• Tidak ada hasil yang ditemukan

SENTRIFUGASI

N/A
N/A
Nguyễn Gia Hào

Academic year: 2023

Membagikan "SENTRIFUGASI"

Copied!
38
0
0

Teks penuh

(1)

SENTRIFUGASI

(2)

1

Sentrifugasi

Proses pemisahan solid dari liquid dengan prinsip grafitasi.

Densitas solid harus lebih besar dari densitas liquid

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014

Peran gaya sentrifugal:

1. Mendorong partikel kecil agar mengendap 2. Menahan brownian motion

3. Mencegah arah free convection fluida

4. Mengurangi penumpukan “cake” pada screen (untuk

centrifugal filtration)

(3)

General principle

(4)

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014

3

Klasifikasi centrifuge

Kapasitas

Labratory centrifuge

Preparative centrifuge

Kegunaan

Sedimenting centrifuge

Filtering centrifuge Ultracentrifugation

 Tubular bowl

 Basket

 Disk stack

 Scroll decanter

 Basket

 Pusher

 Baffle

 Inverting bag

 Cone screen

(5)

Tubular bowl centrifuge

1000-15000rpm

Klasifikasi centrifuge

Labratory centrifuge

(6)

Tubular bowl centrifuge

500-2000 rpm

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014

5

Better performance

than turbular flow

Preparative centrifuge

(7)

Steve, 2007

Klasifikasi centrifuge

Sedimenting centrifuge

(8)

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 Steve, 2007

Klasifikasi centrifuge

Filtering centrifuge

(9)

centrifugal filtration

1

centrifugal settling

2

(10)

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014

9

Gas-solid cyclone separator

3

(11)

horizontal axis scroll decanter centrifuge

4

(12)

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014

11

Peeler centrifuge

Pusher

centrifuge

(13)

Ultracentrifugation

1000-15000 rpm

Digunakan untuk pemisahan atau analisa campuran makromolekul

(AUC). Ex: protein

Rpm tinggi

menimbulkan

panas sehingga

memerlukan

cooling

(14)

13

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014

Applications of centrifuges in food processing

(15)

Persamaan pada sentrifugasi

(16)

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014

20

Persamaan pada centrifuge settling

(17)

• Settling: acceleration from gravity (F g )

• Centrifuge:

– acceleration from centrifugal force (F c )

– circular motion and acceleration occurred from centrifugal force

a c = acceleration from centrifugal force (m/s 2 ) r = radial distance (m)

 2

r a c

Persamaan pada centrifuge settling

(18)

Centrifugal force (F c )

Nur Istianah-KPP-Sentrifugasi-2014

21

(19)

• The centrifugal force, F c acting on an object of mass m, rotating in a circular path of radius R, at an

angular velocity of ω is :

(1) and

(2)

where N = rotational speed (rpm) ω= an angular velocity (rad s -1 )

 2

mR F c

30 60

2  NN

  

(20)

Nur Istianah-KPP-Sentrifugasi-2014

23

(21)

g force (gravities or g’s)

(22)

• The steady-state velocity of particles moving in a streamline flow under the action of an

accelerating force

Where v t =terminal velocity of particle; ρ s and ρ l = density of solid and liquid ; r = distance of the

particle from center of rotation; µ = viscosity of liquid.

18

) ( s l s 2

t

D v g

from

18

)

( 2

2

s l

s t

D

v r

Nur Istianah-KPP-Sentrifugasi-2014

23

(23)

Centrifugation time

• Time taken by the particle to move though the liquid layer is called residence time (t r ).

dt

V tdr

(24)

18

)

( 2

2 D r

v t ss

18

)

2 (

2 

D s r s dt

dr

Nur Istianah-KPP-Sentrifugasi-2014

23

(25)

) (

ln 18

18

) ln (

18

) 1 (

2 2

1 2 2

2

1 2

0 2

2 2

1

 

 

  

r

r s

s

t s

s r

r

D

r r t

D t r

r

D dt

r dr

(26)

Calculation of flow rate for continuous centrifuge

• flow rate (Q)

1 2

2 2 2

1 2

2

1 2 2

2

2 2

1 2

ln 18

) (

) (

ln 18

) (

) (

ln 18

r r D b

r r

r r D

Q V

D

r r V t

Q V

s s

s s

s s

r

 

 

Nur Istianah-KPP-Sentrifugasi-2014

23

(27)

• r 1 = inside radius (m)

• r 2 = outside radius (m)

• b = height of centrifuge(m)

• µ = viscosity (Pa.s)

• ω = an angular velocity (rad s -1 )

• ρ s = density of solid (kg/m 3 )

• ρ = density of liquid (kg/m 3 )

• D s = diameter of particle(m)

• V(m 3 )=operating

(28)

Example 1

Find centrifugation time t r of a particle d=1mm. In a centrifuge

Given

. 25 . 0

. 20 . 0

/ 1000

/ 1100

. 10

1 . 8

995

3 3 4

m R

m R

m kg

m kg

s Pa RPM N

o i

f P

R

i

R

o

Nur Istianah-KPP-Sentrifugasi-2014

23

(29)

s rad

N

/ 20

. 104

60

995 2

60 2

 

 

 

Find ω

(30)

 

     

sec 10

25 . 3

1000 1100

20 . 104 001

. 0

) 20 . 0 / 25 . 0 ln(

10 1

. 8 18

) /

ln(

18

3

2 2

4 2

2

 

 

r r

f p

i o

r

t t

d

r t r

Find time

t r of particle d=1mm. in centrifuge≥3.25x10 -3 sec

Nur Istianah-KPP-Sentrifugasi-2014

23

(31)

Example 2

Beer with a specific gravity of 1.042 and a viscosity of

1.04x10 -3 N s/m 2 contains 1.5% solids which have a

density of 1160kg/m 3 . It is clarified at a rate of 240 l/h

in a bowl centrifuge which has and operating volume

of 0.09 m 3 and a speed of 10000 rev/min. The bowl

has a diameter of 5.5 cm and is fitted with a 4 cm

outlet. Calculate the effect on feed rate of an increase

in bowl speed to 15000 rev/min and the minimum

particle size that can be removed at the higher speed.

(32)

• Solution

Initial flow rate

new flow rate

 

) /

ln(

18

) 60 /

2

( 1 2 2

1

i o

f p

r r

D N

Q V

 

 

) /

ln(

18

) 60 /

2

( 2 2 2

2

i o

f p

r r

D N

Q V

 

Nur Istianah-KPP-Sentrifugasi-2014

23

(33)

As all conditions except the bowl speed remain the same,

Therefore,

Q = 0.15 l/s

2 2 2

2 1

2 2

1 2

) 60 / 10000 142

. 3 2

(

) 60 / 15000 142

. 3 2

( )

3600 /

240 (

) 60 / 2

(

) 60 / 2

(

 

Q

N N Q

Q

(34)

To find the minimum particle size

m D

V N

r r

D Q

f p

i o

8 . 10 6

62 .

2

10 20

. 1

09 .

0 ) 1042 1160

( ) 60 /

15000 142

. 3 2

(

)]

02 .

0 / 0275 .

0 ln(

10 40

. 1 18

[ 15 . 0

) (

) 60 /

2 (

)]

/ ln(

18 [

7 3

2 3

2 2

2 2

 

 

 

 

Nur Istianah-KPP-Sentrifugasi-2014

23

(35)

1

# A and B are dense and light liquid,

rA, rB =outlet radius

r

n=

radius of neutral zone.

Fig 6.1. Separation of immiscible liquids Ω = angular velocity,

Q = volumetric flowrate,

V = operating volume of the centrifuge, D = diameter of the particle,

r

2

= radius of light phase outlet, r

1

= radius of dense phase outlet, N =speed of rotation

2

3

Separation of liquids

(36)

Example3

• A bowl centrifuge is used to break an oil-in- water emulsion. Determine the radius of the neutral zone in order to position the feed pipe correctly. (Assume that the density of the continuous phase is 1000 kg/m 3 and the density of the oil is 870 kg/m 3 . the outlet radius from the centrifuge are 3 cm and 4.5 cm).

Nur Istianah-KPP-Sentrifugasi-2014

23

(37)

• Solution

m r

r r

n n n

098 .

0

130

783 .

0 025

. 2

870 1000

) 03 .

0 ( 870 )

045 .

0 (

1000 2 2

2

 

 

(38)

THANKS FOR YOUR ATTENTION

The best person is one give something useful always

07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014

Gambar

Fig 6.1. Separation of immiscible liquidsΩ = angular velocity,

Referensi

Dokumen terkait

It can be concluded that Tik Tok application gives effect on students’ pronunciation and increase students’ motivation according to the categories in the ARCS (Attention,

brake lining is an important component in a motor vehicle as security aspects memeperlambat drive that serves as the vehicle speed when the driver drove at