• Tidak ada hasil yang ditemukan

references - SGU Repository

N/A
N/A
Protected

Academic year: 2023

Membagikan "references - SGU Repository"

Copied!
3
0
0

Teks penuh

(1)

REFERENCES

Tf-idf weighting. (2009, April 7). Retrieved May 7, 2013, from http://nlp.stanford.edu/:

http://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html

Tokenizing. (2011, August). Retrieved May 7, 2014, from http://www.coli.uni- saarland.de/~schulte/Teaching/ESSLLI-06/Referenzen/Tokenisation/schmid- hsk-tok.pdf

Ahat, M., Amor, S. B., & Bui, M. (2009). Document Classification with LSA and Pretopology. Laboratoire des Usages en Technologies d’Information Num

´eriques (LUTIN) .

Al-Shalabi, R. (2004). Stop-Word Removal Algorithm for Arabic Language.

Argamon, S., Whitelaw, C., Chase, P., & Dhawle, S. (2005). Stylistic Text Classifcation Using Functional Lexical Features.

Asy’arie, A. D., & Pribadi, A. W. (2009). Automatic News Articles Classification in Indonesian Language by Using Naive Bayes Classifier Method. iiWAS.

Basnur, P. W., & Sensuse, D. I. (2010). PENGKLASIFIKASIAN OTOMATIS BERBASIS ONTOLOGI UNTUK ARTIKEL BERITA BERBAHASA INDONESIA. MAKARA JOURNAL OF TECHNOLOGY.

Chee-Hong, Aixin, C., & Lim, S. E.-P. (2001). Automated Online News Classification with Personalization. Procedings of the 4th International Conference of Asian Digital Library, 320-329.

Coporation, Intel. (2001). OpenCv Reference Manual.

Ari Aulia Hakim

(2)

Gebre, B. G., & Zampier, M. (2012). Improving Native Language Identification with TF-IDF Weighting. Cologne: University of Cologne.

Goller, C., & Löning, J. (n.d.). Automatic Document Classification: A thorough Evaluation of various Methods. München, Germany: Speech and Artificial Intelligence Labs.

Gupta, V., & Lehal, G. S. (2010). A Survey of Text Summarization Extractive Techniques. JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, 260.

Kadiri, J. A., & Adetoro, N. A. (2012). Information Explosion and The Challanges of Information and Communication Technology Utilization in Nigerian Libraries and Information Centres. Ozean Journal of Social Sciences 5.

La Lei, G. Q. (2012). LDA boost classification: boosting by topics. EURASIP, 33.

Landauer, T. K., & Foltz, P. W. (1997). An Introduction to Latent Semantic Analysis.

Landauer, T. K., & Foltz, P. W. (1998). An Introduction to Latent Semantic Analysis.

Liu, M., & Yang, J. (2012). An improvement of TFIDF weighting in text categorization.

Minister of Industry Canada. (2003). Survey Methods and Practices. Ottawa, Canada.

Nigam, K. (1999). Text Classification from Labeled and Unlabeled Documents Using EM. Boston: Kluwer Academic Publishers.

Pidong, W. (2011, June 1). Indonesian stop words list. Retrieved April 7, 2014, from

WANG PIDONG'S HOMEPAGE:

http://wangpidong.blogspot.com/2011/06/indonesian-stop-words-list.html Saad, M. K. (2010). The Impact of Text Preprocessing and Term Weighting on Arabic

Text Classification.

Savov, I. (2009). Latent Dirichlet Allocation for scientific topic extraction.

Ari Aulia Hakim

(3)

Sriram, B., & Fuhry, D. (2010). Short Text Classification in Twitter to Improve Information Filtering. Geneva, Switzerland: SIGIR.

Vembunarayanan, J. (2013, October 27). Tf-Idf and Cosine similarity. Retrieved May 7, 2014, from Seeking Wisdom: http://janav.wordpress.com/2013/10/27/tf-idf- and-cosine-similarity/

Wang, L., & Wan, Y. (2011). Sentiment Classification of Document Based on Latent Sematic Analysis. Springer-Verlag Berlin Heidelberg.

Wijewickrema, C. M., & Gamage, R. (2013). An Ontology Based Fully Automatic Document Classification System Using an Existing Semi-Automatic System.

IFLA WLIC.

Xia, T., & Chai, Y. (2011). An Improvement to TF-IDF: Term Distribution based Term Weight Algorithm. Journal of Software, 413.

Ari Aulia Hakim

Referensi

Dokumen terkait

The adjusted [genuine] savings [AS] in an accounting period is estimated as: adjusted savings [AS] = gross savings [GS] – consumption of fixed capital – depletion of exhaustible

Forms of Assessment Assessment components and weights include: attendance with a weight of 10%, General skills from class discussion assessments with a weight of 30%, Special skills