Appendix
Supplemental Figure 1. Fagan plot for HBP in the diagnosis of sepsis without organ dysfunction (3A) and sepsis with organ dysfunction(3B)
3A. 3B.
Supplemental Figure 2. Literature search and study selection flow diagram
Supplemental Figure 3. Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) Assessment for Risk of Bias and Applicability of the Included Studies
Study Risk of bias Applicability concern
Patient selection
Index Reference standards
Flow and timing
Patient selection
Index test
Reference standard
Linder A (2009)
☺ ☺ ☺ ☺ ☺ ☺ ☺
Huang A (2013)
? ☺ ☺ ☺ ☺ ☺ ☺
Llewelyn M (2013)
☺ ☺ ☺ ☺ ☺ ☺ ☺
Huang A (2014)
? ☺ ☺ ☺ ☺ ☺ ☺
Liu Y (2014)
☺ ☺ ☺ ☺ ☺ ☺
Chen Q (2015)
? ? ? ☺ ☺ ☺
Linder A (2015)
☺ ☺ ☺ ☺ ☺ ☺ ☺
Xu C (2015)
? ☺ ☺ ? ☺ ☺ ☺
Chen Y (2016)
? ☺ ☺ ? ☺ ☺ ☺
Xue L (2016)
☺ ☺ ☺ ☺ ☺ ☺ ☺
Zanfaly E (2016)
☺ ☺ ☺ ☺ ☺ ☺ ☺
Feng M (2017)
☺ ☺ ☺ ☺ ☺ ☺
Ibrahim G (2017)
☺ ? ☺ ☺ ☺ ☺
Qian D (2017) ? ? ☺ ☺ ? ? ☺
Yi X(2017) ☺ ☺ ☺ ☺ ☺ ☺
Zhang H (2017)
☺ ☺ ☺ ☺ ☺ ☺
Liu L (2018)
☺ ☺ ☺ ☺ ?
Qin (2018)
☺ ☺ ☺ ☺ ☺ ☺
Deng (2018)
☺ ☺ ☺ ☺ ☺ ?
Wei R (2018)
? ☺ ☺ ☺ ☺ ☺
Zhang G (2018)
☺ ☺ ☺ ☺ ☺ ?
Zhang Y (2018)
☺ ☺ ☺ ☺ ☺ ☺
Khan F (2019)
☺ ? ☺ ☺ ☺ ? ☺
Yang Y (2019) ☺ ☺ ☺ ☺ ☺ ☺
Zhang Y (2019)
☺ ☺ ☺ ☺ ☺ ☺
Zhou Y (201) ☺ ☺ ☺ ☺ ☺ ☺
☺ low high ? unclear
0% 20% 40% 60% 80% 100%
PATIENT SELECTION INDEX TEST REFERENCE STANDARDS FLOW AND TIMING
QUADUS 2 Domain
Proportion of Studies with low, unclear or high CONCERNS regarding APPLICABILITY Proportion of Studies with low, unclear or high
RISK of bias
Supplemental Figure 4. Trim and fill analysis for PCT sepsis diagnosis
Supplemental Digital Content 1. Representative search string for PubMed, EMBASE, CNKI and WANGFAN
PubMed EMBASE CNKI WANGFAN
Blood biomarkers
"heparin binding protein"[tw]
OR "azurocidin"[tw] OR
"cationic antimicrobial protein CAP 37,
human"[Supplementary Concept])
‘heparin binding protein'/exp OR 'heparin binding protein' OR 'azurocidin'/exp OR azurocidin OR 'cationic antimicrobial protein cap 37 human'/exp OR 'cationic
antimicrobial protein cap 37 human'
Heparin binding protein
Heparin binding protein
Population of interest
"sepsis"[MeSH] OR "shock, septic"[MeSH] OR "systemic inflammatory response syndrome"[MeSH] OR
"sepsis"[tw] OR "septic shock"[tw] OR "systemic inflammatory response syndrome"[tw] OR
"infection"[MeSH Terms]
'sepsis'/exp OR 'sepsis' OR 'septic shock'/exp OR 'septic shock' OR 'systemic inflammatory response syndrome'/exp OR 'systemic inflammatory response syndrome'
Sepsis Sepsis
Supplemental Digital Content 2. Details of the included studies
Author (Year)
Study year/
design
Country Sample size
Definitintio of sepsis Outcome
n_outcome Biomarkers tested
Kit Cut-off value HBP (ng/mL) CRP (µg/L) PCT (ng/mL) Lactate (mmol/L) WBC (cells/L)
Prevalence (%)
Linder A (2009)
[37] 2006-2007
/PC
Sweden 233 SIRS/
Severe sepsis
70 Lactate,
CRP, PCT, WBC, HBP
N/A Lactate: 2.5;WBC: 14;
CRP: 100; HBP: 15; PCT:
2
30
Huang A (2013)
[45] 2010-2012/
CC
China 84 SIRS/
Septic shock
30 Lactate,
CRP, WBC, HBP
Boyao
Biotechnology, Shanghai, China
Lactate: 6.3;WBC: 31.35;
CRP: 110.5; HBP: 6.79
36
Llewelyn M (2013) [25]
2010-2011/
PC
United Kingdom
162 SIRS/
sepsis
87 PCT, HBP,
SCD25, PSP, IL6, IL8, IL1B
N/A PCT: 1; HBP: 50 54
Huang A(2014)
[40] 2010-2012/
CC
China 104 SIRS/
Septic shock
23 CRP, WBC,
HBP
Boyao
Biotechnology, Shanghai, China
CRP: 46.5; WBC: 21.4;
HBP: 2.65
22
Liu Y(2014)
[43] 2011-2012/
CC
China 147 SIRS/
Septic shock
39 HBP,
APACHE II, lactate
LifeSpan Biosciences, Seattle, USA
HBP: 18.5; APACHE II:
28; lactate: 2
27
Chen Q (2015)
[42] 2014-2015/
CC
China 81 N/A
sepsis
43 HBP、IL6
、IL10、
IL17A、
IL17F
Bio-Rad, California, USA
HBP 72hr 8.5, 48hr: 10.32, 24hr: 10.38, 0 hr: 15.32
53
Linder A(2015)
[18] 2011-2012/
PC
Sweden, US
487 SIRS/
Severe sepsis
141 Lactate,
CRP, PCT, WBC, HBP
Axis-Shield Diagnostics, Scotland, UK, Scotland, USA
HBP: 30; PCT: 0.5; CRP:
130; Lactate: 2; WBC: 12 29
Xu C (2015)
[27] 2014/03-
2014/08/
CC
China 196 SIRS/
sepsis
55 PCT, HBP,
CRP
JoinStar, Hangzhou, China
PCT: 1; HBP: 11.5 ; CRP:
15
28
Chen Y(2016) [29]
2014-2015/
PC
China 117 SIRS/
sepsis
22 PCT, HBP JoinStar,
Hangzhou, China
N/A 19
Xue L(2016)
[32] 2015/
PC
China 105 SIRS/
Sepsis
58 HBP, PCT JoinStar,
Hangzhou, China
N/A 55
Zanfaly E (2016) [39]
2014- 2015/PC
Egypt 90 SIRS 49 WBC,
lactate, CRP, PCT, HBP
MyBioSourse, California, USA
WBC: 13.05, lactate: 2.52, CRP:157.5, PCT:1.21, HBP:31.6
54
Feng M (China, 2017)
[33]
2016-2017/
CC
China 207 SIRS/
Sepsis、
Septic shock
Sepsis: 63;
Septic shock: 40
HBP, PCT ZSBio,
Beijing, China
HBP: 9.30 for sepsis;
HBP: 17.08 for septic shock
Sepsis: 30;
Septic shock:
19 Ibrahim G
(2017) [47]
2013-2014/
CC
Egypt 48 SIRS/
Severe sepsis、
mortality
38 HBP N/A Severe sepsis: HBP 0hr
19; 48hr 1.8; 96hr 1.6 Mortality: HBP 0hr 19;
48hr 1.8; 96hr 1.6
79
Qian D (2017)
[34] 2014-
2016/CC
China 96 Sepsis 3/ sepsis 59 HBP N/A HBP: 18.58 61
Yi X(2017) [38]
June-July 2016/
CC
China 90 Sepsis 3/sepsis 33 PCT, CRP,
WBC, HBP
Axis-Shield Diagnostics, Scotland, UK
PCT: 0.5;WBC: 9.5
; CRP: 10; HBP: 14.54
37
Zhang H (2017)
[48] 2015-2016/
CC
China 118 SIRS/ septic shock
38 HBP, SOFA
score, lactate
Tonyao Biological Technology, Shanghai, China
HBP: 19.13; SOFA score:
19.5; lactate: 2.4
32
Liu L(2018)
[46] 2014-2016/
PC
China 203 SIRS/sepsis + pneumonia
103 CRP, WBC,
HBP, PCT
JoinStar, Hangzhou, China
CRP 72hr 52.4, 48hr 52.6, 24hr 52.6, 0hr 90.5; PCT 72hr 0.14, 48hr: 0.17, 24hr: 0.18, 0 hr: 0.51;
WBC 72hr 8.25, 48hr: 8.8, 24hr: 9.15, 0 hr: 9.85;
HBP 72hr 8.86, 48hr: 8.89, 24hr: 9.78, 0 hr: 14.1
51
Qin B (2018) [28]
2016-2017/
CC
China 142 SIRS/sepsis 70 PCT, HBP Axis-Shield
Diagnostics, Scotland, UK
PCT: 22.46; HBP: 19.66 49
Deng Y (2018)
[30] 2016-2017/
CC
China 161 SIRS/sepsis 39 CRP, PCT,
HBP
JoinStar, Hangzhou, China
CRP: 2.3; PCT: 0.16;
HBP: 27.99
24
Wei R (2018)
[41] 2016-2017/
CC
China 106 Sepsis 3/Sepsis 53 PCT, WBC,
HBP
JoinStar, Hangzhou, China
PCT: 0.69; WBC: 10.94;
HBP: 39.27
50
Zhang G (2018)
[44] 2015-2017/
CC
China 87 SIRS/sepsis 44 HBP, CRP,
WBC
Guang Rui Biological Technology, Shanghai, China
CRP 24hr 16.79, 48hr 15.19, 72hr 7.89; WBC 24hr 0.92, 48hr: 0.67, 72hr: 0.29; HBP 24hr 13.06, 48hr: 8.89, 72hr:
10.32
51
Zhang Y (2018) 2017-2018/ China 96 SIRS/sepsis 36 PCT, lactate, Tonyao PCT: 2; lactate: 14.5 38
[26] CC HBP Biological Technology, Shanghai, China
; HBP: 10.8
Khan F (2019) [57]
2015 2016 /PC
Sweden, Switzerland and Canada
332 Sepsis 2/Severe sepsis
96 HBP, PCT,
lactate, CRP, WBC
Axis-Shield Diagnostics, Scotland, UK
HBP: 15, PCT:0.5, lactate:2 , CRP: 20.1, WBC:10.8
29
Yang Y (2019)
[36] 2016-2017/
PC
China 108 Sepsis 3/Septic shock
14 HBP, SOFA
score
N/A HBP: 89.43; SOFA score:
7.5
13 Zhang Y (2019)
[35] 2018/
CC
China 87 SIRS/Septic
shock, sepsis
26 CRP, WBC,
HBP, PCT
JoinStar, Hangzhou, China
Sepsis
CRP: 3.575, WBC: 9.945, HBP: 7.295, PCT: 0.325
30
Zhou Y(2019)
[31] 2017/
PC
China 181 Sepsis3/sepsis、
septic shock
Sepsis: 93 Septic shock: 37
CRP, PCT, HBP, SOFA score
Axis-Shield Diagnostics, Scotland, UK
Sepsis: HBP 28.1; PCT 2.05 ; CRP 151.9
Septic shock: HBP 103.5;
PCT 22.15; SOFA score 5.5
Sepsis: 51 Septic shock:
20
Supplemental Digital Content 3. Summary characteristics of the included 26 studies
Description Frequency, n (%)
Continent
China 20 (77)
North America/Europe 4 (15)
Egypt 2 (8)
Year of publication
Before 2010 1(4)
2010-2015 7 (27)
2016-2019 18 (69)
Study design
Case control 18 (69)
Cohort 8 (31)
Median sample size (interquartile range, IQR), n (96), 112.5 Population
SIRS: sepsis
SIRS: severe sepsis + septic shock/
Sepsis 3: sepsis + septic shock
12 (46) 15 (58) 4 (15) Serial measurements of heparin-binding protein (HBP) 5 (19) Blood biomarkers tested
heparin-binding protein (HBP) 26 (100)
C-reactive protein (CRP) 14 (54)
Procalcitonin (PCT) 16 (62)
Lactate 8 (31)
Range of prevalence of sepsis (%) 38
Kit
Axis-Shield Diagnostics, Scotland, UK 5 (19) Boyao Biotechnology, Shanghai, China 4 (15)
JoinStar, Hangzhou, China 7 (27)
Other (ZSBio Beijing China, BioRad California USA, MyBioSourse California USA, Tonyao Biological Technology Shanghai China, Guang Rui Biological Technology Shanghai China, LifeSpan Biosciences Seattle USA, )
5 (19)
N/A 5 (19)
Cut-off value (IQR)
HBP (ng/mL) 16.04 (17.95)
CRP (µg/mL) 49.45 (101.63)
PCT (ng/mL) Lactate (mmol/L)
1(1.5) 2.4(0.51) Definition of Sepsis
SIRS 20
Sepsis 3 5 (19)
Sepsis 2 1 (4)
Place of conduction of study
Emergency department 4 (15)
Intensive care unit 10 (38)
Ward 4 (15)
Mixed 7 (27)
Supplemental Digital Content 4. Pooled accuracy estimates of biomarkers stratified by definition of sepsis
Variable Studies
(patients), n (n)
Sensitivity
(95% CI) Specificity
(95% Cr) AUROC
(95% CI) Positive likelihood
ratio (95% CI)
Negative likelihood ratio
(95% CI)
I2 (%) (95% CI)
Publication bias
Sepsis
HBP
[34-38, 43-46, 48, 52, 55- 58]
15 (2428) 0.85
(0.79 - 0.90)
0.91 (0.82 - 0.96)
0.93 (0.90- 0.95)
9.4 (4.3 - 20.4)
0.16 (0.11 - 0.24)
0.12 (0.00 - 0.24)
0.11
PCT
[34-35, 38, 43, 52, 55, 58] 7 (1516) 0.75
(0.62 - 0.85) 0.85
(0.73 - 0.92) 0.87
(0.83- 0.89) 4.8
(2.5 - 9.6) 0.29
(0.18 - 0.49) 0.13,
(0.00 - 0.30) 0.01 CRP
[34-36, 38, 43, 55, 57-58] 8 (1598) 0.75
(0.65 - 0.84) 0.71
(0.63 - 0.77) 0.78
(0.75 - 0.82) 2.6
(1.9 - 3.5) 0.35
(0.22 - 0.54) 0.12,
(0.00 - 0.25) 0.76 Lactate
[34-35, 37-38, 43, 48, 55] 7 (1491) 0.49
(0.35 - 0.64) 0.83
(0.70 - 0.91) 0.71
(0.67 - 0.75) 3.0
(1.8 - 4.9) 0.61
(0.48 - 0.77) 0.14,
(0.00 - 0.28) 0.15 Sepsis-3
HBP
[52, 56-58] 4 (482) 0.81
(0.70 - 0.89) 0.98
(0.52 - 1.00) 0.88
(0.85- 0.91) 36.9
(1.0 - 1338.1) 0.19
(0.12 - 0.31) 0.06,
(0.00 - 0.20) 0.86 Sepsis mortality
prediction
HBP 128 (597) 0.84
(0.73 - 0.90) 0.40
(0.36 - 0.45) 0.46
(0.42- 0.51) 1.4
(1.2 - 1.6) 0.41
(0.25 - 0.68) 0,06
(0.00 - 1.00) 0.79
*p-value < 0.05
Supplemental Digital Content 5. Summary Estimates of Overall and Subgroup Analyses for Biomarkers for the diagnosis of sepsis
Variable Studies (patients),
n (n)
Sensitivity
(95% CI) Specificity
(95% CI) AUROC
(95% CI) Positive likelihood ratio
(95% CI)
Negative likelihood ratio (95% CI)
I2(%)
(95% CI) Publication bias
Overall 15
(2428) 0.85
(0.79 - 0.90) 0.91
(0.82 - 0.96) 0.93
(0.90 - 0.95) 9.4
(4.3 - 20.4) 0.16
(0.11 - 0.24) 0.12
(0.00 - 0.24) 0.11 Study design
Cohort studies 6 (1431) 0.80 (0.72 - 0.86)
0.85 (0.77 - 0.91)
0.89 (0.86 - 0.92)
5.4 (3.4 - 8.5)
0.23 (0.16 - 0.34)
0.06 (0.00 - 0.14)
0.55
Study settings Intensive care
unit 8 (894) 0.85
(0.78 - 0.89) 0.85
(0.68 - 0.94) 0.89
(0.86 - 0.92) 5.8
(2.3 - 14.3) 0.18
(0.12 - 0.28) 0.05
(0.00 - 0.13) 0.77 Emergency
department 5 (1240) 0.83
(0.70 - 0.91) 0.92
(0.81 - 0.96) 0.93
(0.91 - 0.95) 9.9
(3.9 - 24.9) 0.19
(0.10 - 0.36) 0.13
(0.00 - 0.34) 0.14 Age group
*Pediatric
population 6 (737) 0.86
(0.76 - 0.93) 0.86
(0.74 - 0.93) 0.93
(0.90 - 0.95) 6.2
(2.9 - 13.3) 0.16
(0.08 - 0.31) 0.12
(0.00 - 0.31) 0.13 Assay kit
Axis-Shield 5 (1232) 0.79 (0.68 - 0.87)
0.88 (0.78 - 0.94)
0.87 (0.84 - 0.90)
6.5 (3.3 -12.5)
0.24 (0.15 - 0.38)
0.09 (0.00 - 0.23)
0.30
Joinstar 7 (975) 0.82
(0.74 - 0.88) 0.90
(0.63 - 0.98) 0.90
(0.87 - 0.93) 7.8
(1.9 - 32.7) 0.20
(0.14 - 0.30) 0.06
(0.00 -0.17) 0.11 China vs. non-China studies
Non-China 20 (2642) 0.85
(0.81 - 0.88)
0.85 (0.76 - 0.91)
0.89 (0.86 - 0.92)
5.7 (3.3 - 9.8)
0.18 ( 0.14, 0.24)
0.05 (0.00 - 0.11)
0.18
China 6 (1190) 0.82
( 0.72, 0.89) 0.86
( 0.66, 0.96) 0.89
(0.86, 0.91) 6.0
(2.0, 18.0) 0.21
( 0.12, 0.36) 0.10
(0.00, 0.24) 0.43 Timing of measurement
0 hour 4
(477)
0.94 (0.90, 0.97) 0.87 (0.72,0.94)
0.96 (0.94 - 0.97)
7.3 ( 3.2, 16.6)
0.07 (0.03, 0.12)
0.00 (0.00-0.06)
0.15
24 hour 4
(477) 0.92 (0.86, 0.96) 0.82
(0.67,0.91) 0.95
(0.92 - 0.96) 5.1
( 2.6, 10.1) 0.10
( 0.05, 0.18) 0.04
(0.00- 0.22) 0.77
48 hour 5
(525) 0.88 (0.77, 0.94) 0.87
(0.63,0.97) 0.93
(0.91 - 0.95) 6.9
(1.9, 24.9) 0.14
( 0.06, 0.30) 0.14
(0.00- 0.37) 0.41
72 hour 4
(477) 0.82 (0.75, 0.87) 0.81
(0.29,0.98) 0.84
(0.80 - 0.87) 4.3
(0.6, 30.7) 0.23
( 0.11, 0.45) 0.02
(0.00- 0.08) 0.69
*The pediatrics population is based on SIRS definition.
Supplemental Digital Content 6. Translation of reference 65
Abstract:
Aim: To provide a systematic evaluation of heparin-binding protein (HBP) as a diagnostic biomarker for adult sepsis.
Method:
From July 2019, a database was compiled based on relevancy to the diagnostic value of HBP in adult sepsis. The sources of the database include PubMed of the National Library of Medicine, Embase of the Netherlands Medical Abstracts, Cochrane clinical trial database, China Academic Journals, China Science Periodical Database, and China Science and Technology Journal Database. Two independents investigators reviewed the articles and evaluated the quality using QUADAS-2. Meta-analysis was then performed on database using Meta-Disc 1.4 and STATA 12.0, calculated the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio. In addition the diagnostic odds ratio was used to draw a fitted receiver operating characteristic curve (SROC) and calculate the area under the curve (AUC); Deek’s test was used to detect publication bias.
Results:
With a total of 1884 patients, 10 studies were selected for this meta-analysis. All included studies used enzyme-linked immunosorbent assay (ELISA) to detect plasma HBP levels. Meta-analysis results showed that there were heterogeneity and random effect models between the studies. The analysis shows that the combined sensitivity, combined specificity, combined PLR, combined NLR and combined DOR are 0.80 [95% confidence interval (95%CI) 0.77~0.83], 0.80 (95%CI 0.78~0.82), 3.96 (95%CI is 2.45~6.41), 0.28 (95%CI is 0.20~0.39), 14.63 (95%CI is 6.83~31.30); combined AUC is 0.86, Cochran-Q=0.79. To find the source of the heterogeneity, subgroup was formed based on disease severity, diagnostic criteria of sepsis and the region of origin.
No subgroups were found to affect the diagnostic accuracy of HBP, indicating that the heterogeneity is still unexplained. No outliers were found through eliminating studies sequentially based on sensitivity, meaning the results were relatively stable and reliable. The Deek’s test showed that there was no publication bias in the included literature.
Conclusion:
HBP has a good diagnostic value for adult sepsis, but further verification may be required through greater sample size.
摘 要:
目的 系统评价肝素结合蛋白(HBP)在成人脓毒症诊断中的价值.
方法 检索美国国立医学图书馆
PubMed
数据库、荷兰医学文摘Embase
数据 库、Cochrane临床试验数据库、万方数据库、中国知网、维普数据库收录的自 建库至2019
年7
月发表的有关HBP
诊断成人脓毒症的中、英文文献.由2
位研 究者独立提取相关资料;采用诊断准确性研究的质量评价工具QUADAS-2
对文 献进行质量评价;用Meta-Disc 1.4
和STATA 12.0
软件进行Meta
分析,计算合并 的敏感度、特异度、阳性似然比(PLR)、阴性似然比(NLR)和诊断优势比(DOR) 等指标,绘制拟合受试者工作特征曲线(SROC)并计算曲线下面积(AUC);采用Deek
检验法检测发表偏倚.结果 最终纳入10
项研究共1 884
例患者,文献质量相对适中.所有研究均采用酶联免疫吸附试验(ELISA)检测血浆中
HBP
水平.Meta
分析结果显示,各研究间存在异质性,随机效应模型分析显示,合并敏感度、合并特异度、合并
PLR、合并 NLR
和合并DOR
分别为0.80
〔95%可信区间(95%CI)为 0.77~0.83〕、0.80(95%CI
为0.78~0.82)、3.96(95%CI
为2.45~6.41)、
0.28(95%CI
为0.20~0.39)、14.63(95%CI
为6.83~31.30);合并 AUC
为0.86,Cochran-Q=0.79.为了探索异质性的潜在来源,对疾病严重程度、脓毒症诊断
标准和地区进行亚组分析,结果显示无方法学上的共变量影响HBP
的诊断准确 性,表明仍存在不能解释的异质性.此外,通过逐个剔除各项研究进行敏感度分析, 未发现异常值研究,结果相对稳定可靠.Deek检验显示纳入文献不存在发表偏倚.结论 HBP对成人脓毒症具有较好的诊断价值,但仍需进一步扩大样本量进行验 证.
Supplemental Digital Content 7. Summary Estimates of Overall and Subgroup Analyses for Biomarkers for the diagnosis of SIRS + infection
Variable Studies
(patients), n (n)
Sensitivity (95% CI)
Specificity (95% Cr)
AUROC (95% CI)
Positive likelihood ratio (95% CI)
Negative likelihood ratio (95% CI)
I2 (%) (95% CI)
Publication bias
SIRS
HBP
[25-26, 49-42, 44, 47, 49, 50-51, 53-54]
12 (1647) 0.82
(0.78 - 0.85)
0.74 (0.61 - 0.84)
0.84 (0.81 - 0.87)
3.1 (1.9 - 5.1)
0.25 (0.18 - 0.33)
0.01, (0.00 - 0.04)
0.45
PCT
[25, 39, 41-42, 47, 49- 51, 54]
9 (1272) 0.79
(0.69 - 0.87)
0.74 (0.64 - 0.81)
0.83 (0.79 - 0.86)
3.0 (2.1 - 4.3)
0.28 (0.17 - 0.46)
0.15, (0.00 - 0.31)
0.48
CRP
[39, 47, 49, 50-51, 53]
6 (879) 0.74
(0.61 - 0.84)
0.70 (0.51 - 0.84)
0.79 (0.75 - 0.82)
2.5 (1.5 - 4.1)
0.37 (0.25 - 0.54)
0.12, (0.00 - 0.28)
0.23
Supplemental Digital Content 8. Additive effects of HBP in combination with other markers
Studies Uni-marker AUROC Combined markers AUROC
Yang Y (2019) HBP 0.814 HBP+SOFA score 0.829
Zhang Y (2018) HBP 0.758 HBP+PCT+Lactate 0.932
Qin B (2018) HBP 0.980 HBP+PCT 0.993
Yi X (2017) HBP 0.815 HBP+PCT 0.992
Yi X (2017) HBP 0.815 HBP+CRP 0.556
Yi X (2017) HBP 0.815 HBP+WBC 0.868
Chen Y (2016) HBP 0.869 HBP+PCT 0.955
Supplemental Digital Content 9. Comparison between HBP, PCT and CRP
HBP PCT CRP
Monitor of sepsis patients
Lack of evidence. A decrease of PCT levels more than 80% within 72 hours of ICU admission would predict a 90% survival in the ICU sepsis patients. [1, 2]
A CRP level >100mg/L is associated with a standardized mortality ratio (SMR) of 0.85 for sepsis patients in ICU. [1]
Diagnosis of sepsis
Cut off value: 15ng/mL Sensitivity: 87.1%
Specificity: 95.1%
Khan F (2019)
Cut off value: 22.85ng/mL Sensitivity: 78%
Specificity: 86%
Cutoff value: 0.25 μg/L for patients outside of ICU and 0.5 μg/L for patients with severe illness in ICU. [3]
Sensitivity: 80%
Specificity: 61%
CRP is a non-specific acute responsive phase protein for inflammation. CRP can be used to identify early sepsis and non sepsis, but the level of CRP has no statistical significance in the seriousness of sepsis. [2]
Antibiotics stewardship for sepsis patients
Lack of evidence.
The drop of PCT below 0.25 μg/L or by at least >80%–
90% from the peak was used as stopping rule thresholds.
[3]
Lack of evidence.
reference 1. Linder A, Christensson B, Herwald H, et al.: Heparin-binding
1. Schuetz P, Maurer P, Punjabi V, et al.: Procalcitonin decrease over 72 hours in US critical care units predicts
1.Koozi H, Maria L, Attila Fi.: C-reactive protein as a prognostic factor in intensive care admissions
protein: an early marker of circulatory failure in sepsis. Clin Infect Dis 2009; 49:1044–1050
2. Kahn F, Tverring J, Mellhammar L, et al.: Heparin-Binding Protein as a Prognostic Biomarker of Sepsis and Disease Severity at the Emergency Department. Shock 2019; 52:e135–e145
fatal outcome in sepsis patients. Crit Care 2013;17(3):R115. Published 2013 Jun 20.
doi:10.1186/cc12787
2. Schuetz P, Birkhahn R, Sherwin R et al.: Serial Procalcitonin Predicts Mortality in Severe Sepsis Patients: Results From the Multicenter Procalcitonin MOnitoring SEpsis (MOSES) Study, Crit Care Med May 2017 - Volume 45 - Issue 5 - p 781-789 doi:
10.1097/CCM.0000000000002321
3. Schuetz P, Beishuizen A, Broyles M, et al.:
Procalcitonin (PCT)-guided antibiotic stewardship: an international experts consensus on optimized clinical use, Clin Chem Lab Med 2019; 57(9), 1308-1318. doi:
https://doi.org/10.1515/cclm-2018-1181
for sepsis: A Swedish multicenter study. J Crit Care 56 2020: 73–79.
https://doi.org/10.1016/j.jcrc.2019.12.009.
2. Tan M, Lu ., Jiang H, et al.: The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysis.
J Cell Biochem 2019;120(4):5852-5859.
doi:10.1002/jcb.27870