28

4096

6

33.5

(41)

Digital transmission chain Digital transmission chain

Information bits Symbol mapping I/Q mapping

Line coding Pulse Shaping RF upconversion

011000110001101101110010 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8

} } } } } } } }

(42)

Line coding Line coding

impulse train pulse train

Spectral widening

bit synchronization

DC component

return-to-zero (RZ)

non-return-to-zero (NRZ)

Manchester

unipolar

bipolar

(43)

Line coding formats Line coding formats

unipolar bipolar NRZ

RZ

Manchester NRZ

1 0 0 1 0 1 1 0 0 1 0 1

(44)

Digital transmission chain Digital transmission chain

Information bits Symbol mapping I/Q mapping

Line coding Pulse Shaping RF upconversion

011000110001101101110010 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8

} } } } } } } }

(45)

Pulse shaping Pulse shaping

TX filter

δ (t) RX filter

h tx (t)=p(t) h rx (t)

h c (t)

h eff (t)

( ) ( ) ( ) ( ) t t h t h t h ( ) t

h eff = δ ∗ txcrx

( ) s = eff nT

h

Nyquist criterion: { K 0 n n = 0 0

(46)

Inter-symbol interference

Inter-symbol interference

(47)

Eye diagram Eye diagram

-2 -1 0 1 2

0.0 0.5T

s

eye opening

-0.5T

s

(48)

Inter-symbol interference

Inter-symbol interference

(49)

Eye diagram Eye diagram

-2 -1 0 1 2

0.0 0.5T

s

eye opening

-0.5T

s

(50)

Pulse shaping Pulse shaping

• spectral efficiency is optimized (minimal BW, low leakage)

• bit synchronization is facilitated

• ISI effects are minimized

Choose optimal h tx (t) such that:

• bit synchronization is optimized

• ISI effects are minimized

Choose optimal h eff (t)=h tx (t)*h rx (t) such that:

(51)

Sinc Sinc pulse pulse

( ) ( )

( ) s s

eff t T

T t t

h π

π

= sin ( ) = Π  

s s

eff f

f f f

H 1

F

Ts 1/2Ts

t f

F

(52)

Shaping Shaping

( ) ( )

( ) z ( ) t

T t

T t t

h

s s

eff = •

π π sin

Ts t

Nyquest criterion remains satisfied for z(t):

(53)

Shaping Shaping

-4 -3 -2 -1 0 1 2 3 4

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

t

(54)

Shaping Shaping

-3dB BW

=

=

*

.

z(t)

Z(f)

t

f

(55)

Raised cosine shaping Raised cosine shaping

s

eff f T

H ( ) =

 

 

 

 

 

 

 − −

+

=

s s

s

f T T

T

2 cos 1

2 1

α α

π

= 0

( ) T

s

f 1 2

0 ≤ ≤ − α

( ) T

s

f ≥ 1 + α 2

rest

( )

( ) ( )

 

 

⋅ 

 

 

= −

s s s

s

eff t T

T t T

t

T t t

h π

π α

πα sin 4

1

2 ) cos

( 2

(56)

Raised cosine shaping Raised cosine shaping

α =0 α =0.3 α =0.5 α =0.9

1/T

t

f

(57)

RRC shaping RRC shaping

h eff (t)=h tx (t)*h rx (t) Raised Cosine

h tx (t)=h rx (t)=sqrt(h eff (t)) Root Raised Cosine

(58)

Gaussian

Gaussian shaping shaping

) exp(

)

( 2 2 s 2

eff f f T

H = − α

) exp(

) (

2 2 2

2

s

eff T

t t

h α

π α

π

=

s

dB T

B α

2 ) 2 ln(

3 =

(59)

Gaussian

Gaussian shaping shaping

α =2.0 α =1.0 α =0.5

Ts/2 Ts 3Ts/2 0

t

1/Ts 2/Ts 3/Ts

0

f

(60)

Spectral effect Spectral effect

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-60

-50

-40

-30

-20

-10

0

10

(61)

Digital transmission chain Digital transmission chain

Information bits Symbol mapping I/Q mapping

Line coding Pulse Shaping RF upconversion

011000110001101101110010 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8

} } } } } } } }

(62)

RF RF upconversion upconversion ( ) t ( t ( ) t )

A t

s ( ) = cos ω c + φ

( ) t [ ( ) ( ) ( ) t t ( ) ( ) ( ) t t ]

A t

s ( ) = cos φ sin ω csin φ cos ω c

A(t)cos( φ (t))

LO

A(t)sin( φ (t))

sin( ω c t)

cos( ω c t) Σ s(t)

Via I and Q modulation:

(63)

RF RF upconversion upconversion ( ) t ( t ( ) t )

A t

s ( ) = cos ω c + φ

( ) t ( ( ) t )

s LPF

t

s ( ) = { 2 ⋅ IF ⋅ cos ω c + ω IF

Via IF stage: s IF ( t ) = A ( ) t cos ( ω IF t − φ ( ) t )

( ) [ cos ( ( ) ) ( ) ( cos ( 2 ) ( ) ) ] }

{ A t t t A t t t

LPF ω c + φ + ω c + ω IF − φ

=

(64)

RF RF upconversion upconversion

A(t)cos( ω IF t- φ (t))

LO

cos( ω c + ω IF )t)

s(t) LPF

Via IF stage:

(65)

RF RF downconversion downconversion

S

f lo -f lo

LO

f c -f c

image

(66)

RF RF downconversion downconversion

High IF: f lo -f c >> W band

Low IF: f lo -f c W band

Zero IF: f lo -f c =0

(67)

Coherent versus non-coherent Coherent versus non-coherent

reception reception

• phase reference

• phase and frequency are retrieved

Coherent:

• energy detection

• differential detection (previous symbol is reference)

Non-coherent:

r(t)

f, φ

r(t)

τ f 1

f 2

m

a

x

r(t)

(68)

Read:

Chapter 5: §5.11

Chapter 6: §6.1-6.10, 6.12-6.17 (not 6.14.2)

Solve problems:

Chapter 5: 5.1, 5.5, 5.6, 5.12

FOR NEXT WEEK

FOR NEXT WEEK

(69)
(70)

Inter-symbol interference Inter-symbol interference

0

(71)

Inter-symbol interference

Inter-symbol interference

Referensi

Dokumen terkait

Ammonia, nitrate, and conductivity rejection by the ESPA2 membrane as a function of 186 applied pressure in the RO treatment of A dilute condensate and B concentrated condensate error

MEDIA AND PUBLIC RELATIONS POLICY The Communications Office at the University of Liberal Arts Bangladesh ULAB exists to strategize and provide accurate, timely, and pertinent