• Tidak ada hasil yang ditemukan

Prediction of Hydraulic Fractured Well Performance using Empirical Correlation and Machine Learning

N/A
N/A
Protected

Academic year: 2023

Membagikan "Prediction of Hydraulic Fractured Well Performance using Empirical Correlation and Machine Learning"

Copied!
12
0
0

Teks penuh

(1)

Prediction of Hydraulic Fractured Well Performance using Empirical Correlation and Machine Learning

.DPDO+DP]DK$PHJD<DVXWUDDQG'HG\,UDZDQ

370HGFR( 3,QGRQHVLD

7KH(QHUJ\%XLOGLQJWK)ORRU6&%'/RW$

-O-HQGUDO6XGLUPDQ.DY-DNDUWD,QGRQHVLD

2,QVWLWXW7HNQRORJL%DQGXQJ

-O*DQHVKD/E6LOLZDQJL.HF&REORQJ%DQGXQJ-DZD%DUDW,QGRQHVLD

&RUUHVSRQGLQJDXWKRUKXPDV#LWEDFLG

0DQXVFULSWUHFHLYHG0D\th5HYLVHG-XO\th

$SSURYHG$XJXVWth $YDLODEOHRQOLQH6HSWHPEHUnd

‹6&2*

How to cite this article:

.DPDO +DP]DK$PHJD <DVXWUD DQG 'HG\ ,UDZDQ 3UHGLFWLRQ RI +\GUDXOLF )UDFWXUHG :HOO 3HUIRUPDQFH XVLQJ(PSLULFDO &RUUHODWLRQ DQG0DFKLQH /HDUQLQJ 6FLHQWLILF &RQWULEXWLRQV 2LO DQG*DVSS

ABSTRACT - +\GUDXOLFIUDFWXULQJKDVEHHQHVWDEOLVKHGDVRQHRISURGXFWLRQHQKDQFHPHQWPHWKRGVLQWKHSHWUROHXP LQGXVWU\7KLVPHWKRGLVSURYHQWRLQFUHDVHSURGXFWLYLW\DQGUHVHUYHVLQORZSHUPHDELOLW\UHVHUYRLUVZKLOHLQPHGLXP SHUPHDELOLW\LWDFFHOHUDWHVSURGXFWLRQZLWKRXWDIIHFWLQJZHOOUHVHUYHV+RZHYHUSURGXFWLRQUHVXOWORRNVVFDWWHUHGDQG appears to have no direct correlation to individual parameters. It also tend to have a decreasing trend, hence the success UDWLRQHHGVWREHLQFUHDVHG+\GUDXOLFIUDFWXULQJLQWKH6RXWK6XPDWUDDUHDKDVEHHQLPSOHPHQWHGVLQFHDQGWKHUH LVSOHQW\RIGDWDWKDWFDQEHDQDO\]HGWRUHVROYHWKHUHODWLRQVKLSEHWZHHQDFWXDOSURGXFWLRQZLWKUHVHUYRLUSDUDPHWHUV DQGIUDFWXULQJWUHDWPHQW(PSLULFDOFRUUHODWLRQDSSURDFKDQGPDFKLQHOHDUQLQJ0/PHWKRGVDUHERWKXVHGWRHYDOXDWH WKLVUHODWLRQVKLS&RQFHSWRI'DUF\¶VHTXDWLRQLVXWLOL]HGDVEDVLVIRUWKHHPSLULFDOFRUUHODWLRQRQWKHDFWXDOGDWD7KH 0/PHWKRGLVWKHQDSSOLHGWRSURYLGHEHWWHUSUHGLFWLRQVERWKIRUSURGXFWLRQUDWHDQGZDWHUFXW7KLVPHWKRGKDVDOVR EHHQGHYHORSHGWRVROYHGDWDOLPLWDWLRQVVRWKDWWKHSUHGLFWLRQPHWKRGFDQEHXVHGIRUDOOZHOOV(PSLULFDOFRUUHODWLRQ FDQJLYHVDQ52RIZKLOH0/FDQJLYHDEHWWHU52WKDWLVFORVHWR)XUWKHUPRUHWKLVSUHGLFWLRQPHWKRGFDQEH XVHGIRUZHOOFDQGLGDWHVHOHFWLRQPHDQV

Keywords: +\GUDXOLF)UDFWXULQJ :HOO3HUIRUPDQFH (PSLULFDO&RUUHODWLRQ 0DFKLQH/HDUQLQJ

INTRODUCTION

+\GUDXOLFIUDFWXULQJLVDVWLPXODWLRQWUHDWPHQW to enhance well productivity and improves the HFRQRPLFYDOXHRIZHOOUHVHUYHV,WKDYHEHHQZLGHO\

applied to both low and moderate permeability reservoirs. In low permeability reservoir, it greatly contributes both to well productivity and to well reserves, while in moderate permeability reservoirs, it accelerates production without impacting the ZHOOUHVHUYHV+ROGLWFK 0D7KHSURGXFWLRQ

improvePHQWDQGDGGLWLRQDOUHVHUYHLIDQ\KDYHWREH MXVWL¿HGHFRQRPLFDOO\EHFDXVHK\GUDXOLFIUDFWXULQJ jobs requires high cost and involve large scale equipment.

0HDQZKLOHK\GUDXOLFIUDFWXULQJLQVRPH¿HOGV in South Sumatra has been implemented on more WKDQZHOOVVLQFH<HDUE\\HDULWEHFRPHV more challenging due to increasingly limited well candidates with good reservoir properties and GHFUHDVLQJ WUHQG LQ SURGXFWLRQ UHVXOWV 7KXV K\GUDXOLFIUDFWXULQJRSWLPL]DWLRQERWKLQSODQQLQJ Reserach and Development Centre for Oil & Gas Technology

“LEMIGAS”

-RXUQDO+RPHSDJHKWWSZZZMRXUQDOOHPLJDVHVGPJRLG

,661H,661 VOL. 44 NO. 2, AUGUST 2021

(2)

WKDW LQFOXGH ZHOO FDQGLGDWH VHOHFWLRQGHVLJQ DQG job execution hasWREHDSSOLHG7KHREMHFWLYHLVWR LQFUHDVHIUDFWXULQJMREVXFFHVVUDWLRDQGWKHUHIRUH contribute to more oil production.

+RZHYHUWKHSURGXFWLRQUHVXOWVIURPK\GUDXOLFDOO\

IUDFWXUHG ZHOOV ORRNV VFDWWHUHG DQG KDV QR FOHDU FRUUHODWLRQ WR LQGLYLGXDO ZHOO SDUDPHWHUV $]KDUL ,W JHWV HYHQ PRUH FKDOOHQJLQJ GXH WR WKH GHFUHDVLQJ WUHQG LQ SURGXFWLRQ UHVXOW RI K\GUDXOLF IUDFWXULQJMREWKDWPDNHWKHMREHFRQRPLFVEHFRPLQJ PDUJLQDO7KHUHDUHKXQGUHGVRIGDWDVHWVWKDWDUH SRWHQWLDOO\XVHIXOIRUWKHHYDOXDWLRQ7KHGDWDFRYHUV WKH UHVHUYRLU SDUDPHWHUV IURP SULPDU\ ORJ GDWD SHWURSK\VLFDODQDO\VLVDQGG\QDPLFSDUDPHWHUVIURP ZHOOWHVWLQJDQDO\VLV+\GUDXOLFIUDFWXULQJSDUDPHWHUV ERWKWKHWUHDWPHQWGDWDDQGIUDFWXUHJHRPHWU\UHVXOW DUHDOVRXWLOL]HG

7RHQVXUHWKDWK\GUDXOLFIUDFWXULQJMREFDQJLYH DGGLWLRQDOYDOXHIRUWKH¿HOGWKHUHLVDQHHGWRHVWLPDWH DQG TXDQWLI\ FRQFOXVLYHO\ WKH UHVXOW RI K\GUDXOLF IUDFWXULQJ MRE LQ RUGHU WR PLQLPL]H XQVXFFHVVIXO MRE7KXVWKHSUHGLFWLRQWRROKDVWREHGHYHORSHGWR determine well candidate based on reservoir and well SURSHUWLHV7ZRPHWKRGVWRGHYHORSWKHSUHGLFWLRQ tools are presented in this paper.

7KH¿UVWPHWKRGLVHPSLULFDOFRUUHODWLRQHTXDWLRQ It contains a mathematical equation based on some SDUDPHWHUVIURPDJLYHQVHWRIHPSLULFDOGDWDWKDWZLOO EHXVHGIRUSUHGLFWLQJRWKHUGDWD5LEDULþ âXãWHUãLþ ,Q WKLV SDSHU WKH HPSLULFDO FRUUHODWLRQ HTXDWLRQLVXVHGWRSUHGLFWWKHK\GUDXOLFIUDFWXULQJ UHVXOW EDVHG RQ FRPELQHG SDUDPHWHUV RI UHVHUYRLU pressure, transmissibility data and dimensionless SURGXFWLYLW\ LQGH[ IURP K\GUDXOLF IUDFWXULQJ treatment.

7KHVHFRQGPHWKRGLVPDFKLQHOHDUQLQJDSSURDFK 0DFKLQHOHDUQLQJLVWKHVWXG\RIFRPSXWHUDOJRULWKPV that can improve automatically through experience by discovering general rules in large data sets to PHHW WKH XVHU¶V LQWHUHVW 0LWFKHOO 7HPL]HO et al. KDV GHVFULEHG WKH DSSOLFDWLRQV RI PDFKLQHOHDUQLQJLQRLO JDVLQGXVWU\DQGSURYLGHLWV capability and limitations in unconventional reservoir engineering and well completion calculations. In many cases, machine learning was proven able to predict the output that has problem in data limitation DQGGDWDTXDOLW\0DNKRWLQet al.

)LQDOO\ ERWK WZR DSSURDFKHV DUH H[SHFWHG to yield a robust prediction tool that can be easily

applied to all wells using common primary data as LQSXWSDUDPHWHUV7KHSUHGLFWLRQWRROLVWKHQXWLOL]HG in well candidate selection to determine the good ZHOO FDQGLGDWHV DQG HOLPLQDWH QRQSRWHQWLDO ZHOO FDQGLGDWHV LQ WKH IXWXUH K\GUDXOLF IUDFWXULQJ MRE FDPSDLJQ ,W¶V DOVR H[SHFWHG WR HQVXUH DQG JXLGH WKH IUDFWXULQJ WUHDWPHQW RSWLPL]DWLRQ WR PD[LPL]H the production result.

DATA AND METHODS

7KHZRUNÀRZLQGHYHORSLQJWKLVVWXG\FRQVLVW RIPDMRUSKDVHVWKDWUHSUHVHQWVWKHZKROHSURFHVV DQG GHWDLOV RI ZRUNLQJ SURFHGXUH ,W LV VKRZQ RQ )LJ WKDW FRQVLVWV RI GDWD SUHSDUDWLRQ HPSLULFDO correlation approach, machine learning approach to predict production and water cut, and its application RQZHOOFDQGLGDWHVHOHFWLRQ$FWXDOGDWD¿HOGZLOOEH LQFRUSRUDWHGLQWKHGLVFXVVLRQRIHDFKVWHSWRHQVXUH that this methodology is applicable.

A. Data Preparation

'DWDIURPDFWXDOK\GUDXOLFIUDFWXULQJMREZHUH collected and tabulated that including input and output GDWD7KHRXWSXWGDWDLVWKHSURGXFWLRQSHUIRUPDQFH whereas input data covers well data including well FRPSOHWLRQ GDWD VXFK DV SHUIRUDWLQJ OHQJWK DQG ZHOOERUHVL]HDQGUHVHUYRLUGDWDLQFOXGLQJVHYHUDO SDUDPHWHUVVXFKDVUHVHUYRLUSUHVVXUHRSHQKROHORJDQG SHWURSK\VLFDOGDWD+\GUDXOLFIUDFWXULQJSDUDPHWHUV also covers actual treatment data and calculated IUDFWXUHJHRPHWU\

7KHGDWDZDVHYDOXDWHGWREHFRPHDUHDG\WR XVHGDWDVHW,WFRQVLVWVRIVHYHUDOVWHSVWKDWLQFOXGHV GDWDFRQYHUVLRQLJQRULQJ ¿OOLQJPLVVLQJYDOXHV DQGRXWOLHUGDWDHOLPLQDWLRQ7KHGDWDVHWLVWHVWHG E\ XVLQJ 3HDUVRQ FRUUHODWLRQ FRHI¿FLHQW 3HDUVRQ WRPHDVXUHWKHGLUHFWLRQDQGVWUHQJWKRIWKH linear relationship between input parameters and output parameter.

B. Empirical Correlation Approach

7KH HPSLULFDO FRUUHODWLRQ DSSURDFK XWLOL]HV WKH'DUF\HTXDWLRQLQUDGLDOFRQGLWLRQDVVKRZQLQ HTXDWLRQ7KLVHTXDWLRQQHHGUHVHUYRLUSURSHUWLHV that are represented by transmissibility and reservoir SUHVVXUH DQG IUDFWXUH SDUDPHWHUV 7UDQVPLVVLELOLW\

FDQEHGH¿QHGIURPSHWURSK\VLFDODQDO\VLVDQGZHOO WHVWLQJ 7KH ODWWHU PHWKRG LV SUHIHUUHG EHFDXVH LW represents the reservoir quality at certain radius.

7KLV PHWKRG XWLOL]HV WKH SUHIUDF GDWD REWDLQHG LQ PLQLIDOORII WHVW DQG DQDO\]HG XVLQJ VKRUW

(3)

impulse injection test to obtain reservoir permeability

$ERXVOHLPDQet al7KURXJKWKLVPHWKRGZH can also estiamte the reservoir pressure.

PD[LPL]HWKHZHOOSURGXFWLYLW\)RUDJLYHQSURSSDQW volume, square well drainage area, and values IRU ERWK SURSSDQW DQG UHVHUYRLU SHUPHDELOLW\ WKH GLPHQVLRQOHVVSURSSDQWQXPEHU1SLVGH¿QHGDV

)LJXUH

:RUNÀRZIRUSHUIRUPDQFHSUHGLFWLRQRIK\GUDXOLFIUDFWXUHGZHOO

ݍ ൌ ݄݇ሺܲെ ܲ௪௙ሻ ͳͶͳǤʹߤܤސሺ

ೢ൅ ܵሻ

)UDFWXUH SDUDPHWHU LV UHSUHVHQWHG E\

GLPHQVLRQOHVVSURGXFWLYLW\LQGH[3,RUJD as shown LQ HTXDWLRQ 7KLV SDUDPHWHU FDQ EH FDOFXODWHG EDVHG RQ D VLPXODWHG UHVXOW RI IUDFWXUH JHRPHWU\

XVLQJHTXLYDOHQWZHOOERUHUDGLXVFRQFHSWDQGXQL¿HG IUDFWXUHGHVLJQPHWKRGWKUXSURSSDQWQXPEHU

ܬ ൌ ͳ

ސሺ

ೢ൅ ܵሻൌ ͳ

ސሺ

ೢᇲሻ

3UDWV ILUVW LQWURGXFH WKH LGHD RI WKH HIIHFWLYHZHOOERUHUDGLXVU,WEDVHGRQDVLPSOH EDODQFLQJ RI ÀRZ DUHDV EHWZHHQ D ZHOOERUH DQG D IUDFWXUH JLYHV WKH HTXLYDOHQW YDOXH RI U IRU D SURSSHG IUDFWXUH &LQFR/H\et al. ODWHU LQWHJUDWHG WKLV LQWR D IXOO GHVFULSWLRQ RI UHVHUYRLU UHVSRQVHLQFOXGLQJWUDQVLHQWÀRZ)RUSVHXGRUDGLDO ÀRZUZLVH[SUHVVHGDVDIXQFWLRQRIIUDFWXUHOHQJWK

;IDQGGLPHQVLRQOHVVIUDFWXUHFRQGXFWLYLW\&fD).

7KH XQLILHG IUDFWXUH GHVLJQ PHWKRGRORJ\

SURYLGHGE\(FRQRPLGHV2OLJQH\DQG9DONy H[SDQGVWKHDERYHDSSURDFKWRLQFOXGHIUDFWXUHDQG well drainage area dimensions that will not reach SVHXGRUDGLDOÀRZEHIRUHWKHRQVHWRISVHXGRVWHDG\

VWDWH7KHNH\RIWKLVDSSURDFKLVWKHLGHDWKDWIRUD given proppant volume and well drainage area, there LVDIUDFWXUHKDOIOHQJWKZLGWKDQGFRQGXFWLYLW\WKDW

ܰͶ݇ݔݓ

݇ݔ Ͷ݇ݔݓ݄

݇ݔ݄ ʹܸ݇௣௥௢௣

ܸ݇௥௘௦

All above parameters are combined based on HTXDWLRQ DQG WKHQ SORWWHG YHUVXV SURGXFWLRQ UHVXOWLQ%)3'DWSVHXGRVWHDG\VWDWHUHJLPH7KH FRUUHODWLRQRIWKLVFURVVSORWFDQEHXWLOL]HGLQDIRUP RIHPSLULFDOFRUUHODWLRQWRSUHGLFWWKHUHVXOWRIQH[W K\GUDXOLFIUDFWXULQJMRE

C. Machine Learning Approach

0DFKLQH OHDUQLQJ 0/ LV D EURDG VXE¿HOG RI DUWL¿FLDOLQWHOOLJHQFHDLPHGWRHQDEOHPDFKLQHVWR H[WUDFWSDWWHUQVIURPGDWDVHW,WLVEDVHGRQPDWKHPDWLFDO VWDWLVWLFVQXPHULFDOPHWKRGVRSWLPL]DWLRQSUREDELOLW\

WKHRU\GLVFUHWHDQDO\VLVJHRPHWU\DQGHWF6PROD 9LVKZDQDWKDQ 7KHUH DUH WKUHH PDLQ FRPSRQHQWVLQ0/WKDWFRQVLVWVRIGDWDIHDWXUHVRU parameters and algorithms or method.

1RZDGD\V WKHUH DUH IRXU PDLQ GLUHFWLRQV LQ PDFKLQH OHDUQLQJ WKDW FRQVLVW RI FODVVLFDO 0/

HQVHPEOH PHWKRGV UHLQIRUFHPHQW OHDUQLQJ DQG QHXUDOQHWZRUNV GHHSOHDUQLQJZZZYDVNFRP

&ODVVLFDO 0/ XWLOL]HV SXUH VWDWLVWLFV PHWKRG DQG FRQVLVW RI VXSHUYLVHG HJ OLQHDU UHJUHVVLRQ DQG XQVXSHUYLVHG HJ FOXVWHULQJ (QVHPEOH PHWKRGV FRQVWUXFWDVHWRIFODVVL¿HUVDQGWKHQFODVVLI\QHZ GDWD SRLQWV E\ WDNLQJ D ZHLJKWHG YRWH RI WKHLU

(4)

SUHGLFWLRQV 'LHWWHULFK 6RPH ZHOONQRZQ HQVHPEOH PHWKRG DUH 5DQGRP )RUHVW %UHLPDQ

*UDGLHQW%RRVWLQJ)ULHGPDQDQG$GD

%RRVW'LHWWHULFK5HLQIRUFHPHQWOHDUQLQJLV used in case no data input but it have an environment WROLYHLQ1HXUDO1HWZRUNVDQG'HHS/HDQLQJLVXVHG IRUUHSODFHPHQWRIDOOSUHYLRXVDOJRULWKPV,WRIWHQ XVHGLQREMHFWLGHQWL¿FDWLRQVSHHFKUHFRJQLWLRQDQG synthesis, image processing and etc.

,QWKLVSDSHU0/LVXVHGWRFUHDWHUHODWLRQVKLS EHWZHHQSURGXFWLRQUHVXOWDVRXWSXWDQGUHVHUYRLU K\GUDXOLF IUDFWXULQJ SDUDPHWHUV DV LQSXW 7KH 0/

DSSURDFKLVGLYLGHGLQWRWZRSKDVHV,QSKDVHWKH input data is limited to pressure, transmissibility DQG3,GLPHQVLRQOHVVGDWDVLPLODUWRWKHHPSLULFDO correlation approach. It aims to compare the result RI HPSLULFDO FRUUHODWLRQ DQG 0/ PHWKRGV DQG WR HYDOXDWH WKH LPSRUWDQFH RI HDFK SDUDPHWHU LQ machine learning. In phase 2, the input used in phase LVUHSODFHGE\SULPDU\GDWDVXFKDVRSHQKROHORJ SHWURSK\VLFDOSDUDPHWHUVDQGIUDFWXULQJWUHDWPHQW 7KLV SKDVH LV SURSRVHG WR PDNH WKH 0/ PRGHO usable practically by using parameters that almost all wells have.

7KH 0/ PRGHO WKDW XVHG LQ WKLV SKDVH LV VX SHUYLVHG PDFKLQH OHDUQLQJ OLQHDU UHJUHVVLRQ DQG HQVHPEOH PHWKRG WKDW FRQVLVW RI 5DQGRP )RUHVW

*UDGLHQW %RRVWLQJ DQG$GDERRVW 7KH EHVW PRGHO LV FKRVHQ EDVHG RQ PHDQ DEVROXWH HUURU 0$(

FRHIILFLHQW RI GHWHUPLQDWLRQ 52 DQG 3HDUVRQ FRUUHODWLRQFRHI¿FLHQW5RQDFWXDOSURGXFWLRQUDWH DQGSUHGLFWLRQEDVHGRQ0/PRGHO

%HVLGH SURGXFWLRQ UDWH SUHGLFWLRQ WKH 0/ LV DOVRXVHGWRSUHGLFWWKHZDWHUFXW:&DQGQHWRLO SURGXFWLRQ ,Q WKLV FDVH WKH N1HDUHVW 1HLJKERU N11 PRGHO LV XWLOL]HG GXH WR WKH VLPLODULW\ RI LWVEDVHFRQFHSWZLWKWKH:&SUHGLFWLRQEDVHGRQ

geograpKLFDOFRRUGLQDWHV7KHPDLQFRQFHSWRIN11 LVWRSUHGLFWWKHODEHORIDTXHU\LQVWDQFHEDVHGRQ WKHODEHOVRINFORVHVWLQVWDQFHVLQWKHVWRUHGGDWD .DQJ7KHVWRUHGGDWDLQRXUFDVHLVWKH:&

GDWDRIHDFKSURGXFHUZHOOV

D. Application on Well Candidate Selection 7KHEHVW0/PRGHORQSURGXFWLRQUDWHDQGZDWHU cut predictions are implemented in well candidate VHOHFWLRQIRUIXWXUHK\GUDXOLFIUDFWXULQJMRE(FRQRPLF YDOXHLVGHWHUPLQHGIRUHDFKZHOOEDVHGRQWKHQHW RLOSUHGLFWLRQ7KLVPHWKRGFDQHOLPLQDWHZHOOVZLWK low oil production potential that yields low economic value.

0RUHRYHU WKH 0/ PRGHO FDQ EH XWLOL]HG WR RSWLPL]H WKH IUDFWXULQJ WUHDWPHQW SODQ LQ RUGHU WR KDYHPRUHRLOSURGXFWLRQ7KHRSWLPL]DWLRQFDQEH conducted by tuning the proppant type, proppant volume and other parameters.

RESULTS AND DISCUSSION

7KLVVHFWLRQSUHVHQWVUHVXOWVRIHPSLULFDOFRUUHODWLRQ DQG 0/ DSSURDFKHV WR HVWDEOLVK WKH UHODWLRQVKLSV EHWZHHQDFWXDOSURGXFWLRQDQGUHVHUYRLUIUDFWXULQJ parameters.

A. Empirical Correlation Approach

7KHUHDUHK\GUDXOLFIUDFWXUHGZHOOVWKDWKDYH FRPSOHWHGDWDDVUHTXLUHGE\WKH'DUF\¶VHTXDWLRQ 3URGXFWV RI SUHVVXUH WUDQVPLVVLELOLW\ GDWD DQG dimensionless productivity index is plotted against the actual production rate to get the trend and empirical correlation as well.

7ZRFRUUHODWLRQVKDYHEHHQGHYHORSHGEDVHG RQ WZR PHWKRGV WR GH¿QH WKH GLPHQVLRQOHVV 3, 7KH¿UVWPHWKRGLVWKH&LQFR/H\FRUUHODWLRQXVLQJ

)LJXUH

(PSLULFDO&RUUHODWLRQEDVHGRQD&LQFR/H\&RUUHODWLRQ

XVLQJHTXLYDOHQWZHOOERUHUDGLXVDQGE8QL¿HG)UDFWXUH'HVLJQXVLQJSURSSDQWQXPEHU

(5)

the equivalent wellbore radius whereas the second PHWKRG LV XQL¿HG IUDFWXUH GHVLJQ XVLQJ SURSSDQW QXPEHU7KHHPSLULFDOFRUUHODWLRQUHVXOWVIRUHDFK PHWKRGDUHVKRZQRQ)LJXUH

7KHHPSLULFDOFRUUHODWLRQVKRZVWKDWWKHUHLVD OLQHDUFRUUHODWLRQEHWZHHQWKHSURGXFWRISUHVVXUH WUDQVPLVVLELOLW\DQGGLPHQVLRQOHVV3,WRWKHSURGXFWLRQ UDWHV,WFRPSOLHVEDVLF'DUF\¶VHTXDWLRQ(PSLULFDO FRUUHODWLRQEDVHGRQGLPHQVLRQOHVV3,XVLQJZHOOERUH equivalent radius gives better result than empirical FRUUHODWLRQEDVHGRQSURSSDQWQXPEHU7KH52RIWKH

¿UVWPHWKRGLVZKLFKLVKLJKHUWKDQ52IURPWKH VHFRQGPHWKRGRI6RLVWKH3HDUVRQFRUUHODWLRQ FRHI¿FLHQWLWVKRZVWKDWWKH¿UVWPHWKRGJLYH ZKLFKLVKLJKHUQXPEHUWKDQWKHVHFRQGPHWKRGRI RQO\7KHFURVVSORWEHWZHHQDFWXDOSURGXFWLRQ and production result based on empirical correlation LVVKRZQLQ)LJXUH$WSURGXFWLRQUDWHRIPRUHWKDQ

%/3'WKHSORWVWDUWVWRGHYLDWHIURPOLQH52 UHVXOWLQJLQ52RIORZHUWKDQ

B. Machine Learning Approach

0DFKLQHOHDUQLQJSKDVHZDVFDUU\LQJRXWXVLQJ LQSXWDVVDPHLQSXWDVIRUWKHHPSLULFDOFRUUHODWLRQ DSSURDFK7KHREMHFWLYHLVWRDVVHVVDQGHQVXUHWKDW 0/ FDQ EH XWLOL]HG IRU WKH SURGXFWLRQ SUHGLFWLRQ RIK\GUDXOLFIUDFWXUHGZHOO7KHUHVXOWWKHQZLOOEH compared to the empirical correlation approach.

Input evaluation has been applied by assessing WKH LQSXW XVLQJ IHDWXUH HQJLQHHULQJ DQG IHDWXUH

iPSRUWDQFH IRU HDFK 0/ PRGHO$V GHVFULEHG RQ )LJXUHUHVHUYRLUWUDQVPLVVLELOLW\DSSHDUVWREHWKH PRVW LQÀXHQWLDO SDUDPHWHUV WR WKH SURGXFWLRQ UDWH UHVXOW,WLVUHSUHVHQWHGE\WKH3HDUVRQFRUUHODWLRQ FRHI¿FLHQWYDOXHRIZKLFKLVWKHKLJKHVWDPRQJ WKH SDUDPHWHUV 7KHQ LW LV IROORZHG E\ UHVHUYRLU SUHVVXUHDQGGLPHQVLRQOHVV3,

&RQVLVWHQWZLWKWKHIHDWXUHLPSRUWDQFHHYDOXDWLRQ reservoir transmissibility becomes the most important IRUDOO0/PRGHOVZLWKYDOXHVEHWZHHQDQG 5HVHUYRLUSUHVVXUHDQGJD have ranging values within

±IRUDOO0/PRGHOV

7KHZHOOVGDWDLVWKHQGLYLGHGLQWRWZRJURXSV RIGDWDIRUWUDLQLQJDQGGDWDIRUWHVWLQJ$V SUHYLRXVO\PHQWLRQHGWKH0/PRGHOVXVHGWRSUHGLFW SURGXFWLRQ UHVXOWV LV /LQHDU 5HJUHVVLRQ 5DQGRP )RUHVW*UDGLHQW%RRVWLQJDQG$GD%RRVW

7UDLQLQJDQGWHVWLQJUHVXOWHYDOXDWLRQVIRUHDFK 0/ PRGHO DUH VKRZQ LQ 7DEOH 7KH 0/ PRGHO WKDWKDV52FRQVLVWHQWDERYHDUH5DQGRP)RUHVW DQG *UDGLHQW %RRVWLQJ$GD%RRVW KDV D WHQGHQF\

IRURYHU¿WWLQJLQWKHWUDLQLQJKDYLQJWHVWLQJ52RI RQO\/LQHDUUHJUHVVLRQVKRZVQRWWRRUREXVW DVWKHWHVWLQJ52 is larger than the training value. As GHVFULEHGRQ)LJWKHFURVVSORWEHWZHHQDFWXDO SURGXFWLRQDQGSUHGLFWLRQIURP0/PRGHOWKDWIROORZ WKH52 DUH5DQGRP)RUHVWDQG*UDGLHQW%RRVWLQJ /LQHDUUHJUHVVLRQVKRZVVFDWWHUDQG$GD%RRVWFOHDUO\

VKRZVRYHU¿WWLQJLQWKHWUDLQLQJGDWDVHWEXWVFDWWHU in the testing data set.

)LJXUH

&URVV3ORWEHWZHHQSURGXFWLRQDFWXDO9VSURGXFWLRQIURPHPSLULFDOFRUUHODWLRQ

(6)

7KURXJKWKLs approach, it can be concluded that 0/FDQEHXVHGWRHVWLPDWHWKHSURGXFWLRQUHVXOWRI K\GUDXOLFIUDFWXUHGZHOO7UDQVPLVVLELOLW\IURPPLQL IDOORIIWHVWEHFRPHVWKHPRVWLPSRUWDQWSDUDPHWHU LQPDFKLQHOHDUQLQJ+RZHYHUWKHPDLQFRQFHUQLV WKDWWKH0/PRGHOFDQQRWEHDSSOLHGWRRWKHUZHOO EHFDXVHRI

7KH DYDLODELOLW\ RI WUDQVPLVVLELOLW\ GDWD IURP PLQLIDOORIIWHVWDUHOLPLWHGWRRQO\ZHOOV,W UHTXLUHGKLJKHIIRUWFRVWWRREWDLQWKLVGDWD 7KHFRUUHODWLRQEHWZHHQDFWXDOWUDQVPLVVLELOLW\

DQGSHWURSK\VLFDODQDO\VLVLVORZDW52

7KHXWLOL]DWLRQRIWUDQVPLVVLELOLW\RISHWURSK\VLFDO DQDO\VLVZLOOOHDGWRORZHU52 in the correlation DQGSURGXFHPRUHHUURU7KXVLWFDQQRWUHSODFH the actual transmissibility.

C. Machine Learning with Primary Data Set ,QRUGHUWRKDYH0/PRGHOWKDWLVSUDFWLFDOO\DEOH WREHXVHGIRUZHOOFDQGLGDWHVHOHFWLRQ0/PRGHO based on the primary data set is then developed.

7KLV 0/ PRGHO ZLOO XWLOL]H FRPPRQ SDUDPHWHUV WKDWDOPRVWDOORIZHOOVKDYH7KHLQSXWSDUDPHWHUV

ZLOOFRQVLVWRIEDVLFZHOOGDWDRSHQKROHORJSHWUR SK\VLFDODQDO\VLVDQGIUDFWXULQJWUHDWPHQW)UDFWXULQJ WUHDWPHQWGDWDDUHSUHIHUUHGWREHXVHGEHFDXVHODFN RIYDOLGDWLRQRQIUDFWXUHJHRPHWU\GDWD2QO\OLPLWHG QXPEHURIZHOOVWKDWKDYHWHPSHUDWXUHORJWRYDOLGDWH WKHVLPXODWHGIUDFWXUHJHRPHWU\

)HDWXUHHQJLQHHULQJLVDSSOLHGWRERWKUHVHUYRLU SURSHUWLHV DQG IUDFWXULQJ WUHDWPHQW WR VHOHFW WKH SDUDPHWHUVWKDWFDQEHLQSXWDVIHDWXUHLQ0/PRGHO 7KH YDOXH RI 3HDUVRQ FRUUHODWLRQ FRHIILFLHQW WR SURGXFWLRQGDWDWKDWKLJKHUWKDQDQGORZHUWKDQ DUH VHOHFWHG WR IHDWXUH LQ 0/ 6RPH LPSRUWDQW SDUDPHWHUVZHUHDOVRVHOHFWHGWREHLQSXWIHDWXUHLQ 0/)LQDOO\WKHSDUDPHWHUVWKDWZHUHVHOHFWHGWREH WKHLQSXWIHDWXUHLQ0/PRGHODUHVKRZQLQ7DEOH

7KHUHDUHZHOOVGDWDVHWWREHDQDO\]HGE\

0/7KH\DUHGLYLGHGLQWRWZRJURXSVFRQVLVWLQJRI GDWDIRUWUDLQLQJDQGGDWDIRUWHVWLQJ6DPH DVSUHYLRXV0/PRGHOXVHGWRSUHGLFWWKHSURGXFWLRQ UHVXOWDUH/LQHDU5HJUHVVLRQ5DQGRP)RUHVW*UDGLHQW Boosting and AdaBoost.

7KHWUDLQLQJDQGWHVWLQJUHVXOWVRIHDFK0/PRGHO DUHVKRZQLQ7DEOH7KH0/PRGHOVWKDWVKRZ52

)LJXUH

,QSXWHYDOXDWLRQXVLQJDIHDWXUHHQJLQHHULQJDQGEIHDWXUHLPSRUWDQFHIRUHDFK0/0RGHO 7DEOH

0/SKDVHUHVXOWHYDOXDWLRQ

0$( 5 5 0$( 5 5

5DQGRP)RUHVW

/LQHDU5HJUHVVLRQ

*UDGLHQW%RRVWLQJ

0/PRGHO

7UDLQLQJ 7HVWLQJ

$GD%RRVW

(7)

consistentDERYHDUH5DQGRP)RUHVW$GD%RRVW DQG*UDGLHQW%RRVWLQJ5DQGRP)RUHVWDQG*UDGLHQW

%RRVWLQJ JLYH VDWLVI\LQJ UHVXOWV EDVHG RQ 52 and 3HDUVRQ &RUUHODWLRQ FRHI¿FLHQW$GD%RRVW WHQG WR KDYHRYHU¿WWLQJLQWKHWUDLQLQJEXWDOVRJLYHJRRG UHVXOWLQWKHWHVWLQJZKHUHDV/LQHDU5HJUHVVLRQ¶V52 value is the lowest one.

)LJXUHDOVRGHVFULEHVWKHFURVVSORWEHWZHHQ DFWXDOSURGXFWLRQDQGSUHGLFWLRQUHVXOWIURPHDFK0/

PRGHO7UDLQLQJDQGWHVWLQJGDWDWKDWIROORZWKH52 ZDVVKRZQLQJUDGLHQWERRVWLQJDQGUDQGRPIRUHVW +RZHYHUERWK5DQGRP)RUHVWDQG*UDGLHQW%RRVWLQJ H[KLELWGHYLDWLRQIURPOLQH52 DWUDWHKLJKHUWKDQ

%/3'7KLVPLJKWEHFDXVHGE\WKHVPDOOGDWD population in this production rate range. So the 0/PRGHOGRHVQRWKDYHDGHTXDWHGDWDIRUKDYLQJ accurate prediction at this range production rate.

+RZHYHU /LQHDU 5HJUHVVLRQ PRGHO VKRZV scattered correlation between actual and prediction UHVXOWERWKIRUWUDQLQLJDQGWHVWLQJGDWDVHW/LQHDU 5HJUHVVLRQGRHVQRWVHHP¿WZLWKWKHW\SLFDOGDWD with many input and have an issue in the quality.

$GD%RRVWWHQGWRKDYHRYHU¿WWLQJLQWUDLQLQJGDWD set so that looks scatter in testing data set.

)LQDOO\ZHFDQLQIHUUHGWKDW*UDGLHQW%RRVWLQJLV WKHPRVWUHOLDEOH0/PRGHOWRSUHGLFWWKHSURGXFWLRQ UDWHRIK\GUDXOLFIUDFWXUHGZHOO*UDGLHQW%RRVWLQJ KDVVWDEOH52 both in training and testing data set that LQGLFDWHVWKHUREXVWQHVVRIWKLVPRGHO7KLVPRGHOLV then recommended to be applied in the production rate prediction.

D. Water Cut (WC) Prediction

0/FDQDOVREHXWLOL]HGWRSUHGLFWWKHZDWHUFXW RIHDFKZHOOE\SRVLWLRQ)RUWKLVSXUSRVHN1HDUHVW 1HLJKERUVN11LVXVHGIRUWKHZDWHUFXWSUHGLFWLRQ EDVHGRQ;<FRRUGLQDWHDVZHOODVYHUWLFDOSRVLWLRQ RI WKH ERWWRP ]RQH 7KH GDWDVHW LV WDNHQ IURP DOO SURGXFHU ZHOOV ZLWK WKH XSGDWHG :& DQG LV DOVR GLYLGHG LQWR WZR VHWV WUDLQLQJ DQG WHVWLQJ 7KLV partition to ensure that the model has good robustness and consistency.

)LJXUH

&URVVSORWEHWZHHQDFWXDOSURGXFWLRQ9VSURGXFWLRQUHVXOWIURPHDFK0/PRGHOLQSKDVH 7DEOH

,QSXWHYDOXDWLRQUHVXOWIRU0/SKDVH

S

5HVHUYRLU

3DUDPHWHUV 5 5HPDUNV

)LHOG

3HUIRUDWLRQ/HQJWK

5HVHUYRLU3UHVVXUH ,PSRUWDQW SDUDPHWHU

7KLFNQHVV

*5

5HVLVWLYLW\

'HQVLW\

9FOD\

3HUP

NK

3URSSDQW7\SH

3URSSDQW9ROXPH ,PSRUWDQW SDUDPHWHU

)OXLG7\SH

)OXLG9ROXPH ,PSRUWDQW SDUDPHWHU )UDF*UDGLHQW

)UDFWXULQJ3DUDPHWHUV

(8)

7KH N11 PDQLSXODWHV WKH WUDLQLQJ GDWD DQG FODVVL¿HVWKHQHZWHVWGDWDEDVHGRQGLVWDQFHPHWULFV 7KHUHDUHVRPHSDUDPHWHUVWKDWQHHGWREHWXQHGWR LPSURYHWKHSHUIRUPDQFHVXFKDV.YDOXHGLVWDQFH PHWULFDQGZHLJKWV6FDOLQJQRUPDOL]LQJWKHGDWDVHW FDQKHOSWRLPSURYHWKHN11SHUIRUPDQFH.YDOXH LQGLFDWHVWKHFRXQWRIWKHQHDUHVWQHLJKERUV6RPH PHWKRGWRGH¿QHGLVWDQFHPHWULFFDQEHDGMXVWHGWR KDYHUHOLDEOHPRGHOVXFKDV(XFOLGHDQ0DQKDWWDQ DQG&KHE\VKHYGLVWDQFH&DQWUHOO

)RUWKH:&SUHGLFWLRQLQWKLVFDVHWKHRSWLPXP PRGHOLVREWDLQHGXVLQJN DQG&KHE\VKHYGLVWDQFH 7KHUHVXOWRIN11RQ:&SUHGLFWLRQLQWZR¿HOGVDUH VKRZQE\)LJXUH)LJXUHDVKRZVWKHSRVLWLRQRI ZHOOWKDWFXUUHQWO\SURGXFLQJ7KH:&LVPHDVXUHG IURPOLTXLGVDPSOHE\ODERUDWRU\WHVWLQJ)LJXUHE UHSUHVHQWVWKHUHVXOWRIN11PRGHOLQ:&PDSSLQJ RQ HYHU\ FRRUGLQDWH RQ WKRVH WZR ¿HOGV )LHOG shows that in any well location, the wells mostly KDYH KLJK :& 7KLV ¿HOG KDV EHHQ GUDLQHG VLQFH DQGLVH[SHULHQFLQJSUHVVXUHGHSOHWLRQ:DWHU injection was then applied to maintain the pressure.

2QWKHRWKHUKDQG)LHOGVKRZVEHWWHU:&DW DQ\ORFDWLRQ7KLV¿HOGKDVYHU\ORZSHUPHDELOLW\

WKXVWKHUHFRYHU\IDFWRULVVWLOOORZ7KHUHVHUYRLULQ WKLV¿HOGKDVEHHQPDVVLYHO\GHYHORSHGVLQFH

7DEOH

0/SKDVHUHVXOWHYDOXDWLRQ

)LJXUH

&URVVSORWEHWZHHQDFWXDOSURGXFWLRQ9VSURGXFWLRQUHVXOWIURPHDFK0/PRGHOLQSKDVH

E. Application on Well Candidate Selection 7KH PRVW UHOLDEOH RI WKH 0/ PRGHOV IRU ÀXLG production and water cut prediction is then applied WRSUHGLFWWKHSHUIRUPDQFHRIZHOOFDQGLGDWHDIWHU K\GUDXOLFIUDFWXULQJMRE7KHUHDUHWRWDOHLJWKZHOO FDQGLGDWHVIRUQH[WK\GUDXOLFIUDFWXULQJFDPSDLJQ 7KHVHZHOOFDQGLGDWHVKDYHDOUHDG\KDGZDWHUFXW IURPWKHH[LVWLQJ]RQHDQGSURGXFHRLOUDWHEHORZ

0$( 5 5 0$( 5 5

5DQGRP)RUHVW

/LQHDU

5HJUHVVLRQ

*UDGLHQW

%RRVWLQJ

0/PRGHO

7UDLQLQJ 7HVWLQJ

$GD%RRVW

(9)

7DEOH

3UHGLFWLRQUHVXOWEDVHGRQ0/PRGHOIRUK\GUDXOLFIUDFWXULQJZHOOFDQGLGDWHV )LJXUH

:DWHUFXWSUHGLFWLRQPDSXVLQJN11PRGHO %23' :RUNRYHU FKDQJH OD\HU DQG K\GUDXOLF

IUDFWXULQJDVVWLPXODWLRQWUHDWPHQWZLOOEHSURSRVHG to these wells.

7KHSUHGLFWLRQWRROEDVHGRQ*UDGLHQW%RRVWLQJ DQGN11LVVKRZQLQ7DEOH7KHHFRQRPLFFXWRII IRUK\GUDXOLFIUDFWXULQJMRELVHTXLYDOHQWWRWKHLQLWLDO SURGXFWLRQ%23'%DVHGRQWKHSUHGLFWLRQWKHUH DUH IRXU ZHOOV WKDW ZLOO KDYH LQLWLDORLO SURGXFWLRQ KLJKHU WKDQ %23' DQG WKUHH ZHOOV WKDW ORZHU WKDQ%23'

)XUWKHUDVVHVVPHQWLVWKHQDSSOLHGWRWKRVHWKUHH ZHOOV 3UHOLPLQDU\ RSWLPL]DWLRQ WR WKH K\GUDXOLF IUDFWXULQJ WUHDWPHQW LV DVVHVVHG DQG WKH UHVXOW LV SUHGLFWHG$IWHURSWLPL]DWLRQRISURSSDQWW\SHDQG volume, then we can conclude that only one well can DIIRUGWRJHWKLJKHUWKDQ%23'ZKLOHWKHUHPDLQLQJ ZHOOVLVVWLOOXQGHUHFRQRPLFFXWRII7KXVWKHRWKHU

WZRZHOOVDVVKRZQLQ7DEOHZLOOEHH[FOXGHGIURP K\GUDFXOLFIUDFWXULQJMRESODQ

%\WKLVUHVXOWLWFDQEHFRQ¿UPHGWKDW0/PRGHO WKURXJK *UDGLHQW %RRVWLQJ DQG N11 PRGHO FDQ EH DSSOLHG IRU ERWK SURGXFWLRQ UDWH DQG ZDWHU FXW SUHGLFWLRQV7KH0/DSSURDFKFDQEHDSSOLHGXVLQJ SULPLDU\GDWDWKDWDOPRVWDOOZHOOVKDYH(PSLULFDO FRUUHODWLRQFDQQRWEHDSSOLHGLQWKLVFDVHEHFDXVHRI WKHGDWDOLPLWDWLRQVXFKDVXQDYDLODELOLW\RIDFWXDO transmissibility data.

7KH REMHFWLYH WR GHYHORS WKH SUHGLFWLRQ WRRO WKDWFDQEHDSSOLHGIRUDQ\ZHOOVFDQEHDFKLHYHG,W enable quantitative comparison on estimated hydraulic IUDFWXULQJUHVXOWVRWKDWSRWHQWLDOZHOOFDQGLGDWHFDQ EHHDVLO\VHOHFWHG7KLVWRRODOVRFDQEHXWLOL]HGWR HQVXUHDQGJXLGHWKHIUDFWXULQJWUHDWPHQWRSWLPL]DWLRQ WRPD[LPL]HWKHSURGXFWLRQUHVXOW

:HOO 5HVSUHVVXUH

SVLJ .+PGIW 3URSSDQW W\SH

3URSSDQW YROXPHNOEV

%/3' SUHGLFWLRQ

:&

SUHGLFWLRQ

%23'

SUHGLFWLRQ 5HPDUNV

: %HORZHFRQRPLFFXWRII

: %HORZHFRQRPLFFXWRII

:

:

:

:

: %HORZHFRQRPLFFXWRII

(10)

7DEOH

3UHGLFWLRQUHVXOWEDVHGRQ0/PRGHOIRUK\GUDXOLFIUDFWXULQJZHOOFDQGLGDWHVDIWHURSWLPL]DWLRQ

CONCLUSIONS

6RPH FRQFOXVLRQV FDQ EH LQIHUUHG IURP WKH DERYHGLVFXVVLRQDERXWWKHSUHGLFWLRQRIK\GUDXOLF IUDFWXULQJMREUHVXOWXVLQJHPSLULFDOFRUUHODWLRQDQG machine learning model. Several points that can be LQIHUUHGLVEHORZ

(PSLULFDOFRUUHODWLRQEDVHGRQ'DUF\HTXDWLRQ JLYHVPD[LPXP52RIDQG3HDUVRQFRUUHODWLRQ FRHI¿FLHQW EHWZHHQ DFWXDO DQG SUHGLFWLRQ production. It can be applied as prediction tool but require input parameters which is not all wells have VXFKDVDFWXDOWUDQVPLVVLELOLW\DQGGLPHQVLRQOHVV3, 0DFKLQH OHDUQLQJ SKDVH 5DQGRP )RUHVW

*UDGLHQW %RRVWLQJ XVLQJ VDPH LQSXW DV HPSLULFDO FRUUHODWLRQ JLYH EHWWHU UHVXOW ZLWK 52 ! DQG 3HDUVRQFRUUHODWLRQFRHI¿FLHQW!EHWZHHQDFWXDO DQG SUHGLFWLRQ SURGXFWLRQ ,W GHVFULEHV WKDW 0/

DSSURDFKFDQEHXWLOL]HGLQSUHGLFWLRQRIK\GUDXOLF IUDFWXUHGZHOOSHUIRUPDQFH

0DFKLQHOHDUQLQJSKDVH*UDGLHQW%RRVWLQJ E\ XWLOL]LQJ SULPDU\ GDWD VXFK DV RSHQKROHORJ SHWURSK\VLFDODQDO\VLVDQGIUDFWUHDWPHQWGDWD\LHOG 52!DQG3HDUVRQFRUUHODWLRQFRHI¿FLHQW!

EHWZHHQDFWXDODQGSUHGLFWLRQSURGXFWLRQ,WFRQ¿UPV that this method is the most reliable prediction tool with the lowest error.

7KH PRVW LPSRUWDQW SDUDPHWHU WKDW PDMRUO\

FRQWULEXWHG WR K\GUDXOLF IUDFWXULQJ UHVXOWV LV WKH reservoir quality that can be expressed by permeability or transmissibility data.

.11PRGHOFDQEHXWLOL]HGWRSUHGLFWWKH:&

using coordinate and altitude well. It can give a VDWLVI\LQJUHVXOWZLWK52YDOXHRILQWKHWHVWLQJ data set.

0/ PRGHO WKURXJK *UDGLHQW %RRVWLQJ IRU SURGXFWLRQSUHGLFWLRQDQGN11IRU:&SUHGLFWLRQ FDQ EH XVHG DV SUHGLFWLRQ WRRO IRU ZHOO FDQGLGDWH VHOHFWLRQ LPSOHPHQWDWLRQ DQG IUDF WUHDWPHQW RSWLPL]DWLRQ

6RPHUHFRPPHQGDWLRQVIRUIXUWKHULPSURYHPHQW LQWKHSUHGLFWLRQRIK\GUDXOLFIUDFWXULQJUHVXOWXVLQJ PDFKLQHOHDUQLQJDUHEHORZ

0LQLIDOORII DQDO\VLV VKRXOG EH DSSOLHG DQG FROOHFWHGIURPDOOK\GUDXOLFIUDFWXULHGMREWRFUHDWHWKH FRUUHODWLRQEHWZHHQRSHQKROHGDWD SHWURSK\V\FDO analysis with the actual transmissibility data. It will help to create a reliable empirical correlation as SUHGLFWLRQWRROV+RZHYHULWZLOOH[WHQGWKHRYHUDOO execution time and lead to additional extra cost.

6RPHSDUDPHWHUVWKDWDOVRLQÀXHQFHWKHIUDFWXUH geometry such as shale barrier and stress contrast based on sonic log should be considered as additional IHDWXUHLQWKH0/PRGHO7KLVSDSHUH[FOXGHVWKHVH SDUDPHWHUV EHFDXVH RI WKH ODFN RI VRQLF ORJ GDWD availability in the data set.

,QGLYLGXDO0/PRGHOWRGHWHUPLQHHDFKRIUHVHUYRLU SURSHUWLHVIDFWRUDQGK\GUDXOLFIUDFWXULQJIDFWRUPD\

KHOSWRLPSURYH52 in the production prediction and HQDEOHDGGLWLRQDORSWLPL]DWLRQPHWKRGVLQK\GUDXOLF IUDFWXULQJ$GGLWLRQDOQXPEHURIGDWDLVUHTXLUHGIRU this purpose.

$GGLWLRQDO K\GUDXOLF IUDFWXULQJ MRE GDWD IURP RWKHUDUHDRXWVLGH6RXWK6XPDWUDZLOOLPSURYHWKH data diversity thus yield more reliable prediction tool.

7KHGDWDFRQ¿GHQWLDOLW\DQGFRPSDQ\¶VGLVFUHF\LV the major challenge to overcome.

:HOO

5HV SUHVVXUH

SVLJ

.+

PGIW

3URSSDQW W\SH

3URSSDQW YROXPH

NOEV

%/3' SUHGLFWLRQ

:&

SUHGLFWLRQ

%23'

SUHGLFWLRQ 5HPDUNV

:

: %HORZHFRQRPLFFXWRII

:

:

:

:

: %HORZHFRQRPLFFXWRII

(11)

ACKNOWLEDGEMENTS

7KHDXWKRUVZRXOGOLNHWRWKDQN370HGFR( 3 PDQDJHPHQWIRUSHUPLVVLRQWRXVHWKH¿HOGGDWDRQ WKLVSDSHU:HDUHDOVRWKDQNIXOWR,7%OHFWXUHUIRUWKH JXLGDQFHDQGGLUHFWLRQWRSXEOLVKWKLVVFLHQWL¿FSDSHU

GLOSSARY OF TERMS

[H 5HVHUYRLUOHQJWK IW

Z )UDFWXUHZLGWK IW

9SURS 9ROXPHSURSSDQW IW

9UHV 9ROXPHUHVHUYRLU IW

+\GDUXOLF )UDFWXULQJ

$W\SHRIZHOOVWLPXODWLRQ WUHDWPHQWGHVLJQHGWR E\SDVVQHDUZHOOERUH GDPDJHDQGLPSURYHWKH IOXLGIORZSDWKIURPWKH IRUPDWLRQWRWKHZHOO

,PSXOVH7HVWLQJ

$VSHFLDOL]HGZHOOWHVWLQJ SURFHGXUHWKDWHQDEOHV DQDO\VLVRIWKHUHVHUYRLU UHVSRQVHIROORZLQJD UHODWLYHO\VKRUWGXUDWLRQRI IOXLGLQMHFWLRQRU

SURGXFWLRQ$\RXEHWDO

0LQLIDOORII7HVW

$QLQMHFWLRQIDOORII GLDJQRVWLFWHVWSHUIRUPHG EHIRUHDPDLQIUDFWXUH VWLPXODWLRQWUHDWPHQW 7KHLQWHQWLVWREUHDN GRZQWKHIRUPDWLRQWR FUHDWHDVKRUWIUDFWXUH GXULQJWKHLQMHFWLRQ SHULRGDQGWKHQWR REVHUYHFORVXUHRIWKH IUDFWXUHV\VWHPDQGWKH UHVHUYRLUUHVSRQVHDIWHU FORVXUH

3HDUVRQ

&RUUHODWLRQ

&RHIIFLHQW5

7KHOLQHDUFRUUHODWLRQ FRHIILFLHQWGHYHORSHGE\

.DUO3HDUVRQWKDW PHDVXUHVWKHVWUHQJWK DQGWKHGLUHFWLRQRID OLQHDUUHODWLRQVKLS

0DFKLQH/HDUQLQJ

$EURDGVXEILHOGRI DUWLILFLDOLQWHOOLJHQFH DLPHGWRHQDEOH PDFKLQHVWRH[WUDFW SDWWHUQVIURPGDWDEDVHG RQPDWKHPDWLFDO VWDWLVWLFVQXPHULFDO PHWKRGVRSWLPL]DWLRQ SUREDELOLW\WKHRU\

GLVFUHWHDQDO\VLV JHRPHWU\HWF

6\PERO 'HILQLWLRQ 8QLW

6\PERO 'HILQLWLRQ 8QLW

T 3URGXFWLRQ5DWH %/3'

N 5HVHUYRLUSHUPHDELOLW\ PG

3U 5HVHUYRLU3UHVVXUH SVLJ

3ZI )ORZLQJERWWRPKROH

SUHVVXUH SVLJ

— 9LVFRVLW\ FS

% )RUPDWLRQ9ROXPHIDFWRU

UH 5HVHUYRLUUDGLXV IW

UZ :HOOERUHUDGLXV IW

UZ¶ (TXLYDOHQW:HOOERUH

UDGLXV )W

6 6NLQ

7UDQVPLVVLELOLW\WKH SURGXFWRISHUPHDELOLW\

UHVHUYRLUWKLFNQHVVDQG IOXLGYLVFRVLW\WKDW UHSUHVHQWWKHSURGXFWLYLW\

RIUHVHUYRLU

PGIWFS

-' 'LPHQVLRQOHVV

3URGXFWLYLW\,QGH[

1S 3URSSDQW1XPEHU

NI )UDFWXUHSHUPHDELOLW\ PG

[I )UDFWXUHOHQJWK IW

݄݇

ߤ

(12)

REFERENCES

Economides, M. J., Hill, A. D., Ehlig-Economides, C.

Up, D. ZPetroleum Production System. 2nd HG0DVVFDFKXVHWWV3UHQWLFH+DOO

Economides, M. J. Nolte, K. G Reservoir Stimulation. UGHG1HZ-HUVH\3UHQWLFH+DOO Friedman., J. H*UHHG\IXQFWLRQDSSUR[LPDWLRQD

gradient boosting machine. Annals of Statistics, SS

Holditch, S. A. Ma, Y. Z. Unconventional Oil and Gas Resources Handbook: Evaluation and Development(OVHYLHU*XOI3URIHVVLRQDO3XEOLVKLQJ Kang, S.N1HDUHVW1HLJKERU/HDUQLQJZLWKJUDSK

neural networks. Mathematics, S

Makhotin, I., Koroteev,, D. Burnaev, E.,

*UDGLHQWERRVWLQJWRERRVWWKHHI¿FLHQF\RIK\GUDXOLF IUDFWXULQJJournal of Petroleum Exploration and Production Technology, SS

Mutalova, R. F., Mozorov, A.D., Osiptsov, A.A., Vainshtein, A.L., Burnaev, E.V., Shel, E.V., Paderin, G.V.,0DFKLQHOHDUQLQJRQ¿HOGGDWD

IRUK\GUDXOLFIUDFWXULQJGHVLJQRSWLPL]DWLRQJournal of Petroleum Science & Engineering. Special Issue:

Petroleum Data Science, SS

Pearson, K.1RWHVRQWKHKLVWRU\RIFRUUHODWLRQ Biometrika, SS

5LEDULþ0 âXãWHUãLþ/Empirical formulas for prediction of experimental data & appendix, 6ORYHQLD -RåHI6WHIDQ,QVWLWXWH/MXEOMDQD

Smola, A. Viswanathan, S. V. N.Introduction to machine learning. &DPEULGJH&DPEULGJH8QLYHUVLW\

3UHVV

Temizel, C., Canbaz, C.H., Palabiyik, Y., Aydin, H., Tran, M., Ozyurtkan, M.H., Yurukcu, M., Johnson, P., A thorough review of machine learning applications in oil and gas industry. Virtual, 63(,$70,

$GD%RRVW

2QHRIHQVHPEOH0/

PRGHOWKDWZRUNVE\

ZHLJKWLQJWKH REVHUYDWLRQVSXWWLQJ PRUHZHLJKWRQGLIILFXOWWR FODVVLI\LQVWDQFHVDQG OHVVRQWKRVHDOUHDG\

KDQGOHGZHOO

*UDGLHQW%RRVWLQJ

7KHGHYHORSPHQWRI

$GD%RRVWDOJRULWKPWKDW LGHQWLILHVWKH

VKRUWFRPLQJVE\XVLQJ KLJKZHLJKWGDWDSRLQWV

*UDGLHQWERRVWLQJ SHUIRUPVWKHVDPHE\

XVLQJJUDGLHQWVLQWKH ORVVIXQFWLRQ

5DQGRP)RUHVW

(QVHPEOH0/PRGHOWKDW KDVDOJRULWKPWREXLOG PXOWLSOHGHFLVLRQWUHHV DQGPHUJHVWKHP WRJHWKHUWRJHWDPRUH DFFXUDWHDQGVWDEOH SUHGLFWLRQ

/LQHDU 5HJUHVVLRQ

$VXSHUYLVHGPDFKLQH /HDUQLQJPRGHOLQZKLFK WKHPRGHOILQGVWKHEHVW ILWOLQHDUOLQHEHWZHHQWKH LQGHSHQGHQWDQG GHSHQGHQWYDULDEOH

6\PERO 'HILQLWLRQ 8QLW

Referensi

Dokumen terkait

ENGLISH LITERATURE STUDY PROGRAM FACULTY OF CULTURAL SCIENCES UNIVERSITAS HASANUDDIN..