• Tidak ada hasil yang ditemukan

Persamaan CLAUSIUS - CLAPEYRON - Spada UNS

N/A
N/A
Protected

Academic year: 2024

Membagikan "Persamaan CLAUSIUS - CLAPEYRON - Spada UNS"

Copied!
12
0
0

Teks penuh

(1)

Persamaan Clapeyron dan Persamaan Clausius-

Clapeyron

Dr. M. Masykuri, M.Si.

Natural Science Study Program

Teacher Training and Education Faculty Sebelas Maret Universitfy (UNS)

Website: http://masykuri.staf.fkip.uns.ac.id, email: [email protected]

Transformasi Energi

(2)

Outline

1.

Persamaan Clapeyron

2.

Persamaan Clausius-Clapeyron

(3)

Gibbs Energies and Phase Diagrams

• Chemical potential (µ) - for one component system µ =Gm

Measure of the potential of a substance to bring about change

• At equilibrium, µ is the same throughout the system

If µ1 is chem. potential of phase 1 and µ2 is chem. potential of phase 2, at equilibrium µ1 = µ2

Consequence of 2nd Law of Thermodynamics

If dn is transferred from one location

(phase) to another, -µ1dn, is the change in Gibbs energy in that phase and µ2dn is

change in free energy in the second phase.

(4)

Gibbs Energies and Phase Diagrams

dG = -µ1dn + µ2dn = (µ2 - µ1)dn If µ1 > µ2 dG < 0 and change

spontaneous

If µ1 = µ2 dG = 0 and system at equilibrium

Transition temperature is that temperature where µ1 = µ2

• Chemical potentials of phases change with temperature

At low T and reasonable p, solid has lowest µ and, hence, most stable

As T raised, µ of other phase may become less than solid(at that temp.) so it

becomes stable phase

(5)

Persamaan Clapeyron

Pada perubahan fasa:

X(fasa 1)  X(fasa 2)

dG = -S dT + V dP dG1 = -S1 dT + V1 dP dG2 = -S2 dT + V2 dP Sehingga,

-S1 dT + V1 dP = -S2 dT + V2 dP (S2 - S1) dT = (V2 - V1) dP

S dT = V dP = (1)

Karena,

G = H – T S Pada setimbang G = 0

H – T S = 0 T S = H

S = (2)

(2)  (1) didapat,

=

Persamaan CLAPEYRON

Pada setimbang, berlaku:

G = 0 G1 = G2 dG1 = dG2

`

(6)

Persamaan Clapeyron

Dari persamaan Clapeyron:

=

Pada H dan T konstan, maka:

P2 – P1= ln

Persamaan CLAPEYRON

(7)

Persamaan Clausius -Clapeyron

Persamaan Clapeyron, = adalah untuk semua perubahan fasa (padat, cair atau gas).

Khusus untuk kesetimbangan yang melibatkan uap, misalnya:

Cair  Uap Berlaku,

=

Karena Vuap >>> Vcair, maka

=

Pada Gas ideal Vuap =RT/P, =

= =

Persamaan CLAUSIUS - CLAPEYRON

(8)

Persamaan Clausius -Clapeyron

Persamaan Clausius-Clapeyron, Jika konstan, maka:

lnP2 – lnP1= ln =

Persamaan CLAUSIUS - CLAPEYRON

(9)

Problem Set Clausius -Clapeyron Eq.

Titik lebur suatu senyawa organik X adalah 80 oC. Jika

tekanan uap cair X = 10 mmHg pada 85,8 oC dan 40 mmHg pada 119,3 oC, serta tekanan uap Xpadat = 1 mmHg pada 52,6 oC. Hitunglah:

a. Panas penguapan cairan dan titik didih (per definisi:

pada 760 mmHg)

b. Tekanan uap pada titik lebunya

(10)

Problem Set Clausius -Clapeyron Eq.

Diketahui:

P1 = 10 mmHg T1= (85,8 + 273) K = 358,8 K P2 = 40 mmHg T2= (119,3 + 273) K = 392,3 K Solid Ps = 1 mmHg

Jawab:

ln = R = 0,082 Latm mol-1K-1

R = 8,314 Jmol-1K-1 ln =

Jawab:

= 48470 Jmol-1 = 48,47 kJmol-1

a)

(11)

Problem Set Clausius -Clapeyron Eq.

Jika T2 adalah Tdidih

(pada P2 =760 mmHg) ln =

ln = = -

Td = 489 K

Jawab:

b) Tlebur = 80 + 273 K = 353K Plebur = …?

T1 = 358,8K P1 = 10 mmHg Maka:

ln = ln =

Plebur = 7,635 mmHg

(12)

Referensi

Dokumen terkait

As discussed earlier in this chapter, the open circuit, or equilibrium, cell voltage is primarily determined by the thermodynamics of the chemical reaction between the components in the

“Energy in transit due to temperature difference.”gy p Thermodynamics tells us:  How much heat is transferred Q H h k i d W  How much work is done W  Final state of the system

Dimension 2 Understanding the role of models and theories in Chemistry At the heart of chemistry is our use of models/ theories at the level of atoms and molecules to make

A model of learning chemistry One’s knowledge of chemistry along any dimension is partial, and differs in degree from dimension to dimension Understanding grows by incremental

The consequence, its thermodynamic properties become richer, the phase transition behavior of electrically charged AdS black hole is reminiscent of the liquid-gas phase transition in a

fsolve completed because the vector of function values is near zero as measured by the default value of the function tolerance, and the problem appears regular as measured by the

The model and can be depicted as: 2 where Ce is the adsorbate equilibrium concentration of aqueous phase mg/L, Qe is the adsorption capacity of the adsorbent at the equilibrium

DSS - DWW 26 Classifcation of Weighting Methods  Weights assigned to criteria in multi-criteria evaluation method is an important step as fnal results of the multi-criteria decision-