Session 4: Modulation & transmission
Mobile Radio Communications
Mobile Radio Communications
Why modulation ? Why modulation ?
• RF carrier as transmission medium
• spectral efficiency
• robustness on radio path
• analog versus digital information
Carrier modulation Carrier modulation
• amplitude/phase
• phasor / complex baseband representation
• I and Q modulation:
cos and sin
in-phase and quadrature component
AM PM
I Q
I
Q real complex
AM
Constant-envelope modulation Constant-envelope modulation
• RF amplitude constant
• class C amplification (efficiency)
• limiting receiver
• non-linear TX-RX operations
• information in phase only (but be careful …)
PA
s(t) VCO
Analog modulation Analog modulation
• Information is analog
• AM, PM, and FM
( ) t A [ m ( ) t ] f t
s
AM=
c1 + cos 2 π
cf c -f c
S
( ) f t
A t A
m A if
k A
cc m c
m
= cos 2 π
=
AM
SSB modulation SSB modulation
• AM: redundant information (two side bands)
• Remove one side band → Single Side Band
• Complex !
( ) t A ( m ( ) t f t m ( ) t f t )
s
SSB=
ccos 2 π
cm ˆ sin 2 π
cf c -f c
S SSB
( ) t
m ˆ Hilbert transform
SSB generation SSB generation
HS m S m
H j
HS m
j
f c -f c
Q
j
-j
* -f c f c
I
S m
f c -f c
I
* -f c f c
I
SSB generation SSB generation
f c -f c
I
( ) t f t
m
A
ccos 2 π
cf c -f c
I
( ) t f t
m
A
cˆ sin 2 π
c• Addition: lower side bands
• Subtraction: upper side bands
SSB features SSB features
• Amplitude and phase modulation
• Bandwidth efficient but poor performance in radio channel
• Needs accurate frequency tuning
• Pilot tone required
Angle modulation Angle modulation
• Frequency or phase
• Constant envelope
( ) ( )
+
= ∫
∞
− t f c
c
FM
t A f t k m d
s cos 2 π 2 π τ τ
( ) t A f t
m
if =
mcos 2 π
mFM
( )
+
= f t
f A t k
f A
t
s
mm m f c
c
FM
cos 2 π sin 2 π
k
ffrequency deviation in V/Hz
W f W
A k
f mf
= ∆
β =
Angle modulation Angle modulation
( ) t A [ f t k m ( ) t ]
s
FM=
ccos 2 π
c+ θ PM
k
θphase deviation in rad/Hz
∂ / ∂ t
m(t)
PM
FM
m(t)
FM
∫ PM
θ
β
p= k θ A
m= ∆
FM modulation FM modulation
f c -f c
I
m f
T
f
B = 2 ( β + 1 ) β
f< 1 f
B
T= 2 ∆ β
f>> 1
Carson’s rule:
FM SNR performance FM SNR performance
FM
detector LPF
( ) W
N SNR A
f c
in
2 1
2
0 2
= +
β ( ) ( )
inp f
f
out
SNR
V t SNR m
2
1
26
+
= β β
(
f1 ) W
2 β + 2 W
FM SNR performance FM SNR performance
W N
SNR out f P carrier
0
3 β 2
=
2
2 c carrier
P = A
Digital modulation Digital modulation
• Information is digital
• binary modulation: bit b i → symbol s k
• m-ary modulation: {b i ,b i+1 …b i+N-1 } → s k log 2 m bits/symbol
m → η b ( η b = R b /W)
• E b energy per bit: P carrier × T b
• E s energy per symbol: P carrier × T s
• N 0 noise spectral density: P noise /W
Digital modulation Digital modulation
• symbol duration T s ; symbol rate R s = 1/T s symbol rate = baud rate
• bit duration T b ; bit rate R b = 1/T b
R b = R s log 2 m
Shannon’s channel capacity Shannon’s channel capacity
) 1
(
log 2 SNR W
C = +
W R N
E W
N
T E
P
SNR P b b b b
N
s = ⋅
= ⋅
=
0 0
R b
C =
Maximum capacity:
Shannon’s channel capacity Shannon’s channel capacity
) 1
( log
0
2 W
R N
E W
R b b b
⋅ +
=
b b
W R b
b b
W R
N E
η
η 1
2 1
2
0
= −
= −
η spectral efficiency b/s/Hz
Power-bandwidth trade-off Power-bandwidth trade-off
η b [dB]
-25 -20 -15 -10 -5 0 5 10
0
-5
E b /N 0 [dB]
5 10 15 20 25
BW limited
power limited
GSM
IS-95
DECT Bluetooth
Power spectral density Power spectral density
( ) v ( ) τ
v f R
G ↔ F
( ) τ = E ( v ( ) ( ) t v t + τ )
R v
autocorrelation:
Wiener-Kinchine theorem:
Bandwidth definitions Bandwidth definitions
-60 -50 -40 -30 -20 -10 0
-3dB BW
null-to-null BW
G(f) ↑
→ f
absolute BW: freq. range for which G(f) > 0
99% BW: freq. range where 99% of power is
Digital transmission chain Digital transmission chain
Information bits Symbol mapping I/Q mapping
Line coding Pulse Shaping RF upconversion
011000110001101101110010 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8
} } } } } } } }
Constellation diagram Constellation diagram
I Q
E s
E s
−
Normalize by 2 T s d ij
Orthogonal:
( ) ( ) 0
0
∫ t j t dt =
T
i φ
φ
j
i ≠
Error probability Error probability
0 d ij /2 d ij
) ( )
2 2 exp(
) 1
Pr(
0 2 00
z Q dz
z z
z P
z
e
= ≥ = ∫
∞π − =
Error probability Error probability
=
=
≥
=
2 0
2 )
Pr( N
Q d Q A
z d
P ij
norm ij norm
e σ
σ z = A
s
s
E
T
A = 2 ⋅ A
norm= E
sB N
0σ = σ
norm= N
02
BPSK BPSK
I Q
E b
E b
−
b
ij E
d = 2
=
0 ,
2 N Q E
P e BPSK b 2
A 2
E
E s = b =
QPSK QPSK
I Q
E b
2
b
ij E
d = 2
=
0 ,
2 N Q E
P e QPSK b 4
2
A 2
E b = E s =
Offset-QPSK Offset-QPSK
QPSK
OQPSK
π π /4 QPSK /4 QPSK
I Q
I
Q
π π /4 QPSK /4 QPSK
I Q
11 01 00 10
π/4 3π/4
−3π/4
−π/4
b k , b k-1 φ k
Minimum Shift Keying Minimum Shift Keying
I
Q
I
Q
1 1 0 1 0 0 0 1 1 0
0 0 1 0 1 0 1 1 1
1 1 0 1 0 0 0 1 1 0
0 0 1 0 1 0 1 1 1
MSK is
MSK is cos cos -shaped OQPSK -shaped OQPSK
Minimum Shift Keying Minimum Shift Keying
( ) ( ) +
= f t
T t t
m
S c
b I
MSK π π
2 2 cos
cos
( ) ( f t )
T t t
m c
b
Q π π
2 2 sin
sin
[ ( ) ]
( f m t f t )
S MSK = cos 2 π c + ∆ FSK with ∆ f=1/4T b
Continuous phase FSK (CPFSK) Continuous phase FSK (CPFSK)
Continuous phase modulation (CPM)
Continuous phase modulation (CPM)
Minimum Shift Keying Minimum Shift Keying
Orthogonal frequency keying Orthogonal frequency keying
s
c T
f
f 4
: 1
1 = +
s
c T
f
f 4
: 1
0 = −
T s
0
Minimum Shift Keying Minimum Shift Keying
90
o-90
o-270
o270
o360
o-360
o1
1 0 1 0
0
0 1 0 1
PHASE TRELLIS PHASE TRELLIS
s
c
T
f
f 4
: 1
1 = +
s
c
T
f
f 4
: 1
0 = −
FSK:
T 2T 3T 4T
Symbol
Symbol transistions transistions
I Q
OQPSK MSK
QPSK
A
φ
0 Ts
π 2Ts
A
φ
0 Ts/2
π Ts A
φ
0 Ts
π 2Ts
Power spectral densities Power spectral densities
-40 -30 -20 -10 0 10
-50
f
c-70
-60
f
c+R
bf
c-R
bf
c-2R
bf
c+2R
bBPSK QPSK
MSK
GMSK GMSK
• Gaussian shaping of phase signal
PA
b(t) LPF VCO
=
0 ,
2 N Q E
P e GMSK α b =
a 0 . 68 85 . 0
25 .
= 0 BT
∞
→
{ BT
FSK FSK
• logical “1”: positive frequency shift
• logical “0”: negative frequency shift
PA
b(t) LPF VCO
=
0
, N
Q E
P e FSK b
0 1
f
c- ∆ f f
c+ ∆ f
( f R )
B T = 2 ∆ +
Other modulation schemes Other modulation schemes
M-ary PSK:
I Q
η M
bE
b/N0
2 0.5 10.5
4 1 10.5
8 1.5
14
16 2 18.5
32 2.5 23.4
64
3
28.5
Other modulation schemes Other modulation schemes
M-ary QAM:
I Q
η M
bE
b/N0
4 1 10.5
16 2 15
64 3 18.5
256 4 24
1024 5 28
4096
6
33.5
Digital transmission chain Digital transmission chain
Information bits Symbol mapping I/Q mapping
Line coding Pulse Shaping RF upconversion
011000110001101101110010 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8
} } } } } } } }
Line coding Line coding
impulse train → pulse train
→
• Spectral widening
• bit synchronization
• DC component
• return-to-zero (RZ)
• non-return-to-zero (NRZ)
• Manchester
• unipolar
• bipolar
Line coding formats Line coding formats
unipolar bipolar NRZ
RZ
Manchester NRZ
1 0 0 1 0 1 1 0 0 1 0 1
Digital transmission chain Digital transmission chain
Information bits Symbol mapping I/Q mapping
Line coding Pulse Shaping RF upconversion
011000110001101101110010 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8
} } } } } } } }
Pulse shaping Pulse shaping
TX filter
δ (t) RX filter
h tx (t)=p(t) h rx (t)
h c (t)
h eff (t)
( ) ( ) ( ) ( ) t t h t h t h ( ) t
h eff = δ ∗ tx ∗ c ∗ rx
( ) s = eff nT
h
Nyquist criterion: { K 0 n n ≠ = 0 0
Inter-symbol interference
Inter-symbol interference
Eye diagram Eye diagram
-2 -1 0 1 2
0.0 0.5T
seye opening
-0.5T
sInter-symbol interference
Inter-symbol interference
Eye diagram Eye diagram
-2 -1 0 1 2
0.0 0.5T
seye opening
-0.5T
sPulse shaping Pulse shaping
• spectral efficiency is optimized (minimal BW, low leakage)
• bit synchronization is facilitated
• ISI effects are minimized
Choose optimal h tx (t) such that:
• bit synchronization is optimized
• ISI effects are minimized
Choose optimal h eff (t)=h tx (t)*h rx (t) such that:
Sinc Sinc pulse pulse
( ) ( )
( ) s s
eff t T
T t t
h π
π
= sin ( ) = Π
s s
eff f
f f f
H 1
↔ F
Ts 1/2Ts
t f
↔ F
Shaping Shaping
( ) ( )
( ) z ( ) t
T t
T t t
h
s s
eff = •
π π sin
Ts t
Nyquest criterion remains satisfied for z(t):
Shaping Shaping
-4 -3 -2 -1 0 1 2 3 4
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
t
Shaping Shaping
-3dB BW
=
=
*
.
z(t)
Z(f)
t
f
Raised cosine shaping Raised cosine shaping
s
eff f T
H ( ) =
− −
+
=
s s
s
f T T
T
2 cos 1
2 1
α α
π
= 0
( ) T
sf 1 2
0 ≤ ≤ − α
( ) T
sf ≥ 1 + α 2
rest
( )
( ) ( )
⋅
= −
s s s
s
eff t T
T t T
t
T t t
h π
π α
πα sin 4
1
2 ) cos
( 2
Raised cosine shaping Raised cosine shaping
α =0 α =0.3 α =0.5 α =0.9
1/T
t
f
RRC shaping RRC shaping
h eff (t)=h tx (t)*h rx (t) Raised Cosine
h tx (t)=h rx (t)=sqrt(h eff (t)) Root Raised Cosine
Gaussian
Gaussian shaping shaping
) exp(
)
( 2 2 s 2
eff f f T
H = − α
) exp(
) (
2 2 2
2
s
eff T
t t
h α
π α
π −
=
s
dB T
B α
2 ) 2 ln(
3 =
−
Gaussian
Gaussian shaping shaping
α =2.0 α =1.0 α =0.5
Ts/2 Ts 3Ts/2 0
t
1/Ts 2/Ts 3/Ts
0
f
Spectral effect Spectral effect
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-60
-50
-40
-30
-20
-10
0
10
Digital transmission chain Digital transmission chain
Information bits Symbol mapping I/Q mapping
Line coding Pulse Shaping RF upconversion
011000110001101101110010 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8
} } } } } } } }
RF RF upconversion upconversion ( ) t ( t ( ) t )
A t
s ( ) = cos ω c + φ
( ) t [ ( ) ( ) ( ) t t ( ) ( ) ( ) t t ]
A t
s ( ) = cos φ sin ω c − sin φ cos ω c
A(t)cos( φ (t))
LO
A(t)sin( φ (t))
sin( ω c t)
cos( ω c t) Σ s(t)
Via I and Q modulation:
RF RF upconversion upconversion ( ) t ( t ( ) t )
A t
s ( ) = cos ω c + φ
( ) t ( ( ) t )
s LPF
t
s ( ) = { 2 ⋅ IF ⋅ cos ω c + ω IF
Via IF stage: s IF ( t ) = A ( ) t cos ( ω IF t − φ ( ) t )
( ) [ cos ( ( ) ) ( ) ( cos ( 2 ) ( ) ) ] }
{ A t t t A t t t
LPF ω c + φ + ω c + ω IF − φ
=
RF RF upconversion upconversion
A(t)cos( ω IF t- φ (t))
LO
cos( ω c + ω IF )t)
s(t) LPF
Via IF stage:
RF RF downconversion downconversion
S
f lo -f lo
LO
f c -f c
image
RF RF downconversion downconversion
• High IF: f lo -f c >> W band
• Low IF: f lo -f c ≈ W band
• Zero IF: f lo -f c =0
Coherent versus non-coherent Coherent versus non-coherent
reception reception
• phase reference
• phase and frequency are retrieved
Coherent:
• energy detection
• differential detection (previous symbol is reference)
Non-coherent:
r(t)
f, φ
r(t)
τ f 1
f 2
m
a
x
r(t)
• Read:
Chapter 5: §5.11
Chapter 6: §6.1-6.10, 6.12-6.17 (not 6.14.2)
• Solve problems:
Chapter 5: 5.1, 5.5, 5.6, 5.12
FOR NEXT WEEK
FOR NEXT WEEK
Inter-symbol interference Inter-symbol interference
0